Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Transition Metal-catalyzed Regioselective Direct C-H Arylations Using Quinone Diazide as Arylating Agent: A Mini Review

Author(s): Partha Pratim Das and Debapratim Das*

Volume 20, Issue 5, 2023

Published on: 30 August, 2022

Page: [494 - 508] Pages: 15

DOI: 10.2174/1570193X19666220531153554

Price: $65

Abstract

Quinone diazides are a class of diazo compounds, having a planar six-membered ring system with diazo, carbonyl, and alkene groups in conjugation. It has been used in optical, electronic, and polymer materials. In the last few years, these diazo compounds explored various rearrangements reactions and insertion reactions via the formation of metallo-carbenoids. Recently, it has been used to incorporate phenol moieties into hydrocarbons or arene/heteroarenes systems via transition metalcatalyzed C-H bond activation. The reactions proceed via C-H bond insertion or migratory insertion of metal-carbenes. In many cases, the site-selectivities were obtained by the guidance of various directing groups (removable or non-removable). At the same time, several asymmetric approaches were also studied to incorporate phenol derivatives to arenes/heteroarenes furnishing compounds showing axial chirality with high stereoselectivity. This review will mainly focus on directed regioselective arylation with quinone diazides under transition metal catalysis through C-H bond activation.

Keywords: C-H bond activation, quinone diazides, carbene, arylation, transition metal, spiroannulation, asymmetric arylation

Graphical Abstract

[1]
a) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev., 2002, 102(5), 1359-1470.
[http://dx.doi.org/10.1021/cr000664r] [PMID: 11996540];
b) Torborg, C.; Beller, M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal., 2009, 351(18), 3027-3043.
[http://dx.doi.org/10.1002/adsc.200900587];
c) Magano, J.; Dunetz, J.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev., 2011, 111(3), 2177-2250.
[http://dx.doi.org/10.1021/cr100346g] [PMID: 21391570]
[2]
a) Sandmeyer, T. Ueber die Ersetzung der Amidgruppe durch Chlor in den aromatischen Substanzen. Ber. Dtsch. Chem. Ges., 1884, 17(2), 1633-1635.
[http://dx.doi.org/10.1002/cber.18840170219];
b) Johansson Seechurn, C.C.C.; Kitching, M.O.; Colacot, T.J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. Engl., 2012, 51(21), 5062-5085.
[http://dx.doi.org/10.1002/anie.201107017] [PMID: 22573393];
c) de Meijere, A.; Bra¨se, S.; Oestreich, M. Metal-Catalyzed cross-coupling reactions and more, Wiley-VCH verlag GmbH & Co. KGaA 2014.;
d) Corbet, J-P.; Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev., 2006, 106(7), 2651-2710.
[http://dx.doi.org/10.1021/cr0505268] [PMID: 16836296];
e) Negishi, E. Magical power of transition metals: Past, present, and future (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 2011, 50(30), 6738-6764.
[http://dx.doi.org/10.1002/anie.201101380] [PMID: 21717531];
f) Kumada, M. Nickel and palladium complex catalyzed cross-coupling reactions of organometallic reagents with organic halides. Pure Appl. Chem., 1980, 52(3), 669-679.
[http://dx.doi.org/10.1351/pac198052030669];
g) Phapale, V.B.; Cárdenas, D.J. Nickel-catalysed Negishi cross-coupling reactions: scope and mechanisms. Chem. Soc. Rev., 2009, 38(6), 1598-1607.
[http://dx.doi.org/10.1039/b805648j] [PMID: 19587955];
h) Hiyama, T. How I came across the silicon-based cross-coupling reaction. J. Organomet. Chem., 2002, 653(1-2), 58-61.
[http://dx.doi.org/10.1016/S0022-328X(02)01157-9]
[3]
a) Daugulis, O.; Do, H-Q.; Shabashov, D. Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. Acc. Chem. Res., 2009, 42(8), 1074-1086.
[http://dx.doi.org/10.1021/ar9000058] [PMID: 19552413];
b) Colby, D.A.; Bergman, R.G.; Ellman, J.A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem. Rev., 2010, 110(2), 624-655.
[http://dx.doi.org/10.1021/cr900005n] [PMID: 19438203];
c) Lyons, T.W.; Sanford, M.S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev., 2010, 110(2), 1147-1169.
[http://dx.doi.org/10.1021/cr900184e] [PMID: 20078038];
d) McGlacken, G.P.; Bateman, L.M. Recent advances in aryl-aryl bond formation by direct arylation. Chem. Soc. Rev., 2009, 38(8), 2447-2464.
[http://dx.doi.org/10.1039/b805701j] [PMID: 19623360];
e) Ackermann, L.; Vicente, R.; Kapdi, A.R. Transition-metal-catalyzed direct arylation of (hetero) arenes by C-H bond cleavage. Angew. Chem. Int. Ed. Engl., 2009, 48(52), 9792-9826.
[http://dx.doi.org/10.1002/anie.200902996] [PMID: 19998294];
f) Satoh, T.; Miura, M. Transition-Metal-Catalyzed regioselective arylation and vinylation of carboxylic acids. Synthesis, 2010, 2010(20), 3395-3409.
[http://dx.doi.org/10.1055/s-0030-1258225];
g) Yeung, C.S.; Dong, V.M. Catalytic dehydrogenative cross-coupling: Forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev., 2011, 111(3), 1215-1292.
[http://dx.doi.org/10.1021/cr100280d] [PMID: 21391561];
h) Kuhl, N.; Hopkinson, M.N.; Wencel-Delord, J.; Glorius, F. Beyond directing groups: Transition-metal-catalyzed C-H activation of simple arenes. Angew. Chem. Int. Ed. Engl., 2012, 51(41), 10236-10254.
[http://dx.doi.org/10.1002/anie.201203269] [PMID: 22996679];
i) Sun, C-L.; Li, B-J.; Shi, Z-J. Direct C-H transformation via iron catalysis. Chem. Rev., 2011, 111(3), 1293-1314.
[http://dx.doi.org/10.1021/cr100198w] [PMID: 21049955];
j) Wencel-Delord, J.; Glorius, F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem., 2013, 5(5), 369-375.
[http://dx.doi.org/10.1038/nchem.1607] [PMID: 23609086]
[4]
a) Shirakawa, E.; Hayashi, T. Transition-metal-free coupling reactions of aryl halides. Chem. Lett., 2012, 41(2), 130-134.
[http://dx.doi.org/10.1246/cl.2012.130];
b) Lekkala, R.; Lekkala, R.; Moku, B.; Rakesh, K.P.; Qin, H-L. Recent developments in radical-mediated transformations of organohalides. Eur. J. Org. Chem., 2019, 2019(17), 2769-2806.
[http://dx.doi.org/10.1002/ejoc.201900098];
c) Littke, A.F.; Fu, G.C. Palladium-catalyzed coupling reactions of aryl chlorides. Angew. Chem. Int. Ed., 2002, 41(22), 4176-4211.
[http://dx.doi.org/10.1002/1521-3773(20021115)41:22<4176:AID-ANIE4176>3.0.CO;2-U] [PMID: 12434342];
d) Maity, S.; Das, D.; Sarkar, S.; Samanta, R. Direct Pd(II)-catalyzed site-selective c5-arylation of 2-pyridone using aryl iodides. Org. Lett., 2018, 20(17), 5167-5171.
[http://dx.doi.org/10.1021/acs.orglett.8b02112] [PMID: 30141333]
[5]
a) Yang, Y.; Buchwald, S.L. Ligand-controlled palladium-catalyzed regiodivergent Suzuki-Miyaura cross-coupling of allylboronates and aryl halides. J. Am. Chem. Soc., 2013, 135(29), 10642-10645.
[http://dx.doi.org/10.1021/ja405950c] [PMID: 23837686];
b) Suzuki, A. Cross-coupling reactions of organoboranes: An easy way to construct C-C bonds (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 2011, 50(30), 6722-6737.
[http://dx.doi.org/10.1002/anie.201101379] [PMID: 21618370];
c) Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007];
d) Miyaura, N.; Yanagi, T.; Suzuki, A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun., 1981, 11(7), 513-519.
[http://dx.doi.org/10.1080/00397918108063618];
e) Payamifar, S.; Kazemi, F.; Kaboudin, B. Nickel/β-CD-catalyzed Suzuki–Miyaura cross-coupling of aryl boronic acids with aryl halides in water. Appl. Organomet. Chem., 2021, 35(11), e6378.
[http://dx.doi.org/10.1002/aoc.6378];
f) Han, F-S. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev., 2013, 42(12), 5270-5298.
[http://dx.doi.org/10.1039/c3cs35521g] [PMID: 23460083]
[6]
a) Chen, L.; Ju, L.; Bustin, K.A.; Hoover, J.M. Copper-catalyzed oxidative decarboxylative C-H arylation of benzoxazoles with 2-nitrobenzoic acids. Chem. Commun. (Camb.), 2015, 51(81), 15059-15062.
[http://dx.doi.org/10.1039/C5CC06645J] [PMID: 26314336];
b) Kan, J.; Huang, S.; Lin, J.; Zhang, M.; Su, W. Silver-catalyzed arylation of (hetero)arenes by oxidative decarboxylation of aromatic carboxylic acids. Angew. Chem. Int. Ed. Engl., 2015, 54(7), 2199-2203.
[http://dx.doi.org/10.1002/anie.201408630] [PMID: 25537369];
c) Patra, T.; Nandi, S.; Sahoo, S.K.; Maiti, D. Copper mediated decarboxylative direct C-H arylation of heteroarenes with benzoic acids. Chem. Commun. (Camb.), 2016, 52(7), 1432-1435.
[http://dx.doi.org/10.1039/C5CC08367B] [PMID: 26647115];
d) Liu, C.; Ji, C-L.; Zhou, T.; Hong, X.; Szostak, M. Bimetallic cooperative catalysis for decarbonylative heteroarylation of carboxylic acids via C-O/C-H coupling. Angew. Chem. Int. Ed. Engl., 2021, 60(19), 10690-10699.
[http://dx.doi.org/10.1002/anie.202100949] [PMID: 33596335];
e) Patra, T.; Maiti, D. Decarboxylation as the key step in C-C bond-forming reactions. Chemistry, 2017, 23(31), 7382-7401.
[http://dx.doi.org/10.1002/chem.201604496] [PMID: 27859719]
[7]
a) Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673];
b) Aradi, K.; Toth, B.L.; Tolnai, G.L. Nova ́ k, Z. ́ diaryliodonium salts in organic syntheses: A useful compound class for novel arylation strategies. Synlett, 2016, 27(10), 1456-1485. [and references cited therein
[http://dx.doi.org/10.1055/s-0035-1561369];
c) Liu, F.; Wang, M.; Qu, J.; Lu, H.; Gao, H. Synthesis of non-C2 symmetrical NOBIN-type biaryls through a cascade N-arylation and [3,3]-sigmatropic rearrangement from O-arylhydroxylamines and diaryliodonium salts. Org. Biomol. Chem., 2021, 19(33), 7246-7251.
[http://dx.doi.org/10.1039/D1OB00636C] [PMID: 34387642]
[8]
a) Primer, D.N.; Karakaya, I.; Tellis, J.C.; Molander, G.A. Single-electron transmetalation: an enabling technology for secondary alkylboron cross-coupling. J. Am. Chem. Soc., 2015, 137(6), 2195-2198.
[http://dx.doi.org/10.1021/ja512946e] [PMID: 25650892];
b) Borlinghaus, N.; Schönfeld, B.; Heitz, S.; Klee, J. Vukelić S.; Braje, W.M.; Jolit, A. Enabling metallophotoredox catalysis in parallel solution-phase synthesis using disintegrating reagent tablets. J. Org. Chem., 2021, 86(23), 16535-16547.
[http://dx.doi.org/10.1021/acs.joc.1c01867] [PMID: 34787429]
[9]
a) Hari, D.P.; König, B. The photocatalyzed Meerwein arylation: Classic reaction of aryl diazonium salts in a new light. Angew. Chem. Int. Ed. Engl., 2013, 52(18), 4734-4743.
[http://dx.doi.org/10.1002/anie.201210276] [PMID: 23576379];
b) Felpin, F-X.; Sengupta, S. Biaryl synthesis with arenediazonium salts: cross-coupling, CH-arylation and annulation reactions. Chem. Soc. Rev., 2019, 48(4), 1150-1193.
[http://dx.doi.org/10.1039/C8CS00453F] [PMID: 30608075];
c) Verbelen, B.; Boodts, S.; Hofkens, J.; Boens, N.; Dehaen, W. Radical C-H arylation of the BODIPY core with aryldiazonium salts: Synthesis of highly fluorescent red-shifted dyes. Angew. Chem. Int. Ed. Engl., 2015, 54(15), 4612-4616.
[http://dx.doi.org/10.1002/anie.201410853] [PMID: 25689682];
d) Li, D.; Liang, C.; Jiang, Z.; Zhang, J.; Zhuo, W-T.; Zou, F-Y.; Wang, W-P.; Gao, G-L.; Song, J. Visible-light-promoted C2 selective arylation of quinoline and pyridine N-oxides with diaryliodonium tetrafluoroborate. J. Org. Chem., 2020, 85(4), 2733-2742.
[http://dx.doi.org/10.1021/acs.joc.9b02933] [PMID: 31906619]
[10]
a) Davies, H.M.L.; Beckwith, R.E.J. Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion. Chem. Rev., 2003, 103(8), 2861-2904.
[http://dx.doi.org/10.1021/cr0200217] [PMID: 12914484];
b) Doyle, M.P.; Duffy, R.; Ratnikov, M.; Zhou, L. Catalytic carbene insertion into C-H bonds. Chem. Rev., 2010, 110(2), 704-724.
[http://dx.doi.org/10.1021/cr900239n] [PMID: 19785457];
c) Davies, H.M.L.; Morton, D. Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev., 2011, 40(4), 1857-1869.
[http://dx.doi.org/10.1039/c0cs00217h] [PMID: 21359404];
d) Xiao, Q.; Zhang, Y.; Wang, J. Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions. Acc. Chem. Res., 2013, 46(2), 236-247.
[http://dx.doi.org/10.1021/ar300101k] [PMID: 23013153];
e) Das, D.; Biswas, A.; Karmakar, U.; Chand, S.; Samanta, R. C6-Selective direct alkylation of pyridones with diazo compounds under Rh(III)-catalyzed mild conditions. J. Org. Chem., 2016, 81(3), 842-848.
[http://dx.doi.org/10.1021/acs.joc.5b02349] [PMID: 26743826];
f) Xia, Y.; Liu, Z.; Feng, S.; Zhang, Y.; Wang, J. Ir(III)-catalyzed aromatic C-H bond functionalization via metal carbene migratory insertion. J. Org. Chem., 2015, 80(1), 223-236.
[http://dx.doi.org/10.1021/jo5023102] [PMID: 25437770]
[11]
a) Griesbeck, A.G.; Zimmermann, E. “Quinone Diazides” in science of synthesis; Griesbeck, A.G., Ed.; Thieme, , 2006; p. 807.;
b) Sander, W.; Bucher, G.; Komnick, P.; Morawietz, J.; Bubenitschek, P.; Jones, P.G.; Chrapkowski, A. Structure and spectroscopic properties of p-benzoquinone diazides. Chem. Ber., 1993, 126(9), 2101-2109.
[http://dx.doi.org/10.1002/cber.19931260921]
[12]
The chemistry of phenols; John Wiley & Sons Ltd.: Chichester, U.K., 2003.
[13]
Ershov, V.V.; Nikiforvo, G.A.; De Jonge, C.R.H.I. Studies in organic chemistry: Quinonediazides; Elsevier: Amsterdam, 1981. Griesbeck, A.G.; Zimmermann, E. Science of synthesis; Griesbeck, A.G., Ed.; Thieme: Stuttgart, 2000, Vol. 28, p. 807.
[14]
Mori, H.; Tando, I.; Tanaka, H. Synthesis and optoelectronic properties of alternating copolymers containing anthracene unit in the main chain by radical ring-opening polymerization. Macromolecules, 2010, 43(17), 7011-7020.
[http://dx.doi.org/10.1021/ma100820z]
[15]
Wallraff, G.M.; Hinsberg, W.D. Lithographic imaging techniques for the formation of nanoscopic features. Chem. Rev., 1999, 99(7), 1801-1822.
[http://dx.doi.org/10.1021/cr980003i] [PMID: 11849011]
[16]
a) Olszewski, J.D.; Marshalla, M.; Sabat, M.; Sundberg, R.J. Potential photoaffinity labels for tubulin. synthesis and evaluation of diazocyclohexadienone and Azide analogs of colchicine, combretastatin, and 3,4,5-Trimethoxybiphenyl. J. Org. Chem., 1994, 59(15), 4285-4296.
[http://dx.doi.org/10.1021/jo00094a048];
b) Bouchet, M.J.; Rendon, A.; Wermuth, C.G.; Goeldner, M.; Hirth, C. Aryl diazo compounds and diazonium salts as potential irreversible probes of the GABA receptor. J. Med. Chem., 1987, 30(12), 2222-2227.
[http://dx.doi.org/10.1021/jm00395a008] [PMID: 2824775]
[17]
a) Ohno, T.; Martn, N.; Knight, B.; Wudl, F.; Suzuki, T.; Yu, H. Quinone-type methanofullerene acceptors: Precursors for organic metals. J. Org. Chem., 1996, 61(4), 1306-1309.
[http://dx.doi.org/10.1021/jo951738f];
b) Knight, B.; Martn, N.; Ohno, T.; Ort, E.; Rovira, C.; Veciana, J.; Vidal-Gancedo, J.; Viruela, P.; Viruela, R.; Wudl, F. Synthesis and electrochemistry of electronegative spiroannelated methanofullerenes: theoretical underpinning of the electronic effect of addends and a reductive cyclopropane ring-opening reaction. J. Am. Chem. Soc., 1997, 119(41), 9871-9882.
[http://dx.doi.org/10.1021/ja962299k]
[18]
Dao, H.T.; Baran, P.S. Quinone diazides for olefin functionalization. Angew. Chem. Int. Ed. Engl., 2014, 53(52), 14382-14386.
[http://dx.doi.org/10.1002/anie.201408022] [PMID: 25367639]
[19]
a) Kitamura, M.; Othman, D.I.A. Diazonaphthoquinones: synthesis, reactions and applications. Heterocycles, 2016, 92, 1761.
[http://dx.doi.org/10.3987/REV-16-845];
b) Bera, S.; Sarkar, S.; Samanta, R. Recent quinone diazide based transformations via metal–carbene formation. New J. Chem., 2021, 45(23), 10135-10149.
[http://dx.doi.org/10.1039/D1NJ01678D]
[20]
a) Baral, E.R.; Lee, Y.R.; Hong Kim, S. 3-Naphthylindole construction by rhodium(II)-catalyzed regioselective direct arylation of indoles with 1-diazonaphthalen-2-(1H)-ones. Adv. Synth. Catal., 2015, 357(13), 2883-2892.
[http://dx.doi.org/10.1002/adsc.201500209];
b) Wu, K.; Cao, B.; Zhou, C.Y.; Che, C.M. RhII-catalyzed intermolecular C-H arylation of aromatics with diazo quinones. Chemistry, 2018, 24(19), 4815-4819.
[http://dx.doi.org/10.1002/chem.201800648] [PMID: 29436033];
c) Wang, H-X.; Wan, Q.; Wu, K.; Low, K-H.; Yang, C.; Zhou, C-Y.; Huang, J-S.; Che, C-M. Ruthenium(II) Porphyrin quinoid carbene complexes: synthesis, crystal structure, and reactivity toward carbene transfer and hydrogen atom transfer reactions. J. Am. Chem. Soc., 2019, 141(22), 9027-9046.
[http://dx.doi.org/10.1021/jacs.9b03357] [PMID: 31064182];
d) Wang, H-X.; Richard, Y.; Wan, Q.; Zhou, C-Y.; Che, C-M. Iridium(III)-catalyzed intermolecular C(sp3)-H insertion reaction of quinoid carbene: A radical mechanism. Angew. Chem. Int. Ed. Engl., 2020, 59(5), 1845-1850.
[http://dx.doi.org/10.1002/anie.201911138] [PMID: 31755156];
e) Yan, S.; Rao, J.; Zhou, C-Y. Chemoselective rearrangement reactions of sulfur ylide derived from diazoquinones and Allyl/Propargyl Sulfides. Org. Lett., 2020, 22(22), 9091-9096.
[http://dx.doi.org/10.1021/acs.orglett.0c03493] [PMID: 33147039]
[21]
Zhang, S-S.; Jiang, C-Y.; Wu, J-Q.; Liu, X-G.; Li, Q.; Huang, Z-S.; Li, D.; Wang, H. Cp*Rh(III) and Cp*Ir(III)-catalysed redox-neutral C-H arylation with quinone diazides: quick and facile synthesis of arylated phenols. Chem. Commun. (Camb.), 2015, 51(50), 10240-10243.
[http://dx.doi.org/10.1039/C5CC03187G] [PMID: 26021599]
[22]
Liu, Z.; Wu, J-Q.; Yang, S-D. Ir(III)-catalyzed direct c-h functionalization of arylphosphine oxides: A strategy for mop-type ligands synthesis. Org. Lett., 2017, 19(19), 5434-5437.
[http://dx.doi.org/10.1021/acs.orglett.7b02710] [PMID: 28933165]
[23]
a) Morimoto, T.; Obara, N.; Yoshida, I.; Tanaka, K.; Kan, T. Copper-catalyzed enantioselective conjugate addition of diethylzinc using axially chiral aminoethyloxy-phosphine ligands. Tetrahedron Lett., 2007, 48(17), 3093-3095.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.126];
b) Saha, B. RajanBabu, T.V. Syntheses and applications of 2-phosphino-2′-alkoxy-1,1′-binaphthyl ligands. Development of a working model for asymmetric induction in hydrovinylation reactions. J. Org. Chem., 2007, 72(7), 2357-2363.
[http://dx.doi.org/10.1021/jo062044h] [PMID: 17335230];
c) Carroll, M.P.; Guiry, P.J.P.P. N ligands in asymmetric catalysis. Chem. Soc. Rev., 2014, 43(3), 819-833.
[http://dx.doi.org/10.1039/C3CS60302D] [PMID: 24257099];
d) Kocovský, P. Vyskočil, S.; Smrčina, M. Non-symmetrically substituted 1,1′-binaphthyls in enantioselective catalysis. Chem. Rev., 2003, 103(8), 3213-3246.
[http://dx.doi.org/10.1021/cr9900230] [PMID: 12914496];
e) Hayashi, T. Chiral monodentate phosphine ligand MOP for transition-metal-catalyzed asymmetric reactions. Acc. Chem. Res., 2000, 33(6), 354-362.
[http://dx.doi.org/10.1021/ar990080f] [PMID: 10891053]
[24]
Zhang, W-B.; Xie, F.; Yoshinaga, H.; Kida, T.; Nakatsuji, Y.; Ikeda, I. A novel axially chiral phosphine-oxazoline ligand with an axis-unfixed biphenyl backbone: Preparation, complexation, and application in an asymmetric catalytic reaction. Synlett, 2006, 8(8), 1185-1188.
[http://dx.doi.org/10.1055/s-2006-933100]
[25]
a) Baba, K.; Tobisu, M.; Chatani, N. Palladium-catalyzed synthesis of six-membered benzofuzed phosphacycles via carbon-phosphorus bond cleavage. Org. Lett., 2015, 17(1), 70-73.
[http://dx.doi.org/10.1021/ol503252t] [PMID: 25521158];
b) Wang, H.; Dong, B.; Wang, Y.; Li, J.; Shi, Y. A palladium-catalyzed regioselective hydroesterification of alkenylphenols to lactones with phenyl formate as CO source. Org. Lett., 2014, 16(1), 186-189.
[http://dx.doi.org/10.1021/ol403171p] [PMID: 24387316];
c) He, X.; Borau-Garcia, J.; Woo, A.Y.Y.; Trudel, S.; Baumgartner, T. Dithieno[3,2-c:2′3′-e]-2,7-diketophosphepin: a unique building block for multifunctional π-conjugated materials. J. Am. Chem. Soc., 2013, 135(3), 1137-1147.
[http://dx.doi.org/10.1021/ja310680x] [PMID: 23308359]
[26]
Chen, R.; Cui, S. Rh(III)-catalyzed C-H activation/cyclization of benzamides and diazonaphthalen-2(1H)-ones for synthesis of lactones. Org. Lett., 2017, 19(15), 4002-4005.
[http://dx.doi.org/10.1021/acs.orglett.7b01728] [PMID: 28726427]
[27]
a) Wang, H.; Schröder, N.; Glorius, F. Mild rhodium(III)-catalyzed direct C-H allylation of arenes with allyl carbonates. Angew. Chem. Int. Ed. Engl., 2013, 52(20), 5386-5389.
[http://dx.doi.org/10.1002/anie.201301165] [PMID: 23576316];
b) Hyster, T.K.; Rovis, T. Rhodium-catalyzed oxidative cycloaddition of benzamides and alkynes via C-H/N-H activation. J. Am. Chem. Soc., 2010, 132(30), 10565-10569.
[http://dx.doi.org/10.1021/ja103776u] [PMID: 20662529];
c) Wang, C-Q.; Ye, L.; Feng, C.; Loh, T-P. C-F bond cleavage enabled redox-neutral [4+1] annulation via C-H bond activation. J. Am. Chem. Soc., 2017, 139(5), 1762-1765.
[http://dx.doi.org/10.1021/jacs.6b12142] [PMID: 28098988];
d) Ye, B.; Cramer, N. Asymmetric synthesis of isoindolones by chiral cyclopentadienyl-rhodium(III)-catalyzed C-H functionalizations. Angew. Chem. Int. Ed. Engl., 2014, 53(30), 7896-7899.
[http://dx.doi.org/10.1002/anie.201404895] [PMID: 24916401];
e) Li, Y.; Qi, Z.; Wang, H.; Yang, X.; Li, X. Ruthenium(II)-Catalyzed C-H activation of imidamides and divergent couplings with diazo compounds: substrate-controlled synthesis of indoles and 3H-Indoles. Angew. Chem. Int. Ed. Engl., 2016, 55(39), 11877-11881.
[http://dx.doi.org/10.1002/anie.201606316] [PMID: 27558084];
f) Qi, Z.; Yu, S.; Li, X. Rh(III)-catalyzed synthesis of N-Unprotected indoles from imidamides and diazo ketoesters via C-H activation and C-C/C-N bond cleavage. Org. Lett., 2016, 18(4), 700-703.
[http://dx.doi.org/10.1021/acs.orglett.5b03669] [PMID: 26824751];
g) Shi, L.; Yu, K.; Wang, B. Regioselective synthesis of multisubstituted isoquinolones and pyridones via Rh(III)-catalyzed annulation reactions. Chem. Commun. (Camb.), 2015, 51(97), 17277-17280.
[http://dx.doi.org/10.1039/C5CC05977A] [PMID: 26463232]
[28]
Das, D.; Poddar, P.; Maity, S.; Samanta, R. Rhodium (III)-catalyzed C6-selective arylation of 2-pyridones and related heterocycles using quinone diazides: Syntheses of heteroarylated phenols. J. Org. Chem., 2017, 82(7), 3612-3621.
[http://dx.doi.org/10.1021/acs.joc.7b00135] [PMID: 28277659]
[29]
a) Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. C-H bond functionalization based on metal carbene migratory insertion. Chem. Commun. (Camb.), 2015, 51(38), 7986-7995.
[http://dx.doi.org/10.1039/C5CC00497G] [PMID: 25739369];
b) Wang, J.; Wang, M.; Chen, K.; Zha, S.; Song, C.; Zhu, J. C-H Activation-based traceless synthesis via electrophilic removal of a directing group. Rhodium(III)-catalyzed entry into indoles from N-nitroso and α-diazo-β-keto compounds. Org. Lett., 2016, 18(5), 1178-1181.
[http://dx.doi.org/10.1021/acs.orglett.6b00310] [PMID: 26909684];
c) Zhou, T.; Li, B.; Wang, B. Rhodium-catalyzed C-H activation of 3-(indolin-1-yl)-3-oxopropanenitriles with diazo compounds and tandem cyclization leading to hydrogenated azepino[3,2,1-hi]indoles. Chem. Commun. (Camb.), 2016, 52(98), 14117-14120.
[http://dx.doi.org/10.1039/C6CC07758G] [PMID: 27858004];
d) Chen, X.; Hu, X.; Bai, S.; Deng, Y.; Jiang, H.; Zeng, W. Rh(Iii)-catalyzed [4 + 2] annulation of indoles with diazo compounds: Access to pyrimido[1,6-a]indole-1(2h)-ones. Org. Lett., 2016, 18(2), 192-195.
[http://dx.doi.org/10.1021/acs.orglett.5b03231] [PMID: 26710082];
e) Allu, S.; Ravi, M.; Kumara Swamy, K.C. Rhodium(III)-Catalysed Carbenoid C(sp2)-H functionalisation of aniline substrates with α-Diazo esters: formation of oxindoles and characterisation/utility of an intermediate-like rhodacycle. Eur. J. Org. Chem., 2016, 2016(34), 5697-5705.
[http://dx.doi.org/10.1002/ejoc.201600968];
f) Li, L.; Brennessel, W.W.; Jones, W.D. An efficient low-temperature route to polycyclic isoquinoline salt synthesis via C-H activation with [Cp*MCl2]2 (M = Rh, Ir). J. Am. Chem. Soc., 2008, 130(37), 12414-12419.
[http://dx.doi.org/10.1021/ja802415h] [PMID: 18714995];
g) Brasse, M.; Cámpora, J.; Ellman, J.A.; Bergman, R.G. Mechanistic study of the oxidative coupling of styrene with 2-phenylpyridine derivatives catalyzed by cationic rhodium(III) via C-H activation. J. Am. Chem. Soc., 2013, 135(17), 6427-6430.
[http://dx.doi.org/10.1021/ja401561q] [PMID: 23590843];
h) Walsh, A.P.; Jones, W.D. Mechanistic insights of a concerted metalation–deprotonation reaction with [Cp*RhCl2]2. Organometallics, 2015, 34(13), 3400-3407.
[http://dx.doi.org/10.1021/acs.organomet.5b00369]
[30]
Ghosh, B.; Biswas, A.; Chakraborty, S.; Samanta, R. RhIII -Catalyzed direct C8-arylation of quinoline N-Oxides using Diazonaphthalen-2(1H)-ones: A practical approach towards 8-aza BINOL. Chem. Asian J., 2018, 13(17), 2388-2392.
[http://dx.doi.org/10.1002/asia.201800462] [PMID: 29665279]
[31]
Banerjee, S.; Riggs, B.E.; Zakharov, L.N.; Blakemore, P.R. Synthesis, properties, and enantiomerization behavior of axially chiral phenolic derivatives of 8-(naphth-1-yl)quinoline and comparison to 7,7′-Dihydroxy-8,8′-biquinolyl and 1,1′-Bi-2-naphthol. Synthesis, 2015, 47(24), 4008-4016.
[http://dx.doi.org/10.1055/s-0035-1560640]
[32]
Ghosh, B.; Samanta, R. Rh(iii)-catalyzed straightforward arylation of 8-methyl/formylquinolines using diazo compounds. Chem. Commun. (Camb.), 2019, 55(48), 6886-6889.
[http://dx.doi.org/10.1039/C9CC02391G] [PMID: 31134234]
[33]
Thomas, B. C.; James, C. A.; Karol, D. E.; Ulrich, S. Naphthalene derivatives PCT. Int. Appl.,, 2002.
[34]
Li, X.; Wang, J.; Xie, X.; Dai, W.; Han, X.; Chen, K.; Liu, H. Ir(iii)-Catalyzed direct C-H functionalization of N-phenylacetamide with α-diazo quinones: a novel strategy for producing 2-hydroxy-2′-amino-1,2′-biaryl scaffolds. Chem. Commun. (Camb.), 2020, 56(23), 3441-3444.
[http://dx.doi.org/10.1039/C9CC08297B] [PMID: 32101183]
[35]
a) Uraguchi, D.; Kinoshita, N.; Ooi, T. Catalytic asymmetric protonation of α-amino acid-derived ketene disilyl acetals using P-spiro diaminodioxaphosphonium barfates as chiral proton. J. Am. Chem. Soc., 2010, 132(35), 12240-12242.
[http://dx.doi.org/10.1021/ja105945z] [PMID: 20715780];
b) Uraguchi, D.; Kizu, T.; Ohira, Y.; Ooi, T. Enantioselective protonation of α-hetero carboxylic acid-derived ketene disilyl acetals under chiral ionic Brønsted acid catalysis. Chem. Commun. (Camb.), 2014, 50(88), 13489-13491.
[http://dx.doi.org/10.1039/C4CC06081D] [PMID: 25234847];
c) Pu, L. 1,1′-binaphthyl dimers, oligomers, and polymers: molecular recognition, asymmetric catalysis, and new materials. Chem. Rev., 1998, 98(7), 2405-2494.
[http://dx.doi.org/10.1021/cr970463w] [PMID: 11848968]
[36]
a) Patpi, S.R.; Pulipati, L.; Yogeeswari, P.; Sriram, D.; Jain, N.; Sridhar, B.; Murthy, R.; Anjana Devi, T.; Kalivendi, S.V.; Kantevari, S. Design, synthesis, and structure-activity correlations of novel dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J. Med. Chem., 2012, 55(8), 3911-3922.
[http://dx.doi.org/10.1021/jm300125e] [PMID: 22449006];
b) Butsch, V.; Börgel, F.; Galla, F.; Schwegmann, K.; Hermann, S.; Schäfers, M.; Riemann, B.; Wünsch, B.; Wagner, S. Design, (Radio)Synthesis, and in vitro and in vivo evaluation of highly selective and potent matrix metalloproteinase 12 (MMP-12) inhibitors as radiotracers for positron emission tomography. J. Med. Chem., 2018, 61(9), 4115-4134.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00200] [PMID: 29660282]
[37]
a) Chan, W.W.; Lo, S.F.; Zhou, Z.; Yu, W.Y. Rh-catalyzed intermolecular carbenoid functionalization of aromatic C-H bonds by α-diazomalonates. J. Am. Chem. Soc., 2012, 134(33), 13565-13568.
[http://dx.doi.org/10.1021/ja305771y] [PMID: 22860697];
b) Hyster, T.K.; Ruhl, K.E.; Rovis, T. A coupling of benzamides and donor/acceptor diazo compounds to form γ-lactams via Rh(III)-catalyzed C-H activation. J. Am. Chem. Soc., 2013, 135(14), 5364-5367.
[http://dx.doi.org/10.1021/ja402274g] [PMID: 23548055]
[38]
a) Bolognese, A.; Correale, G.; Manfra, M.; Esposito, A.; Novellino, E.; Lavecchia, A. Antitumor agents 6. Synthesis, structure-activity relationships, and biological evaluation of spiro[imidazolidine-4,3′-thieno[2,3-g]quinoline]-tetraones and spiro[thieno[2,3-g]quinoline-3,5′-[1,2,4]triazinane]-tetraones with potent antiproliferative activity. J. Med. Chem., 2008, 51(24), 8148-8157.
[http://dx.doi.org/10.1021/jm8007689] [PMID: 19053767];
b) Tanaka, N.; Kashiwada, Y.; Kim, S.Y.; Hashida, W.; Sekiya, M.; Ikeshiro, Y.; Takaishi, Y. Acylphloroglucinol, biyouyanagiol, biyouyanagin B, and related spiro-lactones from Hypericum Chinense. J. Nat. Prod., 2009, 72(8), 1447-1452.
[http://dx.doi.org/10.1021/np900109y] [PMID: 19606850];
c) Trieselmann, T.; Wagner, H.; Fuchs, K.; Hamprecht, D.; Berta, D.; Cremonesi, P.; Streicher, R.; Luippold, G.; Volz, A.; Markert, M.; Nar, H. Potent cholesteryl ester transfer protein inhibitors of reduced lipophilicity: 1,1′-spiro-substituted hexahydrofuroquinoline derivatives. J. Med. Chem., 2014, 57(21), 8766-8776.
[http://dx.doi.org/10.1021/jm500431d] [PMID: 25265559]
[39]
a) Han, T.; Yao, Z.; Qiu, Z.; Zhao, Z.; Wu, K.; Wang, J.; Poon, A.W.; Lam, J.W.Y.; Tang, B.Z. Photoresponsive spiro-polymers generated in situ by C-H-activated polyspiroannulation. Nat. Commun., 2019, 10(1), 5483.
[http://dx.doi.org/10.1038/s41467-019-13308-w] [PMID: 31792223];
b) Hamada, H.; Itabashi, Y.; Shang, R.; Nakamura, E. Axially chiral spiro-conjugated carbon-bridged p-phenylenevinylene congeners: synthetic design and materials properties. J. Am. Chem. Soc., 2020, 142(4), 2059-2067.
[http://dx.doi.org/10.1021/jacs.9b13019] [PMID: 31922417]
[40]
a) Hummel, J.R.; Boerth, J.A.; Ellman, J.A. Transition-Metal-Catalyzed C-H bond addition to carbonyls, imines, and related polarized π bonds. Chem. Rev., 2017, 117(13), 9163-9227.
[http://dx.doi.org/10.1021/acs.chemrev.6b00661] [PMID: 27936637];
b) Yang, Y.; Lan, J.; You, J. Oxidative C-H/C-H coupling reactions between two (hetero)arenes. Chem. Rev., 2017, 117(13), 8787-8863.
[http://dx.doi.org/10.1021/acs.chemrev.6b00567] [PMID: 28085272];
c) Li, H.; Gontla, R.; Flegel, J.; Merten, C.; Ziegler, S.; Antonchick, A.P.; Waldmann, H. Enantioselective formal C(sp3)-H bond activation in the synthesis of bioactive spiropyrazolone derivatives. Angew. Chem. Int. Ed. Engl., 2019, 58(1), 307-311.
[http://dx.doi.org/10.1002/anie.201811041] [PMID: 30511449];
d) Liu, B.; Hu, P.; Zhang, Y.; Li, Y.; Bai, D.; Li, X. Rh(III)-Catalyzed diastereodivergent spiroannulation of cyclic imines with activated alkenes Org. Lett.2017, 19, 5402. f) Zhao, Y.; He, Z.; Li, S.; Tang, J.; Gao, G.; Lan, J.; You, J. An air-stable half-sandwich RuII complex as an efficient catalyst for [3+2] annulation of 2-arylcyclo-2-enones with alkynes. Chem. Commun. (Camb.), 2016, 52, 4613.;
e) Lv, N.; Liu, Y.; Xiong, C.; Liu, Z.; Zhang, Y. Cobalt-catalyzed oxidant-free spirocycle synthesis by liberation of hydrogen. Org. Lett., 2017, 19(17), 4640-4643.
[http://dx.doi.org/10.1021/acs.orglett.7b02266] [PMID: 28825486];
f) Li, D.Y.; Jiang, L.L.; Chen, S.; Huang, Z.L.; Dang, L.; Wu, X.Y.; Liu, P.N. Cascade reaction of alkynols and 7-Oxabenzonorbornadienes involving transient hemiketal group directed C-H activation and synergistic RhIII/ScIII catalysis. Org. Lett., 2016, 18(19), 5134-5137.
[http://dx.doi.org/10.1021/acs.orglett.6b02587] [PMID: 27647431]
[41]
Han, X.; Kong, L.; Feng, J.; Li, X. Rhodium(iii)-catalyzed synthesis of spirocyclic isoindole N-oxides and isobenzofuranones via C-H activation and spiroannulation. Chem. Commun. (Camb.), 2020, 56(41), 5528-5531.
[http://dx.doi.org/10.1039/D0CC00830C] [PMID: 32297608]
[42]
Bera, S.; Roy, S.; Pal, S.C.; Anoop, A.; Samanta, R. Iridium(III)-Catalyzed intermolecular mild N-Arylation of aliphatic amides using quinoid carbene: a migratory insertion-based approach. ACS Catal., 2021, 11(17), 10847-10854.
[http://dx.doi.org/10.1021/acscatal.1c02653]
[43]
a) Kozlowski, M.C.; Morgan, B.J.; Linton, E.C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling. Chem. Soc. Rev., 2009, 38(11), 3193-3207.
[http://dx.doi.org/10.1039/b821092f] [PMID: 19847351];
b) Bringmann, G.; Gulder, T.; Gulder, T.A.M.; Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev., 2011, 111(2), 563-639.
[http://dx.doi.org/10.1021/cr100155e] [PMID: 20939606];
c) Zask, A.; Murphy, J.; Ellestad, G.A. Biological stereoselectivity of atropisomeric natural products and drugs. Chirality, 2013, 25(5), 265-274.
[http://dx.doi.org/10.1002/chir.22145] [PMID: 23620262];
d) Smyth, J.E.; Butler, N.M.; Keller, P.A. A twist of nature--the significance of atropisomers in biological systems. Nat. Prod. Rep., 2015, 32(11), 1562-1583.
[http://dx.doi.org/10.1039/C4NP00121D] [PMID: 26282828]
[44]
a) Clayden, J.; Moran, W.J.; Edwards, P.J.; LaPlante, S.R. The challenge of atropisomerism in drug discovery. Angew. Chem. Int. Ed. Engl., 2009, 48(35), 6398-6401.
[http://dx.doi.org/10.1002/anie.200901719] [PMID: 19637174];
b) Laplante, S.R.D.; Fader, L.; Fandrick, K.R.; Fandrick, D.R.; Hucke, O.; Kemper, R.; Miller, S.P.F.; Edwards, P.J. Assessing atropisomer axial chirality in drug discovery and development. J. Med. Chem., 2011, 54(20), 7005-7022.
[http://dx.doi.org/10.1021/jm200584g] [PMID: 21848318]
[45]
a) Tang, W.; Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev., 2003, 103(8), 3029-3070.
[http://dx.doi.org/10.1021/cr020049i] [PMID: 12914491];
b) Li, Y-M.; Kwong, F-Y.; Yu, W-Y.; Chan, A.S.C. Recent advances in developing new axially chiral phosphine ligands for asymmetric catalysis. Coord. Chem. Rev., 2007, 251(17-20), 2119-2144.
[http://dx.doi.org/10.1016/j.ccr.2007.07.020];
c) Xie, J-H.; Zhou, Q-L. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions. Acc. Chem. Res., 2008, 41(5), 581-593. [ http://dx.doi.org/10.1021/ar700137z]
[PMID: 18311931];
d) Canac, Y.; Chauvin, R.; Atropochiral, C. X- and C,C-chelating carbon ligands. Eur. J. Inorg. Chem., 2010, 2010(16), 2325-2335.
[http://dx.doi.org/10.1002/ejic.201000190];
e) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev., 2014, 114(18), 9047-9153.
[http://dx.doi.org/10.1021/cr5001496] [PMID: 25203602]
[46]
a) Loxq, P.; Manoury, E.; Poli, R.; Deydier, E.; Labande, A. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals. Coord. Chem. Rev., 2016, 308, 131-190.[http://dx.doi.org/10.1016/j.ccr.2015.07.006] ;
b) Wang, Y.B.; Tan, B. Construction of axially chiral compounds via asymmetric organocatalysis. Acc. Chem. Res., 2018, 51(2), 534-547.
[http://dx.doi.org/10.1021/acs.accounts.7b00602] [PMID: 29419282];
c) Mancinelli, M.; Bencivenni, G.; Pecorari, D.; Mazzanti, A. Stereochemistry and recent applications of axially chiral organic molecules. Eur. J. Org. Chem., 2020, 2020(27), 4070-4086.
[http://dx.doi.org/10.1002/ejoc.201901918]
[47]
a) Newton, C.G.; Kossler, D.; Cramer, N. Asymmetric catalysis powered by chiral cyclopentadienyl ligands. J. Am. Chem. Soc., 2016, 138(12), 3935-3941.
[http://dx.doi.org/10.1021/jacs.5b12964] [PMID: 26863546];
b) Yoshino, T.; Satake, S.; Matsunaga, S. Diverse approaches for enantioselective C-H functionalization reactions using group 9 Cpx MIII catalysts. Chemistry, 2020, 26(33), 7346-7357.
[http://dx.doi.org/10.1002/chem.201905417] [PMID: 31994236];
c) Shaaban, S.; Davies, C.; Waldmann, H. Applications of chiral cyclopentadienyl (Cpx) metal complexes in asymmetric catalysis. Eur. J. Org. Chem., 2020, 2020(42), 6512-6524.
[http://dx.doi.org/10.1002/ejoc.202000752]
[48]
Jia, Z.J.; Merten, C.; Gontla, R.; Daniliuc, C.G.; Antonchick, A.P.; Waldmann, H. General enantioselective c-h activation with efficiently tunable cyclopentadienyl ligands. Angew. Chem. Int. Ed. Engl., 2017, 56(9), 2429-2434.
[http://dx.doi.org/10.1002/anie.201611981] [PMID: 28124831]
[49]
Shaaban, S.; Li, H.; Otte, F.; Strohmann, C.; Antonchick, A.P.; Waldmann, H. Enantioselective synthesis of five-membered-ring atropisomers with a chiral Rh(III) complex. Org. Lett., 2020, 22(23), 9199-9202.
[http://dx.doi.org/10.1021/acs.orglett.0c03355] [PMID: 33186042]
[50]
a) Privileged Chiral Ligands and Catalysts; Wiley-VCH: Weinheim, 2011. ;
b) Hartwig, J. Organotransition metal chemistry: from bonding to catalysis; University Science Books: Sausalito, CA, 2010.
[51]
a) Design and Synthesis; Wiley: Hoboken, 2012. ;
b) Lagasse, F.; Kagan, H.B. Chiral monophosphines as ligands for asymmetric organometallic catalysis. Chem. Pharm. Bull. (Tokyo), 2000, 48(3), 315-324.
[http://dx.doi.org/10.1248/cpb.48.315] [PMID: 10726849];
c) Phosphorus ligands in asymmetric catalysis: synthesis and applications; Wiley-VCH: Weinheim, 2008. ;
d) Pedroni, J.; Cramer, N. TADDOL-based phosphorus(III)-ligands in enantioselective Pd(0)-catalysed C-H functionalisations. Chem. Commun. (Camb.), 2015, 51(100), 17647-17657.
[http://dx.doi.org/10.1039/C5CC07929B] [PMID: 26511604]
[52]
a) Ma, Y-N.; Li, S-X.; Yang, S-D. New approaches for biaryl-based phosphine ligand synthesis via P═O directed C-H functionalizations. Acc. Chem. Res., 2017, 50(6), 1480-1492.
[http://dx.doi.org/10.1021/acs.accounts.7b00167] [PMID: 28485596];
b) Zhang, Z.; Dixneuf, P.H.; Soulé, J-F. Late stage modifications of P-containing ligands using transition-metal-catalysed C-H bond functionalisation. Chem. Commun. (Camb.), 2018, 54(53), 7265-7280.
[http://dx.doi.org/10.1039/C8CC02821D] [PMID: 29774912];
c) Du, Z-J.; Guan, J.; Wu, G-J.; Xu, P.; Gao, L-X.; Han, F-S. Pd(II)-catalyzed enantioselective synthesis of P-stereogenic phosphinamides via desymmetric C-H arylation. J. Am. Chem. Soc., 2015, 137(2), 632-635.
[http://dx.doi.org/10.1021/ja512029x] [PMID: 25569141];
d) Sun, Y.; Cramer, N. Rhodium(III)-catalyzed enantiotopic C-H activation enables access to P-chiral cyclic phosphinamides. Angew. Chem. Int. Ed. Engl., 2017, 56(1), 364-367.
[http://dx.doi.org/10.1002/anie.201606637] [PMID: 27572545];
e) Cui, Y-M.; Lin, Y.; Xu, L-W. Catalytic synthesis of chiral organoheteroatom compounds of silicon, phosphorus, and sulfur via asymmetric transition metal-catalyzed C–H functionalization. Coord. Chem. Rev., 2017, 330, 37-52.
[http://dx.doi.org/10.1016/j.ccr.2016.09.011];
f) Sun, Y.; Cramer, N. Tailored trisubstituted chiral Cp x RhIII catalysts for kinetic resolutions of phosphinic amides. Chem. Sci. (Camb.), 2018, 9(11), 2981-2985.
[http://dx.doi.org/10.1039/C7SC05411D] [PMID: 29732080]
[53]
Jang, Y.S. Woźniak, Ł Pedroni, J.; Cramer, N. Access to P- and axially chiral biaryl phosphine oxides by enantioselective Cpx IrIII -catalyzed C-H arylations. Angew. Chem. Int. Ed. Engl., 2018, 57(39), 12901-12905.
[http://dx.doi.org/10.1002/anie.201807749] [PMID: 30044513]
[54]
Kong, L.; Han, X.; Liu, S.; Zou, Y.; Lan, Y.; Li, X. Rhodium(III)-catalyzed asymmetric access to spirocycles through C-H activation and axial-to-central chirality transfer. Angew. Chem. Int. Ed. Engl., 2020, 59(18), 7188-7192.
[http://dx.doi.org/10.1002/anie.202000174] [PMID: 32011784]
[55]
a) Yang, Y.; Wang, X.; Li, Y.; Zhou, B. A [4+1] Cyclative capture approach to 3H-indole-N-oxides at room temperature by rhodium(iii)-catalyzed C-H activation. Angew. Chem. Int. Ed. Engl., 2015, 54(51), 15400-15404.
[http://dx.doi.org/10.1002/anie.201508702] [PMID: 26530999];
b) Nan, J.; Liu, J.; Zheng, H.; Zuo, Z.; Hou, L.; Hu, H.; Wang, Y.; Luan, X. Direct asymmetric dearomatization of 2-naphthols by scandium-catalyzed electrophilic amination. Angew. Chem. Int. Ed. Engl., 2015, 54(8), 2356-2360.
[http://dx.doi.org/10.1002/anie.201409565] [PMID: 25564754];
c) Tan, B.; Bai, L.; Ding, P.; Liu, J.; Wang, Y.; Luan, X. Palladium-catalyzed intermolecular [4+1] Spiroannulation by C(sp3 )-H activation and Naphthol dearomatization. Angew. Chem. Int. Ed. Engl., 2019, 58(5), 1474-1478.
[http://dx.doi.org/10.1002/anie.201813202] [PMID: 30537202]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy