Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Caffeic Acid Phenethyl Ester: A Potential Anticancer Bioactive Constituent of Propolis

Author(s): Harshad Kapare*, Srishti Nagaraj, Shweta Wakalkar and Karishma Rathi

Volume 18, Issue 3, 2022

Published on: 11 August, 2022

Page: [181 - 192] Pages: 12

DOI: 10.2174/1573394718666220603103458

Price: $65

Abstract

Background: Currently, synthetic therapeutic drugs used in cancer treatment are targeting cancerous tissues that also affect noncancerous dividing cells, which exhibit side effects that decrease the immune response and affect the quality of life. Traditional/ natural products are well proven for a variety of therapeutically active chemical constituents. Caffeic acid phenethyl ester (CAPE) is one of the bioactive molecules found in the natural product propolis is now attracting researcher’s interest because of its anticancer potential.

Objective: The aim of this review is to summarize and critically analyze the current evidence on the therapeutic effects of CAPE in various types of cancer cells, both in terms of in vitro and in vivo, along with supportive anti-inflammatory & antioxidant activity in cancer therapy.

Methods: This study focused on the mechanism pathways, synergism of CAPE. Various conventional and advanced targeted nanotechnology based formulation approaches developed for the delivery of CAPE as a promising therapeutic agent were also discussed in detail in terms of challenges and future opportunities.

Conclusion: Overall study summarized and demonstrated the excellent therapeutic potential, mechanisms, and formulation approaches of CAPE as a therapeutic bioactive molecule. Study and research further can be initiated for the investigation of biopharmaceutical aspects for therapeutic and clinical applications.

Keywords: Anticancer, CAPE, nanotechnology, metastasis, proliferation, propolis.

Graphical Abstract

[1]
Kapare HS, Lohidasan S, Sinnathambi A, et al. Standardization, chemical profiling, in vitro cytotoxic effects, in vivo anticarcinogenic poten-tial and biosafety profile of Indian propolis. J Ayur Int Med 2019; 10(2): 81-7.
[2]
Kapare HS, Sathiyanarayanan L. Nutritional and therapeutic potential of Propolis: A review. Res J Pharm Technol 2020; 13(7): 3545-9.
[http://dx.doi.org/10.5958/0974-360X.2020.00627.7]
[3]
Zhang P, Tang Y, Li NG, Zhu Y, Duan JA. Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives. Molecules 2014; 19(10): 16458-76.
[http://dx.doi.org/10.3390/molecules191016458] [PMID: 25314606]
[4]
Son S, Lobkowsky EB, Lewis BA. Caffeic acid phenethyl ester (CAPE): Synthesis and X-ray crystallographic analysis. Chem Pharm Bull (Tokyo) 2001; 49(2): 236-8.
[http://dx.doi.org/10.1248/cpb.49.236] [PMID: 11217116]
[5]
Chen WK, Tsai CF, Liao PH, et al. Synthesis of caffeic acid esters as antioxidants by esterification via acyl chlorides. Chung Kuo Yao Hsueh Tsa Chih 1999; 51: 271-8.
[6]
Xia C, Hu W. Synthesis of caffeic acid esters. J Chem Res 2005; 5: 332-4.
[http://dx.doi.org/10.3184/0308234054323869]
[7]
Kishimoto N, Kakino Y, Iwai K. Enzymatic synthesis of caffeic acid esters from chlorogenic acid by transesterification and condensation reactions. Colloq Sci Int Cafe 2005; 20: 249-53.
[8]
Kishimoto N, Kakino Y, Iwai K, Fujita T. Chlorogenate hydrolase-catalyzed synthesis of hydroxycinnamic acid ester derivatives by trans-esterification, substitution of bromine, and condensation reactions. Appl Microbiol Biotechnol 2005; 68(2): 198-202.
[http://dx.doi.org/10.1007/s00253-004-1876-z] [PMID: 15717173]
[9]
Stevenson DE, Parkar SG, Zhang J, et al. Combinatorial enzymic synthesis for functional testing of phenolic acid esters catalysed by Can-dida antarctica lipase B (Novozym 435(R)). Enzyme Microb Technol 2006; 40: 1078-86.
[http://dx.doi.org/10.1016/j.enzmictec.2006.08.012]
[10]
Widjaja A, Yeh T, Ju Y. Enzymatic synthesis of caffeic acid phenethyl ester. J Chin Inst Chem Eng 2008; 39: 413-8.
[http://dx.doi.org/10.1016/j.jcice.2008.05.003]
[11]
Lee YT, Don MJ, Hung PS, et al. Cytotoxicity of phenolic acid phenethyl esters on oral cancer cells. Cancer Lett 2005; 223(1): 19-25.
[http://dx.doi.org/10.1016/j.canlet.2004.09.048] [PMID: 15890233]
[12]
Nagaoka T, Banskota AH, Tezuka Y, Saiki I, Kadota S. Selective antiproliferative activity of caffeic acid phenethyl ester analogues on highly liver-metastatic murine colon 26-L5 carcinoma cell line. Bioorg Med Chem 2002; 10(10): 3351-9.
[http://dx.doi.org/10.1016/S0968-0896(02)00138-4] [PMID: 12150882]
[13]
Nagaoka T, Banskota AH, Tezuka Y, et al. Inhibitory effects of caffeic acid phenethyl ester analogues on experimental lung metastasis of murine colon 26-L5 carcinoma cells. Biol Pharm Bull 2003; 26(5): 638-41.
[http://dx.doi.org/10.1248/bpb.26.638] [PMID: 12736504]
[14]
Hajmohamad Ebrahim Ketabforoosh S, Amini M, Vosooghi M, Shafiee A, Azizi E, Kobarfard F. Synthesis, evaluation of anticancer activity and QSAR study of heterocyclic esters of caffeic Acid. Iran J Pharm Res 2013; 12(4): 705-19.
[PMID: 24523750]
[15]
Chandra KL, Saravanan P, Singh RK, et al. Lewis acid catalyzed acylation reactions: Scope and limitations. Tetrahedron 2002; 58: 1369-74.
[http://dx.doi.org/10.1016/S0040-4020(01)01229-7]
[16]
Stüwe HT, Bruhn G, König WA, Hausen BM. The synthesis of caffeic acid esters, a new group of naturally occurring contact allergens. Naturwissenschaften 1989; 76(9): 426-7.
[http://dx.doi.org/10.1007/BF00366169] [PMID: 2812031]
[17]
Chen HC, Chen JH, Chang C, Shieh CJ. Optimization of ultrasound-accelerated synthesis of enzymatic caffeic acid phenethyl ester by re-sponse surface methodology. Ultrason Sonochem 2011; 18(1): 455-9.
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.018] [PMID: 20797894]
[18]
Zhang Z, Xiao B, Chen Q, Lian XY. Synthesis and biological evaluation of caffeic acid 3,4-dihydroxyphenethyl ester. J Nat Prod 2010; 73(2): 252-4.
[http://dx.doi.org/10.1021/np900519d] [PMID: 20092326]
[19]
Appendino G, Minassi A, Daddario N, Bianchi F, Tron GC. Chemoselective esterification of phenolic acids and alcohols. Org Lett 2002; 4(22): 3839-41.
[http://dx.doi.org/10.1021/ol0266471] [PMID: 12599472]
[20]
Wadhwa R, Nigam N, Bhargava P, et al. Molecular characterization and enhancement of anticancer activity of Caffeic Acid Phenethyl Ester by γ Cyclodextrin. J Cancer 2016; 7(13): 1755-71.
[http://dx.doi.org/10.7150/jca.15170] [PMID: 27698914]
[21]
Hadi SM, Asad SF, Singh S, Ahmad A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 2000; 50(3): 167-71.
[http://dx.doi.org/10.1080/152165400300001471] [PMID: 11142343]
[22]
Kaufmann SH. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: A cautionary note. Cancer Res 1989; 49(21): 5870-8.
[PMID: 2790800]
[23]
Rahman A, Shahabuddin S, Hadi SM, et al. Complexes involving quercetin, DNA and Cu(II), 199. Carcinogenesis 1990; 11(11): 2001-3.
[24]
Wang T, Chen L-X, Long Y, Wu WM, Wang R. DNA damage induced by caffeic acid phenyl ester in the presence of Cu(II) ions: Potential mechanism of its anticancer properties. Cancer Lett 2008; 263(1): 77-88.
[http://dx.doi.org/10.1016/j.canlet.2007.12.021] [PMID: 18242825]
[25]
McGowan AJ, Fernandes RS, Verhaegen S, Cotter TG. Zinc inhibits UV radiation-induced apoptosis but fails to prevent subsequent cell death. Int J Radiat Biol 1994; 66(4): 343-9.
[http://dx.doi.org/10.1080/09553009414551281] [PMID: 7930836]
[26]
Strand S, Hofmann WJ, Hug H, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells-a mechanism of immune evasion? Nat Med 1996; 2(12): 1361-6.
[http://dx.doi.org/10.1038/nm1296-1361] [PMID: 8946836]
[27]
Gunji H, Kharbanda S, Kufe D. Induction of internucleosomal DNA fragmentation in human myeloid leukemia cells by 1-beta-D-arabinofuranosylcytosine. Cancer Res 1991; 51(2): 741-3.
[PMID: 1985792]
[28]
Cotter TG, Glynn JM, Echeverri F, Green DR. The induction of apoptosis by chemotherapeutic agents occurs in all phases of the cell cycle. Anticancer Res 1992; 12(3): 773-9.
[PMID: 1622137]
[29]
Fırat F, Özgül M, Türköz Uluer E, Inan S. Effects of caffeic acid phenethyl ester (CAPE) on angiogenesis, apoptosis and oxidatıve stress ın various cancer cell lines. Biotech Histochem 2019; 94(7): 491-7.
[http://dx.doi.org/10.1080/10520295.2019.1589574] [PMID: 30991851]
[30]
Chen YJ, Shiao MS, Hsu ML, Tsai TH, Wang SY. Effect of caffeic acid phenethyl ester, an antioxidant from propolis, on inducing apoptosis in human leukemic HL-60 cells. J Agric Food Chem 2001; 49(11): 5615-9.
[http://dx.doi.org/10.1021/jf0107252] [PMID: 11714368]
[31]
Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet 2008; 371(9625): 1695-709.
[http://dx.doi.org/10.1016/S0140-6736(08)60728-X] [PMID: 18486742]
[32]
Mascolo M, Siano M, Ilardi G, et al. Epigenetic disregulation in oral cancer. Int J Mol Sci 2012; 13(2): 2331-53.
[http://dx.doi.org/10.3390/ijms13022331] [PMID: 22408457]
[33]
GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortali-ty for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385(9963): 117-71.
[http://dx.doi.org/10.1016/S0140-6736(14)61682-2] [PMID: 25530442]
[34]
Kuo YY, Lin HP, Huo C, et al. Caffeic acid phenethyl ester suppresses proliferation and survival of TW2.6 human oral cancer cells via inhibition of Akt signaling. Int J Mol Sci 2013; 14(5): 8801-17.
[http://dx.doi.org/10.3390/ijms14058801] [PMID: 23615471]
[35]
Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-κ B. Proc Natl Acad Sci USA 1996; 93(17): 9090-5.
[http://dx.doi.org/10.1073/pnas.93.17.9090] [PMID: 8799159]
[36]
Peng CY, Yang HW, Chu YH, et al. Caffeic Acid phenethyl ester inhibits oral cancer cell metastasis by regulating matrix metalloproteinase-2 and the mitogen-activated protein kinase pathway. Evid Based Complement Alternat Med 2012; 2012732578.
[http://dx.doi.org/10.1155/2012/732578] [PMID: 23320037]
[37]
Wu J, Omene C, Karkoszka J, et al. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett 2011; 308(1): 43-53.
[http://dx.doi.org/10.1016/j.canlet.2011.04.012] [PMID: 21570765]
[38]
Rossi A, Ligresti A, Longo R, Russo A, Borrelli F, Sautebin L. The inhibitory effect of propolis and caffeic acid phenethyl ester on cycloox-ygenase activity in J774 macrophages. Phytomedicine 2002; 9(6): 530-5.
[http://dx.doi.org/10.1078/09447110260573164] [PMID: 12403162]
[39]
Michaluart P, Masferrer JL, Carothers AM, et al. Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cycloox-ygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res 1999; 59(10): 2347-52.
[PMID: 10344742]
[40]
Kuo Y-Y, Jim W-T, Su L-C, et al. Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer. Int J Mol Sci 2015; 16(5): 10748-66.
[http://dx.doi.org/10.3390/ijms160510748] [PMID: 25984601]
[41]
Shin EJ, Jo S, Choi HK, Choi S, Byun S, Lim TG. Caffeic Acid Phenethyl Ester Inhibits UV-Induced MMP-1 Expression by Targeting His-tone Acetyltransferases in Human Skin. Int J Mol Sci 2019; 20(12): 3055.
[http://dx.doi.org/10.3390/ijms20123055] [PMID: 31234539]
[42]
Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 2006; 15(10): 1765-77.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0353] [PMID: 17035381]
[43]
Tao Q, Chan AT. Nasopharyngeal carcinoma: Molecular pathogenesis and therapeutic developments. Expert Rev Mol Med 2007; 9(12): 1-24.
[http://dx.doi.org/10.1017/S1462399407000312] [PMID: 17477889]
[44]
Liang Y, Feng G, Wu L, et al. Caffeic acid phenethyl ester suppressed growth and metastasis of nasopharyngeal carcinoma cells by inactivat-ing the NF-κB pathway. Drug Des Devel Ther 2019; 13: 1335-45.
[http://dx.doi.org/10.2147/DDDT.S199182] [PMID: 31118570]
[45]
Hu ZY, Xie WB, Yang F, et al. NDRG1 attenuates epithelial-mesenchymal transition of nasopharyngeal cancer cells via blocking Smad2 signaling. Biochim Biophys Acta 2015; 1852(9): 1876-86.
[http://dx.doi.org/10.1016/j.bbadis.2015.06.009] [PMID: 26071641]
[46]
Chen YJ, Liao HF, Tsai TH, Wang SY, Shiao MS. Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse. Int J Radiat Oncol Biol Phys 2005; 63(4): 1252-61.
[http://dx.doi.org/10.1016/j.ijrobp.2005.08.001] [PMID: 16253780]
[47]
Chiang KC, Yang SW, Chang KP, et al. Caffeic Acid Phenethyl Ester Induces N-myc Downstream Regulated Gene 1 to inhibit cell prolifera-tion and invasion of human nasopharyngeal cancer cells. Int J Mol Sci 2018; 19(5): 1397.
[http://dx.doi.org/10.3390/ijms19051397] [PMID: 29738439]
[48]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[49]
Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, Wojtyczka RD, Buszman E, Stojko J. Caffeic acid versus caffeic acid phenethyl ester in the treatment of breast cancer MCF-7 cells: Migration rate inhibition. Integr Cancer Ther 2018; 17(4): 1247-59.
[http://dx.doi.org/10.1177/1534735418801521] [PMID: 30246565]
[50]
O’Brien CA, Kreso A, Dick JE. Cancer stem cells in solid tumors: An overview. Semin Radiat Oncol 2009; 19(2): 71-7.
[http://dx.doi.org/10.1016/j.semradonc.2008.11.001] [PMID: 19249644]
[51]
Omene CO, Wu J, Frenkel K. Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Invest New Drugs 2012; 30(4): 1279-88.
[http://dx.doi.org/10.1007/s10637-011-9667-8] [PMID: 21537887]
[52]
Hirokawa Y, Tikoo A, Huynh J, et al. A clue to the therapy of neurofibromatosis type 2: NF2/merlin is a PAK1 inhibitor. Cancer J 2004; 10(1): 20-6.
[http://dx.doi.org/10.1097/00130404-200401000-00006] [PMID: 15000491]
[53]
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[54]
Hirokawa Y, Nheu T, Grimm K, et al. Sichuan pepper extracts block the PAK1/cyclin D1 pathway and the growth of NF1-deficient cancer xenograft in mice. Cancer Biol Ther 2006; 5(3): 305-9.
[http://dx.doi.org/10.4161/cbt.5.3.2404] [PMID: 16418572]
[55]
Demestre M, Messerli SM, Celli N, et al. CAPE (caffeic acid phenethyl ester)-based propolis extract (Bio 30) suppresses the growth of hu-man neurofibromatosis (NF) tumor xenografts in mice. Phytother Res 2009; 23(2): 226-30.
[http://dx.doi.org/10.1002/ptr.2594] [PMID: 18726924]
[56]
Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: A review. Cancer Biol Med 2017; 14(1): 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[57]
Basta A. Recommendations of the Polish Gynecological Oncology Society for the diagnosis and treatment of ovarian cancer. Curr Gynecol Oncol 2017; 15: 5-23.
[http://dx.doi.org/10.15557/CGO.2017.0001]
[58]
Kleczka A, Kubina R, Dzik R, et al. Caffeic Acid Phenethyl Ester (CAPE) induced apoptosis in serous ovarian cancer OV7 cells by deregula-tion of BCL2/BAX genes. Molecules 2020; 25(15): 3514.
[http://dx.doi.org/10.3390/molecules25153514] [PMID: 32752091]
[59]
Mu C, Sheng Y, Wang Q, Amin A, Li X, Xie Y. Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: Viral and cancer signaling mechanisms. J Funct Foods 2021; 2021: 77104149.
[http://dx.doi.org/10.1016/j.jff.2020.104149] [PMID: 32837538]
[60]
Hamza AA, Heeba GH, Hamza S, Abdalla A, Amin A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/inflammation pathway. Biomed Pharmacother 2021; 2021: 134111102.
[http://dx.doi.org/10.1016/j.biopha.2020.111102] [PMID: 33338743]
[61]
Middleton EJ, Kandaswami C. The impact of plant flavonoids on mammalian biology: Implications for immunity, inflammation and cancer. The flavonoids: Advances in research since 1986 1993; 619-52.
[http://dx.doi.org/10.1007/978-1-4899-2911-2_15]
[62]
Hadi SM, Bhat SH, Azmi AS, Hanif S, Shamim U, Ullah MF. Oxidative breakage of cellular DNA by plant polyphenols: A putative mecha-nism for anticancer properties. Semin Cancer Biol 2007; 17(5): 370-6.
[http://dx.doi.org/10.1016/j.semcancer.2007.04.002] [PMID: 17572102]
[63]
Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Res 1993; 53(17): 3976-85.
[PMID: 8358726]
[64]
Yamashita N, Murata M, Inoue S, Burkitt MJ, Milne L, Kawanishi S. Alpha-tocopherol induces oxidative damage to DNA in the presence of copper(II) ions. Chem Res Toxicol 1998; 11(8): 855-62.
[http://dx.doi.org/10.1021/tx970129v] [PMID: 9705746]
[65]
Ullmannova V, Popescu NC. Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1, and modulation of other gene expression by dietary flavone in breast cancer cell lines. Cancer Detect Prev 2007; 31(2): 110-8.
[http://dx.doi.org/10.1016/j.cdp.2007.02.005] [PMID: 17418982]
[66]
Zheng PW, Chiang LC, Lin CC. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci 2005; 76(12): 1367-79.
[http://dx.doi.org/10.1016/j.lfs.2004.08.023] [PMID: 15670616]
[67]
Rajendra Prasad N, Karthikeyan A, Karthikeyan S, Reddy BV. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem 2011; 349(1-2): 11-9.
[http://dx.doi.org/10.1007/s11010-010-0655-7] [PMID: 21116690]
[68]
Kanimozhi G, Prasad NR. Anticancer effect of caffeic acid on human cervical cancer cells. Coffee in Health and Disease Prevention Springer. 655-61.
[69]
Hsu T-H, Chu CC, Hung MW, Lee HJ, Hsu HJ, Chang TC. Caffeic acid phenethyl ester induces E2F-1-mediated growth inhibition and cell-cycle arrest in human cervical cancer cells. FEBS J 2013; 280(11): 2581-93.
[http://dx.doi.org/10.1111/febs.12242] [PMID: 23497083]
[70]
DeGregori J, Johnson DG. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med 2006; 6(7): 739-48.
[PMID: 17100600]
[71]
Tolba MF, Esmat A, Al-Abd AM, et al. Caffeic acid phenethyl ester synergistically enhances docetaxel and paclitaxel cytotoxicity in prostate cancer cells. IUBMB Life 2013; 65(8): 716-29.
[http://dx.doi.org/10.1002/iub.1188] [PMID: 23847086]
[72]
Shazer RL, Jain A, Galkin AV, et al. Raloxifene, an oestrogen-receptor-beta-targeted therapy, inhibits androgen-independent prostate cancer growth: Results from preclinical studies and a pilot phase II clinical trial. BJU Int 2006; 97(4): 691-7.
[http://dx.doi.org/10.1111/j.1464-410X.2006.05974.x] [PMID: 16536755]
[73]
Jung BI, Kim MS, Kim HA, et al. Caffeic acid phenethyl ester, a component of beehive propolis, is a novel selective estrogen receptor modulator. Phytother Res 2010; 24(2): 295-300.
[http://dx.doi.org/10.1002/ptr.2966] [PMID: 19655397]
[74]
Lin H-P, Jiang SS, Chuu C-P. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 hu-man prostate cancer cells. PLoS One 2012; 7(2): e31286.
[http://dx.doi.org/10.1371/journal.pone.0031286] [PMID: 22347457]
[75]
Murali C, Mudgil P, Gan CY, et al. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci Rep 2021; 11(1): 7062.
[http://dx.doi.org/10.1038/s41598-021-86391-z] [PMID: 33782460]
[76]
Behrens J. Control of beta-catenin signaling in tumor development. Ann N Y Acad Sci 2000; 910: 21-33.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06698.x] [PMID: 10911903]
[77]
Wang D, Xiang D-B, He Y-J, et al. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of colorectal cancer cells in vitro. World J Gastroenterol 2005; 11(26): 4008-12.
[http://dx.doi.org/10.3748/wjg.v11.i26.4008] [PMID: 15996024]
[78]
Xiang D, Wang D, He Y, et al. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/T-cell factor signaling. Anticancer Drugs 2006; 17(7): 753-62.
[http://dx.doi.org/10.1097/01.cad.0000224441.01082.bb] [PMID: 16926625]
[79]
Verma UN, Surabhi RM, Schmaltieg A, Becerra C, Gaynor RB. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res 2003; 9(4): 1291-300.
[PMID: 12684397]
[80]
Wang H, MacNaughton WK. Overexpressed beta-catenin blocks nitric oxide-induced apoptosis in colonic cancer cells. Cancer Res 2005; 65(19): 8604-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1169] [PMID: 16204024]
[81]
Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin 2014; 64(2): 104-17.
[http://dx.doi.org/10.3322/caac.21220] [PMID: 24639052]
[82]
Ponnurangam S, Standing D, Rangarajan P, Subramaniam D. Tandutinib inhibits the Akt/mTOR signaling pathway to inhibit colon cancer growth. Mol Cancer Ther 2013; 12(5): 598-609.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0907] [PMID: 23427297]
[83]
Chiang E-PI, Tsai S-Y, Kuo Y-H, et al. Caffeic acid derivatives inhibit the growth of colon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS One 2014; 9(6): e99631.
[http://dx.doi.org/10.1371/journal.pone.0099631] [PMID: 24960186]
[84]
Chuang S-T, Kuo Y-H, Su M-J. KS370G, a caffeamide derivative, attenuates unilateral ureteral obstruction-induced renal fibrosis by the reduction of inflammation and oxidative stress in mice. Eur J Pharmacol 2015; 750: 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2015.01.020] [PMID: 25620133]
[85]
Cunningham D, Atkin W, Lenz HJ, et al. Colorectal cancer. Lancet 2010; 375(9719): 1030-47.
[http://dx.doi.org/10.1016/S0140-6736(10)60353-4] [PMID: 20304247]
[86]
He YJ, Li WL, Liu BH, Dong H, Mou ZR, Wu YZ. Identification of differential proteins in colorectal cancer cells treated with caffeic acid phenethyl ester. World J Gastroenterol 2014; 20(33): 11840-9.
[http://dx.doi.org/10.3748/wjg.v20.i33.11840] [PMID: 25206290]
[87]
Tang H, Yao X, Yao C, Zhao X, Zuo H, Li Z. Anti-colon cancer effect of caffeic acid p-nitro-phenethyl ester in vitro and in vivo and detec-tion of its metabolites. Sci Rep 2017; 7(1): 7599.
[http://dx.doi.org/10.1038/s41598-017-07953-8] [PMID: 28790461]
[88]
Amin A, Lotfy M, Mahmoud-Ghoneim D. Pancreas-protective effects of chlorella in STZ-induced diabetic animal model: Insights into the mechanism. J Diabetes Mellitus 2011; 1(3): 36-45.
[http://dx.doi.org/10.4236/jdm.2011.13006]
[89]
El-Kharrag R, Amin A, Hisaindee S, Greish Y, Karam SM. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. Int J Oncol 2017; 50(1): 212-22.
[http://dx.doi.org/10.3892/ijo.2016.3769] [PMID: 27878253]
[90]
Dorff TB, Quinn DI. Cabazitaxel in prostate cancer: Stretching a string. Lancet 2010; 376(9747): 1119-20.
[http://dx.doi.org/10.1016/S0140-6736(10)61510-3] [PMID: 20888974]
[91]
Li Z, Xuan Z, Chen J, et al. Inhibiting the NF-κB pathway enhances the antitumor effect of cabazitaxel by downregulating Bcl-2 in pancreatic cancer. Int J Oncol 2020; 57(1): 161-70.
[http://dx.doi.org/10.3892/ijo.2020.5053] [PMID: 32377719]
[92]
Stancu C, Sima A. Statins: Mechanism of action and effects. J Cell Mol Med 2001; 5(4): 378-87.
[http://dx.doi.org/10.1111/j.1582-4934.2001.tb00172.x] [PMID: 12067471]
[93]
Park YH, Seo SY, Lee E, Ku JH, Kim HH, Kwak C. Simvastatin induces apoptosis in castrate resistant prostate cancer cells by deregulating nuclear factor-κB pathway. J Urol 2013; 189(4): 1547-52.
[http://dx.doi.org/10.1016/j.juro.2012.10.030] [PMID: 23085058]
[94]
Kang M, Lee K-H, Lee HS, et al. Concurrent treatment with simvastatin and NF-κB inhibitor in human castration-resistant prostate cancer cells exerts synergistic anti-cancer effects via control of the NF-κB/LIN28/let-7 miRNA signaling pathway. PLoS One 2017; 12(9): e0184644.
[http://dx.doi.org/10.1371/journal.pone.0184644] [PMID: 28910332]
[95]
Randhawa MA, Alghamdi MS. Anticancer activity of Nigella sativa (black seed) - a review. Am J Chin Med 2011; 39(6): 1075-91.
[http://dx.doi.org/10.1142/S0192415X1100941X] [PMID: 22083982]
[96]
Chen Z, Jin K, Gao L, et al. Anti-tumor effects of bakuchiol, an analogue of resveratrol, on human lung adenocarcinoma A549 cell line. Eur J Pharmacol 2010; 643(2-3): 170-9.
[http://dx.doi.org/10.1016/j.ejphar.2010.06.025] [PMID: 20599920]
[97]
Bae S, Lee EM, Cha HJ, et al. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Mol Cells 2011; 32(3): 243-9.
[http://dx.doi.org/10.1007/s10059-011-1037-z] [PMID: 21887509]
[98]
Zhang W, Wang X, Chen T. Resveratrol induces mitochondria-mediated AIF and to a lesser extent caspase-9-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells. Mol Cell Biochem 2011; 354(1-2): 29-37.
[http://dx.doi.org/10.1007/s11010-011-0802-9] [PMID: 21505894]
[99]
Yin HT, Tian QZ, Guan L, Zhou Y, Huang XE, Zhang H. In vitro and in vivo evaluation of the antitumor efficiency of resveratrol against lung cancer. Asian Pac J Cancer Prev 2013; 14(3): 1703-6.
[http://dx.doi.org/10.7314/APJCP.2013.14.3.1703] [PMID: 23679260]
[100]
Ulasli SS, Celik S, Gunay E, et al. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pac J Cancer Prev 2013; 14(10): 6159-64.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.6159] [PMID: 24289642]
[101]
Sakhrani NM, Padh H. Organelle targeting: Third level of drug targeting. Drug Des Devel Ther 2013; 7: 585-99.
[PMID: 23898223]
[102]
Couvreur P. Nanotechnologies for designing new medicines. Biol Aujourdhui 2012; 206(4): 237-48.
[http://dx.doi.org/10.1051/jbio/2012025] [PMID: 23419251]
[103]
Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 2013; 48(3): 416-27.
[http://dx.doi.org/10.1016/j.ejps.2012.12.006] [PMID: 23262059]
[104]
Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine 2011; 6: 877-95.
[http://dx.doi.org/10.2147/IJN.S18905] [PMID: 21720501]
[105]
Kapare HS, Lohidasan S, Sinnathambi A, et al. Caffeic Acid phenethyl ester loaded poly (ε -caprolactone) nanoparticles for improved anti-cancer efficacy: formulation development, characterization and in vitro cytotoxicity study. Nanomed Res J 2020; 5(4): 324-31.
[106]
Kapare HS, Lohidasan S, Sinnathambi A, Mahadik K. Formulation development of folic acid conjugated PLGA nanoparticles for improved cytotoxicity of Caffeic Acid Phenethyl Ester. Pharm Nanotechnol 2021; 9(2): 111-9.
[http://dx.doi.org/10.2174/2211738509666210111160528] [PMID: 33430740]
[107]
Lee H-Y, Jeong Y-I, Kim EJ, et al. Preparation of caffeic acid phenethyl ester-incorporated nanoparticles and their biological activity. J Pharm Sci 2015; 104(1): 144-54.
[http://dx.doi.org/10.1002/jps.24278] [PMID: 25417897]
[108]
Kaul Z, Yaguchi T, Harada JI, et al. An antibody-conjugated internalizing quantum dot suitable for long-term live imaging of cells. Biochem Cell Biol 2007; 85(1): 133-40.
[http://dx.doi.org/10.1139/o06-205] [PMID: 17464353]
[109]
Shin BK, Wang H, Yim AM, et al. Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 2003; 278(9): 7607-16.
[http://dx.doi.org/10.1074/jbc.M210455200] [PMID: 12493773]
[110]
Shiota M, Ikeda Y, Kaul Z, Itadani J, Kaul SC, Wadhwa R. Internalizing antibody-based targeted gene delivery for human cancer cells. Hum Gene Ther 2007; 18(11): 1153-60.
[http://dx.doi.org/10.1089/hum.2007.087] [PMID: 17937579]
[111]
Wang J, Bhargava P, Yu Y, et al. Novel Caffeic Acid Phenethyl Ester-Mortalin antibody nanoparticles offer enhanced selective cytotoxicity to cancer cells. Cancers (Basel) 2020; 12(9): 2370.
[http://dx.doi.org/10.3390/cancers12092370] [PMID: 32825706]
[112]
Ishida Y, Gao R, Shah N, et al. Anticancer activity in honeybee propolis: Functional insights to the role of caffeic acid phenethyl ester and its complex with γ-Cyclodextrin. Integr Cancer Ther 2018; 17(3): 867-73.
[http://dx.doi.org/10.1177/1534735417753545] [PMID: 29390900]
[113]
Szejtli J, Szente L. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 2005; 61(3): 115-25.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.006] [PMID: 16185857]
[114]
Larché M. Immunoregulation by targeting T cells in the treatment of allergy and asthma. Curr Opin Immunol 2006; 18(6): 745-50.
[http://dx.doi.org/10.1016/j.coi.2006.09.013] [PMID: 17010586]
[115]
Williams CM, Galli SJ. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol 2000; 105(5): 847-59.
[http://dx.doi.org/10.1067/mai.2000.106485] [PMID: 10808163]
[116]
Ansorge S, Reinhold D, Lendeckel U. Propolis and some of its constituents down-regulate DNA synthesis and inflammatory cytokine pro-duction but induce TGF-beta1 production of human immune cells. Z Naturforsch C J Biosci 2003; 58(7-8): 580-9.
[http://dx.doi.org/10.1515/znc-2003-7-823] [PMID: 12939048]
[117]
Wang L-C, Chu K-H, Liang Y-C, Lin YL, Chiang BL. Caffeic acid phenethyl ester inhibits nuclear factor-kappaB and protein kinase B signal-ling pathways and induces caspase-3 expression in primary human CD4+ T cells. Clin Exp Immunol 2010; 160(2): 223-32.
[http://dx.doi.org/10.1111/j.1365-2249.2009.04067.x] [PMID: 20059479]
[118]
Pergola C, Werz O. 5-Lipoxygenase inhibitors: A review of recent developments and patents. Expert Opin Ther Pat 2010; 20(3): 355-75.
[119]
Roy P-P, Faye D, Blanchard S, et al. New caffeic acid phenylethyl ester analogs bearing substituted triazole: Synthesis and structure-activity relationship study towards 5-Lipoxygenase Inhibition. J Chem 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/2380531]
[120]
Ang ES, Zhang P, Steer JH, et al. Calcium/calmodulin-dependent kinase activity is required for efficient induction of osteoclast differentia-tion and bone resorption by receptor activator of nuclear factor kappa B ligand (RANKL). J Cell Physiol 2007; 212(3): 787-95.
[http://dx.doi.org/10.1002/jcp.21076] [PMID: 17477372]
[121]
Ang ESM, Pavlos NJ, Chai LY, et al. Caffeic acid phenethyl ester, an active component of honeybee propolis attenuates osteoclastogenesis and bone resorption via the suppression of RANKL-induced NF-kappaB and NFAT activity. J Cell Physiol 2009; 221(3): 642-9.
[http://dx.doi.org/10.1002/jcp.21898] [PMID: 19681045]
[122]
Kim ER, Chang DK. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J Gastroenterol 2014; 20(29): 9872-81.
[http://dx.doi.org/10.3748/wjg.v20.i29.9872] [PMID: 25110418]
[123]
Dai G, Jiang Z, Sun B, et al. Caffeic Acid Phenethyl Ester prevents colitis-associated cancer by inhibiting NLRP3 inflammasome. Front Oncol 2020; 10: 721.
[http://dx.doi.org/10.3389/fonc.2020.00721] [PMID: 32435622]
[124]
McCarty DJ, Hollander JL. Identification of urate crystals in gouty synovial fluid. Ann Intern Med 1961; 54: 452-60.
[http://dx.doi.org/10.7326/0003-4819-54-3-452] [PMID: 13773775]
[125]
Roddy E, Doherty M. epidemiology of gout. Arthritis Res Ther 2010; 12(6): 223.
[http://dx.doi.org/10.1186/ar3199] [PMID: 21205285]
[126]
Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440(7081): 237-41.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[127]
Kim SY, Koo JE, Seo YJ, et al. Suppression of Toll-like receptor 4 activation by caffeic acid phenethyl ester is mediated by interference of LPS binding to MD2. Br J Pharmacol 2013; 168(8): 1933-45.
[http://dx.doi.org/10.1111/bph.12091] [PMID: 23231684]
[128]
Lee HE, Yang G, Kim ND, et al. Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: A novel strategy to treat acute gout. Sci Rep 2016; 6(1): 38622.
[http://dx.doi.org/10.1038/srep38622] [PMID: 27934918]
[129]
Kaul A, Kuthethur R, Ishida Y, Terao K, Wadhwa R, Kaul SC. Molecular insights into the antistress potentials of Brazilian Green Propolis extract and its constituent Artepillin C. Molecules 2021; 27(1): 80.
[http://dx.doi.org/10.3390/molecules27010080] [PMID: 35011307]
[130]
Chang KS, Tsui KH, Hsu SY, et al. The antitumor effect of caffeic acid phenethyl ester by downregulating mucosa-associated lymphoid tissue 1 via AR/p53/NF-κB signaling in prostate carcinoma cells. Cancers (Basel) 2022; 14(2): 274.
[http://dx.doi.org/10.3390/cancers14020274] [PMID: 35053438]
[131]
Abdalla A, Murali C, Amin A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: In vitro and ex vivo insights. Front Oncol 2022; 11789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[132]
Baig B, Halim SA, Farrukh A, Greish Y, Amin A. Current status of nanomaterial-based treatment for hepatocellular carcinoma. Biomed Pharmacother 2019; 2019: 116108852.
[http://dx.doi.org/10.1016/j.biopha.2019.108852] [PMID: 30999152]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy