Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

An Insight on the Potential of Manganese Porphyrins in Cancer Treatment

Author(s): Pankaj Kumar Chaurasia*, Shashi Lata Bharati*, Sunita Singh and Sudha Yadava

Volume 20, Issue 5, 2023

Published on: 29 August, 2022

Page: [483 - 493] Pages: 11

DOI: 10.2174/1570193X19666220427111016

Price: $65

Abstract

Porphyrin ligands are recognized for their special tendency to form metal porphyrin complexes of pronounced value. Such metal porphyrin complexes display promising roles as catalysts in various fields, viz., conversion reactions, oxidation reactions, organic synthesis, pharmaceutical areas, biological and environmental fields, and many more. Out of different metal porphyrins, manganese porphyrins are one of the appreciated metal porphyrins due to their valuable catalytic application and potential in cancer treatment. Herein, the proficient contribution of manganese porphyrins to the treatment of cancer along with the molecular pathways involved have been assessed based on the recent scientific literature available.

Keywords: Manganese porphyrins, molecular pathways, mechanism, cancer treatment, radiation therapy, Manganese porphyrin (MnP)/ascorbate system, cancer cells.

Graphical Abstract

[1]
Chaurasia, P.K.; Bharati, S.L.; Kumar, S.; Singh, S. Recent updates on some synthetic metal-porphyrin complexes and their catalytic properties. Advances in Chemistry Research; Taylor, J.C., Ed.; Nova Science Publishers, 2021, pp. 241-259.
[2]
Yadava, S.; Bharati, S.L. Novel complexes of Mn(III) with macrocyclic porphine ligand and ethylenediamine. J. Coord. Chem., 2011, 64, 3950-3959.
[http://dx.doi.org/10.1080/00958972.2011.632412]
[3]
Bharati, S.L.; Yadava, S. Some MnIII – Porphyrins with depolymerization activity towards humic acid. J. Coord. Chem., 2012, 65, 3492-3501.
[http://dx.doi.org/10.1080/00958972.2012.718763]
[4]
Bharati, S.L.; Chaurasia, P.K.; Yadava, S. Some novel organometallic MnIII-Complexes with porphine and 1,6-diaminohexane. Russ. J. Inorg. Chem., 2016, 61(2), 232-238.
[http://dx.doi.org/10.1134/S0036023616020212]
[5]
Bharati, S.L.; Sarma, C.; Hazarika, P.J.; Chaurasia, P.K.; Anand, N.; Yadava, S. Novel Mn(III) porphyrins and prospects of their application in catalysis. Russ. J. Inorg. Chem., 2019, 64, 335-341.
[http://dx.doi.org/10.1134/S0036023619030045]
[6]
de Araujo Torres, M.G.; da Silva, V.S.; Idemori, Y.M.; DeFreitas-Silva, G. Manganese porphyrins as efficient catalysts in solvent-free cyclohexane oxidation. Arab. J. Chem., 2020, 13(1), 1563-1574.
[http://dx.doi.org/10.1016/j.arabjc.2017.12.007]
[7]
Neves, C.M.B.; Rebelo, S.L.H.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Simões, M.M.Q. Second-generation manganese(III) Porphyrins bearing 3,5-dichloropyridyl units: Innovative homogeneous and heterogeneous catalysts for the epoxidation of alkenes. Catalysts, 2019, 9(11), 967.
[http://dx.doi.org/10.3390/catal9110967]
[8]
Anand, N.; Yadava, S.; Chaurasia, P.K.; Bharati, S.L. Synthesis of a novel manganese(III) Porphyrin and its catalytic role in selective oxidation of aromatic alcohols. Russ. J. Inorg. Chem., 2019, 64(9), 1101-1104.
[http://dx.doi.org/10.1134/S003602361909002X]
[9]
Antonangelo, A.R.; Westrup, K.C.M.; Burt, L.A.; Bezzu, C.G.; Malewschik, T.; Machado, G.S.; Nunes, F.S.; McKeown, N.B.; Nakagaki, S. Synthesis, crystallographic characterization and homogeneous catalytic activity of novel unsymmetric porphyrins. RSC Adv, 2017, 7, 50610-50618.
[http://dx.doi.org/10.1039/C7RA08734A]
[10]
Shi, L.; Jiang, Y.Y.; Jiang, T.; Yin, W.; Yang, J.P.; Cao, M.L.; Fang, Y.Q.; Liu, H.Y. Water-soluble manganese and iron mesotetrakis(carboxyl)porphyrin: DNA binding, oxidative cleavage, and cytotoxic activities. Molecules, 2017, 22(7), 1084.
[http://dx.doi.org/10.3390/molecules22071084] [PMID: 28661455]
[11]
Alenezi, K. Manganese(III) porphyrin as electrocatalyst for hydrogen evolution reaction. J. New Mater. Electrochem. Syst., 2017, 20(1), 43-47.
[http://dx.doi.org/10.14447/jnmes.v20i1.294]
[12]
Anand, N.; Yadava, S. Some novel manganese(III) porphyrins with catalytic properties. J. Coord. Chem., 2018, 71(19), 3090-3098.
[http://dx.doi.org/10.1080/00958972.2018.1511779]
[13]
Marianov, A.N.; Jiang, Y. Effect of manganese porphyrin covalent immobilization on electrocatalytic water oxidation and oxygen reduction reactions. ACS Sustain. Chem. Eng., 2019, 7(4), 3838-3848.
[http://dx.doi.org/10.1021/acssuschemeng.8b04735]
[14]
Rai, J.; Basumatary, B.; Bhandary, S.; Murugavel, M.; Sankar, J. A tris-(manganese(iii))corrole-porphyrin-corrole triad: Synthesis, characterization and catalytic epoxidation. Dalton Trans., 2019, 48(21), 7394-7402.
[http://dx.doi.org/10.1039/C9DT00965E] [PMID: 30990500]
[15]
Alyousef, H.A.; Yahia, M.B.; Aouaini, F. New insights on microscopic interpretation of adsorption isotherms of ionophores (manganese–porphyrin complexes) using statistical physics formalism. AIP Adv., 2020, 10065210
[http://dx.doi.org/10.1063/5.0010970]
[16]
Liu, X.; Rong, P. Recent advances of manganese-based hybrid nanomaterials for cancer precision medicine. Front. Oncol., 2021, 11707618
[http://dx.doi.org/10.3389/fonc.2021.707618] [PMID: 34722253]
[17]
Batinic-Haberle, I.; Tovmasyan, A.; Spasojevic, I. Mn porphyrin-based redox-active drugs: Differential effects as cancer therapeutics and protectors of normal tissue against oxidative injury. Antioxid. Redox Signal., 2018, 29(16), 1691-1724.
[http://dx.doi.org/10.1089/ars.2017.7453] [PMID: 29926755]
[18]
Shrishrimal, S.; Chatterjee, A.; Kosmacek, E.A.; Davis, P.J.; McDonald, J.T.; Oberley-Deegan, R.E. Manganese porphyrin, MnTE-2-PyP, treatment protects the prostate from radiation-induced fibrosis (RIF) by activating the NRF2 signaling pathway and enhancing SOD2 and sirtuin activity. Free Radic. Biol. Med., 2020, 152, 255-270.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.03.014] [PMID: 32222469]
[19]
Thamilarasan, M.; Estupinan, R.; Batinic-Haberle, I.; Zennadi, R. Mn porphyrins as a novel treatment targeting sickle cell NOXs to reverse and prevent acute vaso-occlusion in vivo. Blood Adv., 2020, 4(11), 2372-2386.
[http://dx.doi.org/10.1182/bloodadvances.2020001642] [PMID: 32479589]
[20]
Liu, N.; Chen, X.; Jin, L.; Yang, Y-F.; She, Y-B. A mechanistic study of the manganese porphyrin-catalyzed C–H isocyanation reaction. Org. Chem. Front., 2021, 2021(8), 1858-1866.
[http://dx.doi.org/10.1039/D0QO01442G]
[21]
Batinic-Haberle, I.; Tovmasyan, A.; Huang, Z.; Duan, W.; Du, L.; Siamakpour-Reihani, S.; Cao, Z.; Sheng, H.; Spasojevic, I.; Secord, A.A.H. H2O2-Driven anticancer activity of Mn porphyrins and the underlying molecular pathways. Oxid. Med. Cell. Longev., 2021.6653790
[http://dx.doi.org/10.1155/2021/6653790]
[22]
Piganelli, J.D.; Flores, S.C.; Cruz, C.; Koepp, J.; Batinic-Haberle, I.; Crapo, J.; Day, B.; Kachadourian, R.; Young, R.; Bradley, B.; Haskins, K. A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes, 2002, 51(2), 347-355.
[http://dx.doi.org/10.2337/diabetes.51.2.347] [PMID: 11812741]
[23]
Sheng, H.; Chaparro, R.E.; Sasaki, T.; Izutsu, M.; Pearlstein, R.D.; Tovmasyan, A.; Warner, D.S. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid. Redox Signal., 2014, 20(15), 2437-2464.
[http://dx.doi.org/10.1089/ars.2013.5413] [PMID: 23706004]
[24]
Sheng, H.; Spasojevic, I.; Tse, H.M.; Jung, J.Y.; Hong, J.; Zhang, Z.; Piganelli, J.D.; Batinic-Haberle, I.; Warner, D.S. Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-Hexylpyridylporphyrin, MnTnHex-2-PyP: Rodent models of ischemic stroke and subarachnoid hemorrhage. J. Pharmacol. Exp. Ther., 2011, 338(3), 906-916.
[http://dx.doi.org/10.1124/jpet.110.176701] [PMID: 21652782]
[25]
Jaramillo, M.C.; Briehl, M.M.; Batinic-Haberle, I.; Tome, M.E. Manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells. Free Radic. Biol. Med., 2015, 83, 89-100.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.01.031] [PMID: 25725417]
[26]
Jaramillo, M.C.; Briehl, M.M.; Crapo, J.D.; Batinic-Haberle, I.; Tome, M.E. Manganese porphyrin, MnTE-2-PyP5+, Acts as a pro-oxidant to potentiate glucocorticoid-induced apoptosis in lymphoma cells. Free Radic. Biol. Med., 2012, 52(8), 1272-1284.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.001] [PMID: 22330065]
[27]
Tovmasyan, A.; Go, Y-M.; Jones, D.; Spasojevic, I.; Batinic-Haberle, I. Redox proteomics of 4T1 breast cancer cell after treatment with MnTE-2-PyP5+/ascorbate system. Free Radic. Biol. Med., 2016, 100, S112-S113.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.290]
[28]
Flórido, A.; Saraiva, N.; Cerqueira, S. Impact of the SOD mimic MnTnHex-2-PyP on the adhesion and migration of doxorubicin-treated MDA-MB-231 cells. Toxicol. Lett., 2015, 238S, S241.
[http://dx.doi.org/10.1016/j.toxlet.2015.08.711]
[29]
Zhao, Y.; Carroll, D.W.; You, Y.; Chaiswing, L.; Wen, R.; Batinic-Haberle, I.; Bondada, S.; Liang, Y.; St Clair, D.K. A novel redox regulator, MnTnBuOE-2-PyP5+, enhances normal hematopoietic stem/progenitor cell function. Redox Biol., 2017, 12, 129-138.
[http://dx.doi.org/10.1016/j.redox.2017.02.005] [PMID: 28231483]
[30]
Xu, Q.; Zhan, G.; Zhang, Z.; Yong, T.; Yang, X.; Gan, L. Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors. Theranostics, 2021, 11(4), 1937-1952.
[http://dx.doi.org/10.7150/thno.45511] [PMID: 33408790]
[31]
Hasan, B.; Tovmasyan, A.; Batinic-Haberle, I.; Benov, L. Ascorbate-dependent and ascorbate-independent Mn porphyrin cytotoxicity: Anticancer activity of Mn porphyrin-based SOD mimics through ascorbate-dependent and -independent routes. Redox Rep., 2021, 26(1), 85-93.
[http://dx.doi.org/10.1080/13510002.2021.1917214] [PMID: 33902399]
[32]
Boss, M-K.; Oberley-Deegan, R.E.; Batinic-Haberle, I.; Talmon, G.A.; Somarelli, J.A.; Xu, S.; Kosmacek, E.A.; Griess, B.; Mir, S.; Shrishrimal, S.; Teoh-Fitzgerald, M.; Spasojevic, I.; Dewhirst, M.W. Manganese porphyrin and radiotherapy improves local tumor response and overall survival in orthotopic murine mammary carcinoma models. Radiat. Res., 2021, 195(2), 128-139.
[PMID: 33264413]
[33]
Zhu, Y.; Kosmacek, E.A.; Chatterjee, A.; Oberley-Deegan, R.E. MnTE-2-PyP suppresses prostate cancer cell growth via H2O2 production. Antioxidants, 2020, 9(6), 490.
[http://dx.doi.org/10.3390/antiox9060490] [PMID: 32512786]
[34]
Flórido, A.; Saraiva, N.; Cerqueira, S.; Almeida, N.; Parsons, M.; Batinic-Haberle, I.; Miranda, J.P.; Costa, J.G.; Carrara, G.; Castro, M.; Oliveira, N.G.; Fernandes, A.S. The manganese(III) porphyrin MnTnHex-2-PyP5+ modulates intracellular ROS and breast cancer cell migration: Impact on doxorubicin-treated cells. Redox Biol., 2019, 20, 367-378.
[http://dx.doi.org/10.1016/j.redox.2018.10.016] [PMID: 30408752]
[35]
Fernandes, A.S.; Flórido, A.; Saraiva, N.; Cerqueira, S.; Ramalhete, S.; Cipriano, M.; Cabral, M.F.; Miranda, J.P.; Castro, M.; Costa, J.; Oliveira, N.G. Role of the copper (II) complex Cu[15]pyN5 in Intracellular ROS and breast cancer cell motility and invasion. Chem. Biol. Drug Des., 2015, 86(4), 578-588.
[http://dx.doi.org/10.1111/cbdd.12521] [PMID: 25600158]
[36]
Fernandes, A.S.; Serejo, J.; Gaspar, J.; Cabral, F.; Bettencourt, A.F.; Rueff, J.; Castro, M.; Costa, J.; Oliveira, N.G. Oxidative injury in V79 Chinese hamster cells: Protective role of the superoxide dismutase mimetic MnTM-4-PyP. Cell Biol. Toxicol., 2010, 26(2), 91-101.
[http://dx.doi.org/10.1007/s10565-009-9120-3] [PMID: 19255860]
[37]
Berthiaume, J.M.; Wallace, K.B. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol. Toxicol., 2007, 23(1), 15-25.
[http://dx.doi.org/10.1007/s10565-006-0140-y] [PMID: 17009097]
[38]
Chatterjee, A.; Zhu, Y.; Tong, Q.; Kosmacek, E.A.; Lichter, E.Z.; Oberley-Deegan, R.E. The addition of manganese porphyrins during radiation inhibits prostate cancer growth and simultaneously protects normal prostate tissue from radiation damage. Antioxidants, 2018, 7(1), 21.
[http://dx.doi.org/10.3390/antiox7010021] [PMID: 29370088]
[39]
Rajic, Z.; Tovmasyan, A.; de Santana, O.L.; Peixoto, I.N.; Spasojevic, I.; do Monte, S.A.; Ventura, E.; Rebouças, J.S.; Batinic-Haberle, I. Challenges encountered during development of Mn porphyrin-based, potent redox-active drug and superoxide dismutase mimic, MnTnBuOE-2-PyP5+, and its alkoxyalkyl analogues. J. Inorg. Biochem., 2017, 169, 50-60.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.01.003] [PMID: 28131001]
[40]
Gomes, A.T.P.C.; Neves, M.G.P.M.S.; Cavaleiro, J.A.S. Cancer, photodynamic therapy and porphyrin-type derivatives. An. Acad. Bras. Cienc., 2018, 90, 993-1026.
[41]
Xue, X.; Lindstrom, A.; Li, Y. Porphyrin-based nanomedicines for cancer treatment. Bioconjug. Chem., 2019, 30(6), 1585-1603.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00231] [PMID: 31023011]
[42]
Hlapisi, N.; Motaung, T.E.; Linganiso, L.Z.; Oluwafemi, O.S.; Songca, S.P. Encapsulation of gold nanorods with porphyrins for the potential treatment of cancer and bacterial diseases: A critical review. Bioinorg. Chem. Appl., 2019.7147128
[http://dx.doi.org/10.1155/2019/7147128]
[43]
Dai, R.; Peng, F.; Ji, P.; Lu, K.; Wang, C.; Sun, J.; Lin, W. Electron crystallography reveals atomic structures of metal-organic nanoplates with M12μ3-O)8(μ;3-OH)8(μ;2-OH)6 (M = Zr, Hf) secondary building units. Inorg. Chem., 2017, 56(14), 8128-8134.
[http://dx.doi.org/10.1021/acs.inorgchem.7b00845] [PMID: 28641005]
[44]
Dekrafft, K.E.; Boyle, W.S.; Burk, L.M.; Zhou, O.Z.; Lin, W. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. J. Mater. Chem., 2012, 22(35), 18139-18144.
[http://dx.doi.org/10.1039/c2jm32299d] [PMID: 23049169]
[45]
Zhou, F.Y.; Qiu, K.J.; Li, H.F.; Huang, T.; Wang, B.L.; Li, L.; Zheng, Y.F. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility. Acta Biomater., 2013, 9(12), 9578-9587.
[http://dx.doi.org/10.1016/j.actbio.2013.07.035] [PMID: 23928334]
[46]
Abánades Lázaro, I.; Haddad, S.; Rodrigo-Muñoz, J.M.; Marshall, R.J.; Sastre, B.; Del Pozo, V.; Fairen-Jimenez, D.; Forgan, R.S. Surface-functionalization of Zr-Fumarate MOF for selective cytotoxicity and immune system compatibility in nanoscale drug delivery. ACS Appl. Mater. Interfaces, 2018, 10(37), 31146-31157.
[http://dx.doi.org/10.1021/acsami.8b11652] [PMID: 30136840]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy