[1]
Asma N, Yasir T, Azhar A, Shakeel T, Zafar K. Computer-aided brain tumor diagnosis. Performance evaluation of deep learner CNN using augmented brain MRI. Int J Biom Imag 2021; 20215513500
[2]
Karameh FN, Dahleh MA. Automated classification of EEG signals in brain tumor diagnostics. In: Proceedings of the 2000 American Control Conference ACC (IEEE Cat No00CH36334) 2000 Jun 28-30 Chicago, IL, USA. pp 4169-73.
[3]
Law AKW, Zhu H, Lam FK, Chan HY, Chan BCM, Iu PP. Tumor boundary extraction in multi slice MR brain images using region and contour deformation. In: Proceedings International Workshop on Medical Imaging and Augmented Reality Proceedings 2001 Jun 10-12 Hong Kong, China;. pp 183-7.
[4]
Gering DT, Grimson WEL, Kikinis R. Recognizing deviations from normalcy for brain tumor segmentation. PhD Thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science 2003.
[5]
Prastawa M, Bullitt E. Sean Ho, Gerig G. Robust estimation for brain tumor segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003. 2003 Nov 15-18; Montreal, Canada. 530-7.
[6]
Marcel P. E, Sean Ho, Gerig G. A brain tumor segmentation framework based on outlier detection. Med Imag Anlys 2004; 8(3): 275-83.
[7]
Salman YM, Assal MA, Badawi AM, Alian SM, El-Bayome MEM. Validation techniques for quantitative brain tumors measurements. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. 2006 Jan 17-18; Shanghai, China; pp. 7048-51.
[8]
Schmidt M, Levner I, Greiner R, Murtha A, Bistritz A. Segmenting brain tumors using alignment-based features. In: Fourth International Conference on Machine Learning and Applications (ICMLA’05). 2005 Dec 15-17; Los Angeles, CA, USA.
[9]
Arús C, Bernardo C, Srinandan Dasmahaptra, et al. On the design of a web-based decision support system for brain tumor diagnosis using distributed agents. In: 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops. 2006 Dec 18-22; Hong Kong, China. pp. 208-1.
[10]
Wu M-N, Lin C-C, Chang C-C. Brain tumor detection using color-based K-MC segmentation. In: Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007). 2007 Nov 26-28; vol. 2: pp 245-50.
[11]
Corso JJ, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A. Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Trans Med Imaging 2008; 27(5): 629-40.
[12]
Deng W, Xiao W, Deng H, Liu J. MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve. In: 2010 3rd International Conference on Biomedical Engineering and Informatics. 2010 Oct 16-18; Yantai, China. 393-6.
[13]
Dubey RB, Hanmandlu M, Vasikarla S. Evaluation of three methods for MRI brain tumor segmentation. In: 2011 Eighth International Conference on Information Technology: New Generations. 20111 Apr 11-13; Las Vegas, NV, USA. 494-9.
[14]
Natarajan P, Krishnan N, Kenkre NS, Nancy S, Singh BP. Tumor detection using threshold operation in MRI brain images. In: 2012 IEEE International Conference on Computational Intelligence and Computing Research. 2012 Dec 18-20; Coimbatore, India. 1-4.
[15]
Lavanyadevi R, Machakowsalya M, Nivethitha J, Niranjil Kumar A. Brain tumor classification and segmentation in MRI images using PNN. In: 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE). 2017 Apr 27-28; Kaur, India. pp 1-6.
[16]
Shakeel PM, El-Tobely TE, Al-Feel H, Manogaran G, Baskar S. Neural network based brain tumor detection using wireless infrared imaging sensor. IEEE Access 2019; 7: 5577-88.
[17]
Han C, Hayashi H, Rundo L, et al. GAN-based synthetic brain MR image generation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 2018 Apr 4-7; Washington DC, USA. pp 734-8.
[18]
Praveen GB, Agrawal A. Hybrid approach for brain tumor detection and classification in magnetic resonance images. In: 2015 Communication, Control and Intelligent Systems (CCIS);. 2015 Nov 7-8; Mathura, India; pp. 162-6.
[19]
Dhaware C, Wanjale KH. Survey on image classification methods in image processing. Int J Comput Trends Technol 2016; 4(3): 246-8.
[20]
Shivhare SN, Sharma S, Singh N. An efficient brain tumor detection and segmentation in MRI using parameter-free clustering. In: Tanveer M, Pachori R, Eds. Machine Intelligence and Signal Analysis. Singapore: Springer 2019; pp. 485-95.
[21]
Asodekar BH, Gore S A, Thakare AD. Brain tumor analysis based on shape features of MRI using machine learning. In: 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA);. 2019 Sep 19-21; Pune, India; pp. 1-5.
[22]
Gore DV, Deshpande V. Comparative study of various techniques using deep learning for brain tumor detection. In: 2020 International Conference for Emerging Technology (INCET). 2020 Jun 5-7; Belgaum, India. pp 1-4.
[23]
Dou Q, Chen H, Yu L, et al. Automatic detection of cerebral micro bleeds from MR images via 3D convolution neural networks. IEEE Trans Med Imag 2016; 35(5): 1182-95.
[25]
Khalvati F, Wong A, Haider MA. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imag 2015; 15: 27.
[27]
Balaji GN, Subashini TS, Chidambaram N. Automatic classification of cardiac views in echocardiogram using histogram and statistical features. Proc Comp Sci 2015; 46: 1569-76.
[32]
Basha MM, Tirupal T. On the use of spatial frequency technique for detection of brain tumors in medical images. IJTRE 2015; 2(12): 2347-4718.
[33]
Xu G, Shuai Z. Improved methods for brain tumor detection and analysis using MR brain images. BPJ 2022; 4: 1621-3.
[34]
Bangare SL. Classification of optimal brain tissue using dynamic region growing and fuzzy min-max neural network in brain magnetic resonance images. Neuroscience Informatics 2022; 2(3)100019
[35]
Sukumaran A, Ajith A. Automated detection and classification of meningioma tumor from MR images using sea lion optimization and deep learning models. Axioms 2022; 11(1): 15.
[37]
Renuka Devi B, Tirupal T. Image fusion using teaching learning based optimization. Elixir Digit Process 2016; 96: 41229-31.
[38]
Mahalaxmi G, Tirupal T. Detection of lung cancer using binarization technique. J Inform Technol 2017; 13(4): 7-19.
[39]
Gayathri K, Tirupal T. Multimodal medical image fusion based on type-1 fuzzy sets. JASC 2018; 5(10): 1329-41.
[41]
Tirupal T, Chandra Mohan B, Srinivas Kumar S. Medical Image Fusion using UDWT, Fuzzy Sets and Optimization Techniques. Germany: LAP LAMBERT Academic Publishing 2019.
[42]
Tirupal T, Mohan BGK, Kumar S. Type-2 fuzzy set based multimodal medical image fusion. In: Indian Conference on Applied Mechanics (INCAM-2019);. 2019 Jul 3; Banglore.
[43]
Tirupal T, Mohan BC, Srinivas KS. Multimodal medical image fusion techniques - a review. Curr Signal Transduct Ther 2021; 16(2): 142-63.