Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Microwave-induced Facile Synthesis of Highly Strained Three-membered Ring Compounds and Some of Their Reactions

Author(s): Manpreet Kaur and Bimal Krishna Banik*

Volume 9, Issue 4, 2022

Published on: 09 September, 2022

Page: [281 - 296] Pages: 16

DOI: 10.2174/2213337209666220530095641

Price: $65

Abstract

Compounds with three membered rings experience greater strain than those with other ring systems. In general, the synthesis of small ring compounds, particularly three-membered molecules, faces major challenges because of the severe strain in this system. Moreover, microwaveassisted method creates a higher temperature due to the heat and radiation of a reaction mixture more rapidly than conventional methods. This paper reports the successful synthesis of threemembered heterocyclic compounds via microwave-assisted reactions. Microwaves have assisted in making three-membered compounds while inducing high energy to the reaction mixtures. No reviews have reported the synthesis of these types of molecules either by microwave or conventional procedure. In addition, the reaction of a few three-membered ring compounds to other products through the ring rupture method is also included. On this basis of the chemistry (formation and breakage) of three-membered compounds described here, this report can be considered novel, timely, and highly significant. This review may help numerous researchers for further study in this field as the synthesis and cleavage of three-membered ring structures using a microwave is a challenging objective.

Keywords: Tricyclic compounds, microwave, heterocyclic compounds, thiirane, oxirane, aziridines.

Graphical Abstract

[1]
Gabriel, C.; Gabriel, S.; Grant, E.H.; Halstead, B.S.J.; Mingos, D.M.P. Microwave-assisted polyesterification process in bulk and aqueous media. Chem. Soc. Rev., 1998, 27, 213-224.
[http://dx.doi.org/10.1039/a827213z]
[2]
Gedye, R.N.; Wei, J.B. Rate enhancement of organic reactions by microwave at atmospheric pressure. J. Can. J. Chem., 1998, 76, 525-532.
[3]
Langa, F.; de la Cruz, P.; de la Hoz, A. Microwave irradiation: more than just a method for accelerating reactions. Contemp. Org. Synth., 1997, 4, 373-386.
[4]
Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathe, D. New solvent free organic synthesis using focused microwave. Synthesis, 1998, 1998(9), 1213-1234.
[5]
Strauss, C.R. A combinatorial approach to the development of environmentally benign organic chemical preparation. Aurt. J. Chem., 1992, 52, 83-96.
[6]
Caddick, S. Microwave assisted organic reactions. Tetrahedron, 51(l995), 10403-10432.
[7]
Rajak, H.; Mishra, P. Microwave assisted synthesis: A green chemistry approach. J. Sci. Ind. Res. (India), 2004, 63(8), 641-654.
[8]
Wathey, B.; Tierney, J.; Lidström, P.; Westman, J. The impact of microwave-assisted organic chemistry on drug discovery. Drug Discov. Today, 2002, 7(6), 373-380.
[http://dx.doi.org/10.1016/S1359-6446(02)02178-5] [PMID: 11893546]
[9]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis-review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[10]
Gabriel, C.; Gabriel, S.; Grant, E.H.; Grant, E.H.; Halstead, B.S.J.; Mingos, D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev., 1998, 27(3), 213-224.
[http://dx.doi.org/10.1039/a827213z]
[11]
Strauss, C.R.; Trainor, R.W. Development in microwave assisted organic chemistry. Aust. J. Chem., 1995, 48(10), 1665-1692.
[http://dx.doi.org/10.1071/CH9951665]
[12]
Langa, F.; de la Cruz, P.; de la Hoz, A.; Díaz-Ortiz, A.; Díez-Barra, E. Methods of accelerating reactions. Contemp. Org. Synth., 1997, 4(5), 373-386.
[http://dx.doi.org/10.1039/CO9970400373]
[13]
Gil, A.; Korili, S.A.; Vicente, M.A. Microwave effect on clay pillaring. Catal. Rev., Sci. Eng., 2008, 50, 153.
[http://dx.doi.org/10.1080/01614940802019383]
[14]
Gil, A.; Gandía, L.M.; Vicente, M.A. Recent advances in the synthesis and catalytic applications of pillared clays. Catal. Rev., Sci. Eng., 2000, 42, 145.
[15]
Kloprogge, J.T. Synthesis of smectites and porous pillard clay catalysts: A review. J. Porous Mater., 1998, 5(1), 5-41.
[http://dx.doi.org/10.1023/A:1009625913781]
[16]
Figueras, F. Washing effect on the synthesis of silica-Pillard clay. Catal. Rev., Sci. Eng., 1998, 30, 457.
[http://dx.doi.org/10.1080/01614948808080811]
[17]
Mishra, B.G.; Rao, G.R. Cerium containing Al- and Zr-Pillared clays: Promoting effect of cerium (III) ions on structural and catalytic properties. J. Porous Mater., 2005, 12(3), 171-181.
[http://dx.doi.org/10.1007/s10934-005-1645-0]
[18]
Carriazo, J.; Guélou, E.; Barrault, J.; Tatibouët, J.M.; Molina, R.; Moreno, S. Synthesis of pillared clays containing Al, Al–Fe or Al–Ce–Fe from a bentonite: Characterization and catalytic activity. Catal. Today, 2005, 107, 126-132.
[http://dx.doi.org/10.1016/j.cattod.2005.07.157]
[19]
(a) Dittmer, D.C.; Katritzky, A.R.; Rees, C.W. Comprehensive heterocyclic chemistry;; Pergamon Press : Elmsford NY, 1984, 7, p. 132.;
(b) Kamal, J.A.; Sainsbury, A.; Amsterdam, B.V. Second Supplements to the 2nd Edition of Rodd's Chemistry of Carbon Compounds; Elsevier Science, 1997; 4, p. 49.;
(c) Reynolds, D.D.; Fields, D.L.; Weissberger, A. The Chemistry of Heterocyclic Compounds;John Wiley and Sons Inc: New York, 1964, 19, p. 576.
[20]
Dittmer, D.C.; Katritzky, A.R. Comprehnsive heterocyclic chemistry: The structure, reaction, synthesis, and use of heterocyclic compounds; Pergamon Press: Elmsford NY, 1984; 7, p. 182.
[21]
Knapp, S.; Malolanarasimhan, K. Oligomeric Thioglycosides with α-D-manno-Linkages from a Glycal-1,2-episulfide. Org. Lett., 1999, 1(4), 611-614.
[http://dx.doi.org/10.1021/ol990702x]
[22]
Sloan, A.D.B. Cyclodehydration of 2-mercaptoalkanols as a route to episulphides. J. Chem. Soc. D, 1969, 1252.
[23]
Kihara, N.; Nakawaki, Y.; Endo, T. Preparation of 1,3-Oxathiolane-2-thiones by the reaction of oxirane and carbon disulphide. J. Org. Chem., 1995, 60(2), 473-475.
[http://dx.doi.org/10.1021/jo00107a034]
[24]
Meyers, A.I.; Ford, M.E. Synthesis of achiral thiiranes and olefins by reaction of carbonyl compounds with 2- (alkylthio)-2-oxazolines. J. Org. Chem., 1976, 41, 1735.
[http://dx.doi.org/10.1021/jo00872a015]
[25]
Takata, T.; Endo, T. Selective concersion of 2-Mercaptoalkanols to Thiirane with orhocarbonates. Bull. Chem. Soc. Jpn., 1988, 61(5), 1818-1820.
[http://dx.doi.org/10.1246/bcsj.61.1818]
[26]
Varma, R.S.; Saini, R.K. Microwave-assisted reduction of carbonyl compounds in solid state using sodium borohydride supported on alumina. Tetrahedron Lett., 1997, 38(25), 4337-4338.
[http://dx.doi.org/10.1016/S0040-4039(97)00968-4]
[27]
Sabir, S.; Kumar, G.; Verma, V.P.; Jat, J.L. Aziridine ring opening: An overview of sustainable methods. Chem. Select., 2018, 13, 3702-3711.
[28]
Kano, D.; Minakata, S.; Komatsu, M. Novel organic-solvent free aziridination of olefins: Chloramine-T-I2 system under phase transfer catalysis conditions. J. Chem. Soc. Perkin Trans., 2001, 1(23), 3186-3188.
[http://dx.doi.org/10.1039/b104940m]
[29]
Dittmer, D.C.; Katritzky Alan, R.; Rees, C.W. Comprehensive Heterocyclic Chemistry; Pergamon Press: Elmsford, NY, 1984, p. 132.
[30]
Varma, R.S. Microwave in Green and sustainable chemistry. J. Heterocycl. Chem., 1999, 35, 1565.
[http://dx.doi.org/10.1002/jhet.5570360617]
[31]
Saoudi, A.; Hamelin, J.; Benhaoua, H.J. Microwave in heterocyclic chemistry. Chem. Rer., 1996, 492.
[32]
(a) Wessjohann, L.A.; Brandt, W.; Thiemann, T. Biosynthesis and metabolism of cyclopropane rings in natural compounds. Chem. Rev., 2003, 103(4), 1625-1648.
[http://dx.doi.org/10.1021/cr0100188] [PMID: 12683792];
(b) Gnad, F.; Reiser, O. Synthesis and application of β- synthesis and application of β-aminocyclopropane carboxylic acids. Chem. Rev., 2003, 103, 1603.
[http://dx.doi.org/10.1021/cr010015v] [PMID: 12683791];
(c) Brackmann, F. Natural occurring, synthesis and applications of cyclopropyl-group containing α-Amino Acids.2. 3,4- and 4,5-methanoamino Acids. J. Org. Chem., 2007, 107, 4493-4538.;
(d) Raphael, B.; Christian, B.; Chiara, B.C.; Oliver, V.; Markus, P.; Oliver, R. The synthesis of diastereo- and enantiomerically pure β-aminocyclopropane carboxylic acids. J. Org. Chem., 2000, 65, 8960.
[http://dx.doi.org/10.1021/jo005541l] [PMID: 11149838];
(e) Norman, K.; Chiara, Z.; Raphael, B.; Chiara, C.; Christian, B.; Norbert, S.; Oliver, R.; Annette, G.B-S. Analogues of neuropeptide y containing β-aminocyclopropane carboxylic acids are the shortest linear peptides that are selective for the y1 receptors. Angew. Chem. Int. Ed., 2003, 42(2), 202-205.
[http://dx.doi.org/10.1002/anie.200390078];
(f) Sylwia, U.; Katharina, G.; Yi, Y.; Ulf, S.S.; Norbert, S.S.; Oliver, R. The constrained amino acids β-ACC conferce potency and selec-tivity to integrin ligands. Angew. Chem. Int. Ed., 2007, 46, 3976.
[http://dx.doi.org/10.1002/anie.200605248]
[33]
Martin, S.F.; Austin, R.E.; Oalmann, C.J. Stereoselective synthesis of 1,2,3-trisubstituted cyclopropanes as novel dipeptide surrogates. Tetrahedron Lett., 1990, 31(33), 4731-4734.
[http://dx.doi.org/10.1016/S0040-4039(00)97718-9]
[34]
Schiller, P.W.; Udenfried, S.; Meienhofer, J. In opioid peptides: Biology, chemistry, and genetics. In: The Peptides: Analysis, Synthesis, Biology;; Academic; NewYork, 1984; 6, p. 219.
[35]
(a) Mammi, N.J.; Hassan, M.; Doodman, M.J. Conformational analysis of a cyclic encephalin analog by proton NMR and computer simu-lations. J. Am. Chem. Soc., 1985, 107(13), 4008-4013.
[http://dx.doi.org/10.1021/ja00299a041];
(b) Kessler, H.; Holzemann, G.; Zechelint, C.J. Peptide conformations. 33. Conformational analysis of cyclic enkephalin analogs of the type Tyr-cyclo-(-N ω -Xxx-Gly-Phe-Leu-)*. Int. J. Pept. Protein Res., 1985, 25, 267.
[http://dx.doi.org/10.1111/j.1399-3011.1985.tb02174.x]
[36]
Reichelt, A.; Martin, S.F. Synthesis and properties of cyclopropane-derived peptidomimetics. Acc. Chem. Res., 2006, 39(7), 433-442.
[http://dx.doi.org/10.1021/ar030255s] [PMID: 16846207]
[37]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[38]
(a) Perreux, L.; Loupy, A.; Volatron, F. Solvent free preparation of amides from acids and primary amines under microwave irradiation. Tetrahedron, 2002, 58(11), 2155-2162.
[http://dx.doi.org/10.1016/S0040-4020(02)00085-6];
(b) Vazquez-Tato, M.P. Microwave-assisted synthesis of 3-arylcoumarins. Synlett, 1993, 506.;
(c) Marrero-Terrero, A.L.; Loupy, A. Synthesis of 20oxazolines from carboxylic acids and a,a,a-Tris(hydroxymethyl)methylamine under microwaves in solvent-free conditions. Synlett, 1996, 1996(3), 245-246.
[http://dx.doi.org/10.1055/s-1996-5386];
(d) Seijas, J.A.; Vazquez-Tato, M.P.; Martinez, M.M.; Nunez-Corredoira, G. Direct synthesis of imides from dicarboxylic acids using mi-crowaves. J. Chem. Res. Synop., 1999, 7, 420.
[39]
(a) Ruault, P.; Pilard, J-F.; Touaux, B.; Texier-Boullet, F.; Hamelin, J. Rapid generation of amines by microwave irradiation of ureas dis-persed on clay. Synlett, 1994, 1994(11), 935-936.
[http://dx.doi.org/10.1055/s-1994-23054];
(b) Hirose, T. Kokai tokkyo koho., 1998, 4;
(c) Baldwin, B.W.; Hirose, T.; Wang, Z-H. Improved microwave oven synthesis of amides and imides promoted by imidazole; convenient transport agent preparation. Chem. Commun. (Camb.), 1996, (23), 2669.
[http://dx.doi.org/10.1039/cc9960002669];
(d) Gadhwal, S.; Dutta, M.P.; Boruah, A.; Prajapati, D.; Sandhu Zeolite, H.Y. A selective and efficient catalyst for the synthesis of amides under microwave irradiadtion. Indian J. Chem. Sect. B, 1998, 37, 725.;
(e) Hajipour, A.R.; Ghasemi, M. A rapid and convenient synthesis of amides from aromatic acids and aliphatic amines in dry media under microwave irradiation. ChemInform, 2001, 40(40), 504.
[http://dx.doi.org/10.1002/chin.200140083];
(f) Chandrasekhar, S.; Takhi, M.; Uma, G. Solvent free N-Alkyl and n-Arylimides preparation from anhydrides catalysed by TaCl5-Silica gel. Tetrahedron Lett., 1997, 38(46), 8089-8092.
[http://dx.doi.org/10.1016/S0040-4039(97)10116-2];
(g) Marquez, H.; Plutin, A.; Rodriguez, Y.; Perez, E.; Loupy, A. Efficient synthesis of 1-(4′-Methylbenzoyl)-3,3-diethylthiourea under mi-crowave irradiation using potassium fluoride on alumina. Synth. Commun., 2000, 30(6), 1067-1073.
[http://dx.doi.org/10.1080/00397910008087124];
(h) Varma, R.S.; Naicker, K.P. Solvent-free synthesis of amides from non-enolozable esters and amines using microwave irradiation. Tetrahedron Lett., 1999, 40(34), 6177-6180.
[http://dx.doi.org/10.1016/S0040-4039(99)01209-5]
[40]
Vogel, A.I.; Tatchell, A.R.; Furnis, B.S.; Hannaford, A.J.; Smith, P.W.G. Vogel’s Textbook of Practical Organic Chemistry., (5th ed. ) ELBS Longman Singapore1991, p. 995.
[41]
Johnson, A.W.; Amel, R.T. Chemistry of ylides. XIX. Beta-carbonyl sulfonium ylides. J. Org. Chem., 1969, 34, 1240.
[42]
Kozhushkov, S.I.; Leonov, A. Simple Large-scale preparation of 1,2,3-Tris-Acceptor substituted cyclopropanes. Synthesis, 2003, 6, 956.
[43]
(a) Alikhani, V.; Beer, D.; Bentley, D.; Bruce, I.; Cuenoud, B.M.; Fairhurst, R.A.; Gedeck, P.; Haberthuer, S.; Hayden, C.; Janus, D.; Jor-dan, L.; Lewis, C.; Smithies, K.; Wissler, E. Long-chain formoterol analogues: An investigation into the effect of increasing amino-substituent chain length on the beta2-adrenoceptor activity. Bioorg. Med. Chem. Lett., 2004, 14(18), 4705-4710.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.086] [PMID: 15324892];
(b) Lindsay, K.B.; Pyne, S.G. Synthesis of (+)-(1R,2S,9S,9aR)-octahydro-1H-Pyrrolr[1,2-a]azepine-1,2,9-triol: A potential glycosidase inhibitor. Tetrahedron, 2004, 60(19), 4173-4176.
[http://dx.doi.org/10.1016/j.tet.2004.03.050]
[44]
Narayan, S.; Seelhammer, T.; Gawley, R.E. Microwave assisted solvent free amination of halo-(pyridine or pyrimidine) without transition metal catalyst. Tetrahedron Lett., 2004, 45(4), 757-759.
[http://dx.doi.org/10.1016/j.tetlet.2003.11.030]
[45]
(a) Henry, J.R.; Rupert, K.C.; Dodd, J.H.; Turchi, I.J.; Wadsworth, S.A.; Cavender, D.E.; Schafer, P.H.; Siekierka, J.J. Potent inhibitors of the MAP kinase p38. Bioorg. Med. Chem. Lett., 1998, 8(23), 3335-3340.
[http://dx.doi.org/10.1016/S0960-894X(98)00589-7] [PMID: 9873730];
(b) Henry, J.R.; Rupert, K.C.; Dodd, J.H.; Turchi, I.J.; Wadsworth, S.A.; Cavender, D.E.; Fahmy, B.; Olini, G.C.; Davis, J.E.; Pellegrino-Gensey, J.L.; Schafer, P.H.; Siekierka, J.J. 6-Amino-2-(4-fluorophenyl)-4-methoxy-3- (4-pyridyl)-1H-pyrrolo[2, 3-b]pyridine (RWJ 68354): A potent and selective p38 kinase inhibitor. J. Med. Chem., 1998, 41(22), 4196-4198.
[http://dx.doi.org/10.1021/jm980497b] [PMID: 9784093];
(c) The inhibition of p38 MAPK utilising oxalic amides attached to an azaindole scaffold. Expert Opin. Ther. Pat., 2005, 15(2), 227-232.;
(d) Ishizaki, T.; Uehata, M.; Tamechika, I.; Keel, J.; Nonomura, K.; Maekawa, M.; Narumiya, S. GSK-3â inhibitors. S. Mol. Pharm., 2000, 57, 976-983.;
(e) Kuo, G. -.H.; Prouty, C.; DeAngelis, A.; Shen, L.; O’Neill, D.J.; Shah, C.; Connolly, P.J.; Murray, W.V.; Conway, B.R.; Cheung, P.; Westover, L.; Xu, J.Z.; Look, R.A.; Demarest, K.T.; Emanuel, S.; Middleton, S.A.; Jolliffe, L.; Beavers, M.P.; Chen, X. Synthesis and dis-covery of macrocyclic polyoxygenated bis-7-azaindolylmaleimides as a novel series of potent and highly selective glycogen synthase ki-nase-3β inhibitors. J. Med. Chem., 2003, 46(19), 4021-4031.
[http://dx.doi.org/10.1021/jm030115o] [PMID: 12954055];
(f) Zhang, H-C.; Ye, H.; Conway, B.R.; Derian, C.K.; Addo, M.F.; Kuo, G-H.; Hecker, L.R.; Croll, D.R.; Li, J.; Westover, L.; Xu, J.Z.; Look, R.; Demarest, K.T.; Andrade-Gordon, P.; Damiano, B.P.; Maryanoff, B.E. 3-(7-Azaindolyl)-4-arylmaleimides as potent, selective inhibitors of glycogen synthase kinase-3. Bioorg. Med. Chem. Lett., 2004, 14(12), 3245-3250.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.090] [PMID: 15149684]
[46]
Fonquerna, S.; Miralpeix, M.; Page’s, L.; Puig, C.; Cardu’s, A.; Anto’n, F.; Vilella, D.; Aparici, M.; Prieto, J.; Warrellow, G.; Beleta, J. Syn-thesis and structure-activity relationships of piperidinylpyrrolopyridine derivatives as potent and selective H1 antagonists. Bioorg. Med. Chem. Lett., 2005, 15, 1165-1167.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.008] [PMID: 15686934]
[47]
(a) Kulagowski, J.J.; Broughton, H.B.; Curtis, N.R.; Mawer, I.M.; Ridgill, M.P.; Baker, R.; Emms, F.; Freedman, S.B.; Marwood, R.; Patel, S.; Patel, S.; Ragan, C.I.; Leeson, P.D. 3-((4-(4-Chlorophenyl)piperazin-1-yl)-methyl)-1H-pyrrolo-2,3-b-pyridine: An antagonist with high affinity and selectivity for the human dopamine D4 receptor. J. Med. Chem., 1996, 39(10), 1941-1942.
[http://dx.doi.org/10.1021/jm9600712] [PMID: 8642550];
(b) Löber, S.; Hübner, H.; Gmeiner, P. Azaindole derivatives with high affinity for the dopamine D4 receptor: Synthesis, ligand binding studies and comparison of molecular electrostatic potential maps. Bioorg. Med. Chem. Lett., 1999, 9(1), 97-102.
[http://dx.doi.org/10.1016/S0960-894X(98)00692-1] [PMID: 9990464];
(c) Oh, S-J.; Lee, K.C.; Lee, S-Y.; Ryu, E.K.; Saji, H.; Choe, Y.S.; Chi, D.Y.; Kim, S.E.; Lee, J.; Kim, B-T. Synthesis and evaluation of flu-orine-substituted 1H-pyrrolo[2,3-b]pyridine derivatives for dopamine D4 receptor imaging. Bioorg. Med. Chem., 2004, 12(21), 5505-5513.
[http://dx.doi.org/10.1016/j.bmc.2004.08.011] [PMID: 15465327]
[48]
(a) Guillard, J.; Larraya, C.; Viaud-Massuard, M-C. Synthesis of new melatonin analogues from dimers of azaindole and indole by use of suzuki homocoupling. Heterocycles, 2003, 60(4), 865-877.
[http://dx.doi.org/10.3987/COM-02-9695];
(b) Larraya, C.; Guillard, J.; Renard, P.; Audinot, V.; Boutin, J.A.; Delagrange, P.; Bennejean, C.; Viaud-Massuard, M-C. Preparation of 4-azaindole and 7-azaindole dimers with a bisalkoxyalkyl spacer in order to preferentially target melatonin MT1 receptors over melatonin MT2 receptors. Eur. J. Med. Chem., 2004, 39(6), 515-526.
[http://dx.doi.org/10.1016/j.ejmech.2004.03.005] [PMID: 15183910]
[49]
Routier, S.; Ayerbe, N.; Me’rour, J-Y.; Coudert, G.; Bailly, C.; Pierre, A.; Pfeiffer, B.; Caignard, D-H.; Renard, P. Synthesis and biological evaluation of 7-azaindolocabazoles. Tetrahedron, 2002, 58(33), 6621-6630.
[http://dx.doi.org/10.1016/S0040-4020(02)00691-9]
[50]
(a) Hugon, B.; Pfeiffer, B.; Renard, P.; Prudhomme, M. Synthesis of isogranulatimides A and B analogues possessing a 7-azaindole unit instead of an indole moiety. Tetrahedron Lett., 2003, 44(24), 4607-4611.
[http://dx.doi.org/10.1016/S0040-4039(03)00924-9];
(b) Messaoudi, S.; Anizon, F.; Pfeiffer, B.; Golsteyn, R.; Prudhomme, M. Synthesis of a staurosporine analogue possessing a 7-azaindole unit instead of an indole moiety. Tetrahedron Lett., 2004, 45(24), 4643-4647.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.102];
(c) Messaoudi, S.; Anizon, F.; Pfeiffer, B.; Prudhomme, M. Synthesis of bridged aza-rebeccamycin analogues. Tetrahedron, 2005, 61(30), 7304-7316.
[http://dx.doi.org/10.1016/j.tet.2005.04.043]
[51]
Hodge, C.N.; Aldrich, P.E.; Wasserman, Z.R.; Fernandez, C.H.; Nemeth, G.A.; Arvanitis, A.; Cheeseman, R.S.; Chorvat, R.J.; Ciganek, E.; Christos, T.E.; Gilligan, P.J.; Krenitsky, P.; Scholfield, E.; Strucely, P. Corticotropin-releasing hormone receptor antagonists: Framework design and synthesis guided by ligand conformational studies. J. Med. Chem., 1999, 42(5), 819-832.
[http://dx.doi.org/10.1021/jm980223o] [PMID: 10072680]
[52]
Ujjainwalla, F.; Walsh, T.F. Total Synthesis of 6- and 7-azaindole derived GnRH antagonists. Tetrahedron Lett., 2001, 42(37), 6441-6445.
[http://dx.doi.org/10.1016/S0040-4039(01)01322-3]
[53]
Cai, Z.; Feng, J.; Guo, Y.; Li, P.; Shen, Z.; Chu, F.; Guo, Z. Synthesis and evaluation of azaindole-α-alkyloxyphenylpropionic acid ana-logues as PPARalpha/gamma agonists. Bioorg. Med. Chem., 2006, 14(3), 866-874.
[http://dx.doi.org/10.1016/j.bmc.2005.09.040] [PMID: 16249089]
[54]
(a) Xu, J.X. A new and expeditious asymmetric synthesis of (R)- and (S)-2-aminoalkanessulfonic acids from chiral amino alcohols. Tetrahedron Asymmetry, 2002, 13(11), 1129-1134.
[http://dx.doi.org/10.1016/S0957-4166(02)00312-9];
(b) Xu, J.X.; Xu, S. A general route to the synthesis of n-protected 1- substituted and 1,2-disubstituted taurines. Synthesis, 2004, 2(2), 276-282.
[http://dx.doi.org/10.1055/s-2003-44382];
(c) Huang, J.X.; Wang, F.; Du, D.M.; Xu, J.X. An expeditious synthesis of 1-substituted and cyclic taurines. Synthesis, 2005, 13, 2122.;
(d) Xu, J.X.; Xu, S.; Zhang, Q. The first synthesis of optically active 1-substituted taurines. Heteroatom Chem., 2005, 16(6), 466-471.
[http://dx.doi.org/10.1002/hc.20133];
(e) Huang, J.X.; Du, D.M.; Xu, J.X. Facile synthesis of 1,1-disubstituted taurines. Synthesis, 2006, 2, 315.;
(f) Dong, J.; Xu, J. Facile synthesis of thietanes via ring expansion of thiiranes. Org. Biomol. Chem., 2017, 15(4), 836-844.
[http://dx.doi.org/10.1039/C6OB02387H] [PMID: 28009913]
[55]
Schmeling, B.V.; Kulka, M. Systemic fungicidal activity of 1,4-oxathiin derivatives. Science, 1966, 152(3722), 659-660.
[http://dx.doi.org/10.1126/science.152.3722.659] [PMID: 17779512]
[56]
(a) Asinger, F.; Sans, A.; Offermanns, H.; Scherberieh, P. Generation and trapping of α, α′-dioxosulfines from 1,4-oxathiine-S-oxides. Liebigs Ann. Chem., 1971, 753, 151.
[http://dx.doi.org/10.1002/jlac.19717530114];
(b) Kulka, M. Base-catalysed ring opening of N-(aminothioxomethyl)-5,6-dihydro-2-methyl-1,4-oxathiin-3-carbo-xamides. Can. J. Chem., 1980, 58(19), 2044-2048.
[http://dx.doi.org/10.1139/v80-325];
(c) White, G.A.; Thorn, G.D. Structure-activity relationship of carboxamide fungicides and the succinic dehydrogenase complex of Cryp-tococcus laurentii and Ustilago maydis. Pestic. Biochem. Physiol., 1975, 5(4), 380-395.
[http://dx.doi.org/10.1016/0048-3575(75)90058-9];
(d) Reinbergs, E.; Edgington, L.V.; Metcalfe, D.R.; Bendelow, V.M. Field control of loose smut in barley with the systemic fungicides vitavax and plantvax. Can. J. Chem., 1968, 48, 31.
[57]
Bader, J.P.; McMahon, J.B.; Schultz, R.J.; Narayanan, V.L.; Pierce, J.B.; Harrison, W.A.; Weislow, O.S.; Midelfort, C.F.; Stinson, S.F.; Boyd, M.R. Oxathiin carboxanilide, a potent inhibitor of human immunodeficiency virus reproduction. Proc. Natl. Acad. Sci. USA, 1991, 88(15), 6740-6744.
[http://dx.doi.org/10.1073/pnas.88.15.6740] [PMID: 1713689]
[58]
Dekeyser, M.A.; Davis, R.A. Synthesis and antifungal activity of 5,6-dihydro-3-methyl-1,4-dioxin-2-carboxamides. J. Agric. Food Chem., 1998, 46(7), 2827-2829.
[http://dx.doi.org/10.1021/jf970960d]
[59]
Ferreira, R.S.; Simeonov, A.; Jadhav, A.; Eidam, O.; Mott, B.T.; Keiser, M.J.; McKerrow, J.H.; Maloney, D.J.; Irwin, J.J.; Shoichet, B.K. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J. Med. Chem., 2010, 53(13), 4891-4905.
[http://dx.doi.org/10.1021/jm100488w] [PMID: 20540517]
[60]
Xu, J.X.; D’hooghe, M. Top. Heterocycl; Chem; Springer: Switzerland, 2016, 41, p. 311.
[http://dx.doi.org/10.1007/7081_2015_157]
[61]
(a) Zhou, C.; Xu, J.X. Regioselective nucleophilic ring opening reactions of unsymmetric thiiranes. Huaxue Jinzhan, 2012, 24, 238.;
(b) Yu, H.; Cao, S.L.; Zhang, L.L.; Liu, G.; Xu, J.X. Synthesis of α-aliphatic and β- aromatic substiyuted taurines via regioselective ring opening of thiiranes with ammonia. Synthesis, 2009, 13, 2205.;
(c) Li, X.Y.; Xu, J. Theoratical calulational investigation on the regioselectivity of the ring opening of thiiranes with ammonia and amines. Tetrahedron, 2011, 67(9), 1681-1688.
[http://dx.doi.org/10.1016/j.tet.2010.12.063]
[62]
Bergmeier, S.C. Synthesis of vicinal amino alcohol. Tetrahedron, 2000, 56(17), 2561-2576.
[http://dx.doi.org/10.1016/S0040-4020(00)00149-6]
[63]
Lee, H-S.; Kang, S.H. Synthesis of physiologically potent β-Amino Alcohol. Synlett, 2004, (10), 1673-1685.
[http://dx.doi.org/10.1055/s-2004-829578]
[64]
(a) Ager, D.J.; Prakash, I.; Schaad, D.R. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthe-sis. Chem. Rev., 1996, 96(2), 835-876.
[http://dx.doi.org/10.1021/cr9500038] [PMID: 11848773];
(b) Kolb, H.C.; Sharpless, K.B.; Beller, M.; Bolm, C. In Transition Metals for Organic Synthesis Asymmetric catalysis in aqueous media; Wiley-VCH: Weinheim, 1998, p. 243.;
(c) Pu, L.; Yu, H-B. Catalytic asymmetric organozinc additions to carbonyl compounds. Chem. Rev., 2001, 101(3), 757-824.
[http://dx.doi.org/10.1021/cr000411y] [PMID: 11712502];
(d) de Parrodi, A.C.; Juaristi, E. Chiral 1,2-Amino alcohol and 1,2-Diamines derived from cyclohexene oxide: Recent applications in asymmetric synthesis. Synlett, 2006, 2006(17), 2699-2715.
[http://dx.doi.org/10.1055/s-2006-950259];
(e) Garcia-Delgado, N.; Fontes, M.; Pericas, M.A.; Riera, A.; Verdaguer, X. Enantiosective addition of dimethylzinc to aldehydes: Assess-ment of optimal N, N-substitution for 2-dialkylamino-1,1,2-triphenylethanol ligands. Tetrahedron Asymmetry, 2004, 15(13), 2085-2090.
[http://dx.doi.org/10.1016/j.tetasy.2004.05.026];
(f) Castellnou, D.; Sola, L.; Jimeno, C.; Fraile, J.M. Polystyrene-supported (R)-2-piperazino-1,1,2-triphenylethanol: a readily available supported ligand with unparalleled catalytic activity and enantioselectivity. J. Org. Chem., 2005, 70, 433.
[http://dx.doi.org/10.1021/jo048310d] [PMID: 15651783];
(g) Yamashita, M.; Yamada, K.; Tomioka, K. Chiral amino alcohol-mediated asymmetric conjugate addition of arylalkynes to nitroolefins. Org. Lett., 2005, 7(12), 2369-2371.
[http://dx.doi.org/10.1021/ol050643p] [PMID: 15932200];
(h) Huang, J.; Ianni, J.C.; Antoline, J.E.; Hsung, R.P.; Kozlowski, M.C. De novo chiral amino alcohols in catalyzing asymmetric additions to aryl aldehydes. Org. Lett., 2006, 8(8), 1565-1568.
[http://dx.doi.org/10.1021/ol0600640] [PMID: 16597111];
(i) Schiffers, I.; Rantanen, T.; Schmidt, F.; Bergmans, W.; Zani, L.; Bolm, C. Resolution of racemic 2-aminocyclohexanol derivatives and their application as ligands in asymmetric catalysis. J. Org. Chem., 2006, 71(6), 2320-2331.
[http://dx.doi.org/10.1021/jo052433w] [PMID: 16526780]
[65]
(a) Li, G.; Chang, H-T.; Sharpless, K.B. Catalytic asymmetric aminohydroxylation (aAA) of olefins. Angew. Chem. Int. Ed. Engl., 1996, 35(4), 451-454.
[http://dx.doi.org/10.1002/anie.199604511];
(b) O’Brien, P. Sharpless Asymmetric aminohydroxylation: Scope, Limitations, and use in synthesis. Angew. Chem. Int. Ed. Engl., 1999, 38(3), 326-329.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990201)38:3<326:AID-ANIE326>3.0.CO;2-T] [PMID: 29711639];
(c) Trost, B.M.; Terrell, L.R. A direct catalytic asymmetric mannich-type reaction to syn-amino alcohols. J. Am. Chem. Soc., 2003, 125(2), 338-339.
[http://dx.doi.org/10.1021/ja028782e] [PMID: 12517138]
[66]
Cossy, J.; Bellosta, V.; Hamoir, C.; Desmurs, J-R. Regioselective ring opening of epoxides by nucleophiles mediated by lithium bistrifluo-romethanesulfonimide. Tetrahedron Lett., 2002, 43(39), 7083-7086.
[http://dx.doi.org/10.1016/S0040-4039(02)01533-2]
[67]
(a) Heydari, A.; Mehrdad, M. A new and effivient epoxide ring opening via poor nucleophiles: Indole, p-nitroaniline, borane and o-trimethylsilylhydroxylamine in lithium perchlorate. Synthesis, 2004, 1563.
[http://dx.doi.org/10.1055/s-2004-822406];
(b) Azizi, N.; Saidi, N.M.R. Solid lithium perchlorate as a powerful catalyst for the synthesis of β-aminoalchols under solvent-free condi-tions. Can. J. Chem., 2005, 83(5), 505-507.
[http://dx.doi.org/10.1139/v05-062];
(c) Chakraborti, A.K.; Rudrawar, S.; Kondaskar, A. Lithium bromide, an inexpensive and efficient catalyst for opening of epoxide rings by amines at room temperature under solvent-free condition. Eur. J. Org. Chem., 2004, 2004(17), 3597-3600.
[http://dx.doi.org/10.1002/ejoc.200400253];
(d) Cepanec, I.; Litvic, M.; Mikuldas, H.; Bartolincic, A.; Vinkovic, V. Calcium trifluoromethanesulfonate-catalysed aminolysis of epox-ides. Tetrahedron, 2003, 59(14), 2435-2439.
[http://dx.doi.org/10.1016/S0040-4020(03)00292-8];
(e) Babic, A.; Sova, M.; Gobec, S.; Pecar, S. Epoxide opening with amino acids: Amproved synthesis of hydroxyethylamine dipeptide isosteres. Tetrahedron Lett., 2006, 47(11), 1733-1735.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.058];
(f) Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. Solvent-free Al(OTf)3-catalyzed aminolysis of 1,2-epoxides by 2-picolylamine: A key step in the synthesis of ionic liquids. J. Org. Chem., 2004, 69(22), 7745-7747.
[http://dx.doi.org/10.1021/jo049335f] [PMID: 15498007];
(g) Williams, D.B.G.; Lawton, M. Aluminium triflate: An efficient recyclable Lewis acid catalyst for the aminolysis of epoxides. Tetrahedron Lett., 2006, 47(37), 6557-6560.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.036];
(h) Swamy, N.R.; Kondaji, G.; Nagaiah, K. Bi3+ catalyzed regioselective ring opening of epoxides with aromatic amines. Synth. Commun., 2002, 32(15), 2307-2312.
[http://dx.doi.org/10.1081/SCC-120006000];
(i) McCluskey, A.; Leitch, S.K.; Garner, J.; Caden, C.E.; Hill, T.A.; Odell, L.R.; Stewart, S.G. BiCl3-mediated opening of epoxides, a facile route to chlorohydrins or amino alcohols: One reagent, two paths. Tetrahedron Lett., 2005, 46(47), 8229-8232.
[http://dx.doi.org/10.1016/j.tetlet.2005.09.088];
(j) Khodaei, M.M.; Khosropour, A.R.; Ghozati, K. A powerful, practical and chemoselective synthesis of 2-anilinoalkanols catalyzed by Bi(TFA)3 or Bi(OTf)3 in the presence of molten TBAB. Tetrahedron Lett., 2004, 45(17), 3525-3529.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.139];
(k) Placzek, A.T.; Donelson, J.L.; Trivedi, R.; Gibbs, R.A.; De, S.K. Scandium triflate as an efficient and useful catalyst for the synthesis of β-amino alcohols by regioselective ring opening of epoxides with amines under solvent-free conditions. Tetrahedron Lett., 2005, 46(52), 9029-9034.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.106];
(l) Chakraborti, A.K.; Kondaskar, A. ZrCl4 as a new and efficient catalyst for the opening of epoxide rings by amines. Tetrahedron Lett., 2003, 44(45), 8315-8319.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.046];
(m) Sundararajan, G.; Vijayakrishna, K.; Varghese, B. Synthesis of β-amino alcohols by regioselective ring opening of arylepoxides with anilines catalyzed by cobaltous chloride. Tetrahedron Lett., 2004, 45(44), 8253-8256.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.023];
(n) Kamal, A.; Ramu, R.; Azhar, M.A.; Khanna, G.B.R. Copper(II) tetrafluoroborate-catalyzed ring-opening of epoxides by amines. Tetrahedron Lett., 2005, 46(15), 2675-2677.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.073];
(o) Yarapathy, V.R.; Mekala, S.; Rao, B.V.; Tammishetti, S. Polymer supported copper sulphate promoted aminolysis of epoxides with aromatic amines. Catal. Commun., 2006, 7(7), 466-471.
[http://dx.doi.org/10.1016/j.catcom.2006.01.005];
(p) Durán Pachón, L.; Gamez, P.; van Brussel, J.J.M.; Reedijk, J. Zinc-catalyzed aminolysis of epoxides. Tetrahedron Lett., 2003, 44(32), 6025-6027.
[http://dx.doi.org/10.1016/S0040-4039(03)01480-1];
(q) Shi, M.; Chen, Y.J. Room temperature ionic liquids and their applications in catalysis and organic reactions. Fluorine Chem., 2003, 122, 219.
[http://dx.doi.org/10.1016/S0022-1139(03)00083-6];
(r) Mirkhani, V.; Tangestaninejad, S.; Yadollahi, B.; Alipanah, L. Ammonium decatungstocerate (IV): An efficient catalyst for ring opening of epoxides with aromatic amines. Catal. Lett., 2005, 101(1-2), 93-97.
[http://dx.doi.org/10.1007/s10562-004-3755-8];
(s) Rafiee, E.; Tangestaninejad, S.; Habibi, M.H.; Mirkhani, V. Potassium dodecatungstocobaltate trihydrate (K5CoW12O40 • 3H2O) as an efficient catalyst for aminolysis of epoxides. Synth. Commun., 2004, 34(20), 3673-3681.
[http://dx.doi.org/10.1081/SCC-200032411];
(t) Surendra, K.; Krishnaveni, N.S.; Rao, K.R. The selective c-3 opening of aromatic 2,3-epoxy alcohols/epoxides with aromatic amines catalysed by β-cyclodextrin in water. Synlett, 2005, 2005(3), 506-510.;
(u) Kotsuki, H.; Hayashida, K.; Shimanouchi, T.; Nishizawa, H. High-pressure-promoted, silica gel-catalyzed reaction of epoxides with ni-trogen heterocycles. J. Org. Chem., 1996, 61(3), 984-990.
[http://dx.doi.org/10.1021/jo951106t];
(v) Chakraborti, A.K.; Rudrawar, S.; Kondaskar, A. An efficient synthesis of 2-amino alcohols by silica gel catalysed opening of epoxide rings by amines. Org. Biomol. Chem., 2004, 2(9), 1277-1280.
[http://dx.doi.org/10.1039/b400588k] [PMID: 15105916];
(w) Chakraborti, A.; Kondaskar, A.; Rudrawar, S. Scope and limitations of montmorillonite K-10 catalysed opening of epoxide rings by amines. Tetrahedron, 2004, 60(41), 9085-9091.
[http://dx.doi.org/10.1016/j.tet.2004.07.077];
(x) Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Massaccesi, M.; Melchiorre, P.; Sambri, L. Asymmetric aminolysis of aromatic epoxides: A facile catalytic enantioselective synthesis of anti-β-amino alcohols. Org. Lett., 2004, 6(13), 2173-2176.
[http://dx.doi.org/10.1021/ol049372t] [PMID: 15200313];
(y) Kureshy, R.I.; Sing, S.; Khan, N.; Abdi, S.H.R.; Agrawal, S.; Jasra, R.V. Environment friendly protocol for enantioselective epoxida-tion of non-functionalized alkenes catalyzed by recyclable homochiral dimeric Mn(iii) salen complexes with hydrogen peroxide and uhp adduct as oxidants. Tetrahedron Asymmetry, 2006, 17, 1638.
[http://dx.doi.org/10.1016/j.tetasy.2006.05.029];
(z) Onaka, M.; Kawai, M.; Izumi, Y. Zeolite-catalyzed ring-opening of epoxides with amines. Chem. Lett., 1985, 14(6), 779-782.
[http://dx.doi.org/10.1246/cl.1985.779]
[68]
Yadav, J.S.; Reddy, B.V.S.; Baishya, G. InCl3-catalyzed highly regioselective ring opening of epoxides with thiols. Chem. Lett., 2002, 31(9), 906-907.
[http://dx.doi.org/10.1246/cl.2002.906]
[69]
Vougioukes, A.E.; Kagan, H.B. Oxirane ring opening reactions with thiols catalyzed by lanthanide complexes. Tetrahedron Lett., 1987, 28(48), 6065-6068.
[http://dx.doi.org/10.1016/S0040-4039(00)96865-5]
[70]
Du, Z.; Zhang, W.; Zhang, Y.; Wei, X. Microwave-enhanced catalyst-free aminolysis of epoxides with anilines in aqueous phase: Efficient synthesis of β-amino secondary alcohols. J. Chem. Res., 2011, 35(12), 726-728.
[http://dx.doi.org/10.3184/174751911X13237015498335]
[71]
Bendeddouche, K.C.; Rechsteiner, B.; Texier-Boullet, F.; Hamelin, J.; Benhaoua, H.J. Comprehensive organic synthesis Chem. Res. Synop., 2002, 114.
[72]
Karatsu, T.; Hotta, H.; Kitamura, A. Photochemistry of azoalkane: Formation of the rearrangement product by photoinduced electron transfer of the pyrazoline derivative. J. Chem. Soc. Chem. Commun., 1991, (20), 1451.
[http://dx.doi.org/10.1039/c39910001451]
[73]
Kees, K.L.; Fitzgerald, J.J., Jr; Steiner, K.E.; Mattes, J.F.; Mihan, B.; Tosi, T.; Mondoro, D.; McCaleb, M.L. New potent antihyperglycemic agents in db/db mice: Synthesis and structure-activity relationship studies of (4-substituted benzyl) (trifluoromethyl)pyrazoles and -pyrazolones. J. Med. Chem., 1996, 39(20), 3920-3928.
[http://dx.doi.org/10.1021/jm960444z] [PMID: 8831758]
[74]
Kees, K.L.; Caggiano, T.J.; Steiner, K.E.; Fitzgerald, J.J., Jr; Kates, M.J.; Christos, T.E.; Kulishoff, J.M., Jr; Moore, R.D.; McCaleb, M.L.J. Studies on new acidic azoles as glucose-lowering agents in obese, diabetic db/db mice. J. Med. Chem., 1995, 38(4), 617-628.
[http://dx.doi.org/10.1021/jm00004a008] [PMID: 7861410]
[75]
Tive, L. Celecoxib clinical profile. Rheumatology (Oxford), 2000, 39(Suppl. 2), 21-28.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy