Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Identification of Protein Drug Targets of Biofilm Formation and Quorum Sensing in Multidrug Resistant Enterococcus faecalis

Author(s): Jyoti Yadav, Satyajeet Das, Divyapriya Karthikeyan, Ravneet Chug, Anupam Jyoti, Vijay Kumar Srivastava, Ajay Jain, Sanjit Kumar, Vinay Sharma and Sanket Kaushik*

Volume 23, Issue 4, 2022

Published on: 22 July, 2022

Page: [248 - 263] Pages: 16

DOI: 10.2174/1389203723666220526155644

Price: $65

Abstract

Enterococcus faecalis (E. faecalis) is an opportunistic multidrug-resistant (MDR) pathogen found in the guts of humans and farmed animals. Due to the occurrence of (MDR) strain there is an urgent need to look for an alternative treatment approach. E. faecalis is a Gram-positive bacterium, which is among the most prevalent multidrug resistant hospital pathogens. Its ability to develop quorum sensing (QS) mediated biofilm formation further exacerbates the pathogenicity and triggers lifethreatening infections. Therefore, developing a suitable remedy for curing E. faecalis mediated enterococcal infections is an arduous task. Several putative virulence factors and proteins are involved in the development of biofilms in E. faecalis. Such proteins often play important roles in virulence, disease, and colonization by pathogens. The elucidation of the structure-function relationship of such protein drug targets and the interacting compounds could provide an attractive paradigm towards developing structure-based drugs against E. faecalis. This review provides a comprehensive overview of the current status, enigmas that warrant further studies, and the prospects toward alleviating the antibiotic resistance in E. faecalis. Specifically, the role of biofilm and quorum sensing (QS) in the emergence of MDR strains had been elaborated along with the importance of the protein drug targets involved in both the processes.

Keywords: Multidrug resistant bacteria, biofilm, quorum sensing, rational structure based drug design, MDR, QS.

Graphical Abstract

[1]
Love, R.M. Enterococcus faecalis--a mechanism for its role in endodontic failure. Int. Endod. J., 2001, 34(5), 399-405.
[http://dx.doi.org/10.1046/j.1365-2591.2001.00437.x] [PMID: 11482724]
[2]
Guzman Prieto, A.M.; van Schaik, W.; Rogers, M.R.; Coque, T.M.; Baquero, F.; Corander, J.; Willems, R.J. Global emergence and dissemination of enterococci as nosocomial pathogens: Attack of the clones? Front. Microbiol., 2016, 7, 788.
[http://dx.doi.org/10.3389/fmicb.2016.00788] [PMID: 27303380]
[3]
Lebreton, F; Willems, RJ; Gilmore, MS. Enterococcus diversity, origins in nature, and gut colonization. Enterococci: From commensals to leading causes of drug resistant infection, 2014.
[4]
Banla, I.L.; Kommineni, S.; Hayward, M.; Rodrigues, M.; Palmer, K.L.; Salzman, N.H.; Kristich, C.J. Modulators of Enterococcus faecalis cell envelope integrity and antimicrobial resistance influence stable colonization of the mammalian gastrointestinal tract. Infect. Immun., 2017, 86(1), e00381-e17.
[PMID: 29038125]
[5]
Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal infection— treatment and antibiotic resistance. Enterococci: From commensals to leading causes of drug resistant infection., 2014.
[6]
Hall, M.R.; McGillicuddy, E.; Kaplan, L.J. Biofilm: Basic principles, pathophysiology, and implications for clinicians. Surg. Infect. (Larchmt.), 2014, 15(1), 1-7.
[http://dx.doi.org/10.1089/sur.2012.129] [PMID: 24476019]
[7]
Hancock, L.E. Pathogenicity of enterococci; Gram-positive Pathogens, 2000, pp. 251-258.
[8]
Beganovic, M.; Luther, M.K.; Rice, L.B.; Arias, C.A.; Rybak, M.J.; LaPlante, K.L. A review of combination antimicrobial therapy for Enterococcus faecalis bloodstream infections and infective endocarditis. Clin. Infect. Dis., 2018, 67(2), 303-309.
[http://dx.doi.org/10.1093/cid/ciy064] [PMID: 29390132]
[9]
Hu, W.; Xie, S.; Yu, F.; Hao, W. Characteristics of pathogens and mortality predictors of older Chinese patients with nosocomial urinary tract infections. Geriatr. Gerontol. Int., 2019, 19(6), 541-546.
[http://dx.doi.org/10.1111/ggi.13661] [PMID: 30950159]
[10]
Bolocan, A.S.; Upadrasta, A.; Bettio, P.H.A.; Clooney, A.G.; Draper, L.A.; Ross, R.P.; Hill, C. Evaluation of phage therapy in the context of Enterococcus faecalis and its associated diseases. Viruses, 2019, 11(4), 366.
[http://dx.doi.org/10.3390/v11040366] [PMID: 31010053]
[11]
García-Solache, M.; Rice, L.B. The Enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev., 2019, 32(2), e00058-e18.
[http://dx.doi.org/10.1128/CMR.00058-18] [PMID: 30700430]
[12]
Qayyum, S.; Sharma, D.; Bisht, D.; Khan, A.U. Identification of factors involved in Enterococcus faecalis biofilm under quercetin stress. Microb. Pathog., 2019, 126, 205-211.
[http://dx.doi.org/10.1016/j.micpath.2018.11.013] [PMID: 30423345]
[13]
Nallapareddy, S.R.; Singh, K.V.; Sillanpää, J.; Garsin, D.A.; Höök, M.; Erlandsen, S.L.; Murray, B.E. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J. Clin. Invest., 2006, 116(10), 2799-2807.
[http://dx.doi.org/10.1172/JCI29021] [PMID: 17016560]
[14]
Geoghegan, J.A.; Corrigan, R.M.; Gruszka, D.T.; Speziale, P.; O’Gara, J.P.; Potts, J.R.; Foster, T.J. Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J. Bacteriol., 2010, 192(21), 5663-5673.
[http://dx.doi.org/10.1128/JB.00628-10] [PMID: 20817770]
[15]
Ali, L.; Goraya, M.U.; Arafat, Y.; Ajmal, M.; Chen, J.L.; Yu, D. Molecular mechanism of quorum-sensing in Enterococcus faecalis: Its role in virulence and therapeutic approaches. Int. J. Mol. Sci., 2017, 18(5), 960.
[http://dx.doi.org/10.3390/ijms18050960] [PMID: 28467378]
[16]
Khare, B.; V L Narayana, S. Pilus biogenesis of Gram-positive bacteria: Roles of sortases and implications for assembly. Protein Sci., 2017, 26(8), 1458-1473.
[http://dx.doi.org/10.1002/pro.3191] [PMID: 28493331]
[17]
De Kievit, T.R.; Gillis, R.; Marx, S.; Brown, C.; Iglewski, B.H. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: Their role and expression patterns. Appl. Environ. Microbiol., 2001, 67(4), 1865-1873.
[http://dx.doi.org/10.1128/AEM.67.4.1865-1873.2001] [PMID: 11282644]
[18]
Miller, M.B.; Bassler, B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol., 2001, 55(1), 165-199.
[http://dx.doi.org/10.1146/annurev.micro.55.1.165] [PMID: 11544353]
[19]
Kaushik, S.; Iqbal, N.; Singh, N.; Sikarwar, J.S.; Singh, P.K.; Sharma, P.; Kaur, P.; Sharma, S.; Owais, M.; Singh, T.P. Search of multiple hot spots on the surface of peptidyl-tRNA hydrolase: Structural, binding and antibacterial studies. Biochem. J., 2018, 475(3), 547-560.
[http://dx.doi.org/10.1042/BCJ20170666] [PMID: 29301982]
[20]
Kaushik, S.; Singh, N.; Yamini, S.; Singh, A.; Sinha, M.; Arora, A.; Kaur, P.; Sharma, S.; Singh, T.P. The mode of inhibitor binding to peptidyl-tRNA hydrolase: Binding studies and structure determination of unbound and bound peptidyl-tRNA hydrolase from Acinetobacter baumannii. PLoS One, 2013, 8(7), e67547.
[http://dx.doi.org/10.1371/journal.pone.0067547] [PMID: 23844024]
[21]
Tarai, B.; Das, P.; Kumar, D. Recurrent challenges for clinicians: Emergence of methicillin-resistant Staphylococcus aureus, vancomycin resistance, and current treatment options. J. Lab. Phys., 2013, 5(02), 071-8.
[22]
Kobayashi, S.D.; Musser, J.M.; DeLeo, F.R. Genomic analysis of the emergence of vancomycin-resistant Staphylococcus aureus. MBio, 2012, 3(4), e00170-e12.
[http://dx.doi.org/10.1128/mBio.00170-12] [PMID: 22736541]
[23]
Chiang, W.C.; Nilsson, M.; Jensen, P.Ø.; Høiby, N.; Nielsen, T.E.; Givskov, M.; Tolker-Nielsen, T. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 2013, 57(5), 2352-2361.
[http://dx.doi.org/10.1128/AAC.00001-13] [PMID: 23478967]
[24]
Ciofu, O.; Tolker-Nielsen, T.; Jensen, P.Ø.; Wang, H.; Høiby, N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv. Drug Deliv. Rev., 2015, 85, 7-23.
[http://dx.doi.org/10.1016/j.addr.2014.11.017] [PMID: 25477303]
[25]
Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem., 2009, 78(1), 119-146.
[http://dx.doi.org/10.1146/annurev.biochem.78.082907.145923] [PMID: 19231985]
[26]
Sukhum, K.V.; Diorio-Toth, L.; Dantas, G. Genomic and metagenomic approaches for predictive surveillance of emerging pathogens and antibiotic resistance. Clin. Pharmacol. Ther., 2019, 106(3), 512-524.
[http://dx.doi.org/10.1002/cpt.1535] [PMID: 31172511]
[27]
Unemo, M.; Golparian, D.; Nicholas, R.; Ohnishi, M.; Gallay, A.; Sednaoui, P. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: Novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother., 2012, 56(3), 1273-1280.
[http://dx.doi.org/10.1128/AAC.05760-11] [PMID: 22155830]
[28]
Iredell, J.; Brown, J.; Tagg, K. Antibiotic resistance in Enterobacteriaceae: Mechanisms and clinical implications. BMJ, 2016, 352(Feb), h6420.
[http://dx.doi.org/10.1136/bmj.h6420] [PMID: 26858245]
[29]
Geisinger, E.; Isberg, R.R. Interplay between antibiotic resista nce and virulence during disease promoted by multidrug-resistant bacteria. J. Infect. Dis., 2017, 215(Suppl. 1), S9-S17.
[http://dx.doi.org/10.1093/infdis/jiw402] [PMID: 28375515]
[30]
Hudson, C.M.; Bent, Z.W.; Meagher, R.J.; Williams, K.P. Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. PLoS One, 2014, 9(6), e99209.
[http://dx.doi.org/10.1371/journal.pone.0099209] [PMID: 24905728]
[31]
Oliver, A.; Baquero, F.; Blázquez, J. The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: Molecular characterization of naturally occurring mutants. Mol. Microbiol., 2002, 43(6), 1641-1650.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02855.x] [PMID: 11952911]
[32]
Rodríguez-Rojas, A.; Rodríguez-Beltrán, J.; Couce, A.; Blázquez, J. Antibiotics and antibiotic resistance: A bitter fight against evolution. Int. J. Med. Microbiol., 2013, 303(6-7), 293-297.
[http://dx.doi.org/10.1016/j.ijmm.2013.02.004] [PMID: 23517688]
[33]
Munita, J.M.; Panesso, D.; Diaz, L.; Tran, T.T.; Reyes, J.; Wanger, A.; Murray, B.E.; Arias, C.A. Correlation between mutations in liaFSR of Enterococcus faecium and MIC of daptomycin: Revisiting daptomycin breakpoints. Antimicrob. Agents Chemother., 2012, 56(8), 4354-4359.
[http://dx.doi.org/10.1128/AAC.00509-12] [PMID: 22664970]
[34]
Mendes, R.E.; Deshpande, L.M.; Jones, R.N. Linezolid update: Stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist. Updat., 2014, 17(1-2), 1-12.
[http://dx.doi.org/10.1016/j.drup.2014.04.002] [PMID: 24880801]
[35]
Foster, L.A.; Johnson, M.R.; MacDonald, J.T.; Karachunski, P.I.; Henry, T.R.; Nascene, D.R.; Moran, B.P.; Raymond, G.V. Infantile epileptic encephalopathy associated with SCN2A mutation responsive to oral mexiletine. Pediatr. Neurol., 2017, 66, 108-111.
[http://dx.doi.org/10.1016/j.pediatrneurol.2016.10.008] [PMID: 27867041]
[36]
Kim, C.; Mwangi, M.; Chung, M.; Milheiriço, C.; de Lencastre, H.; Tomasz, A. The mechanism of heterogeneous beta-lactam resistance in MRSA: Key role of the stringent stress response. PLoS One, 2013, 8(12), e82814.
[http://dx.doi.org/10.1371/journal.pone.0082814] [PMID: 24349368]
[37]
Dordel, J.; Kim, C.; Chung, M.; Pardos de la Gándara, M.; Holden, M.T.; Parkhill, J.; de Lencastre, H.; Bentley, S.D.; Tomasz, A. Novel determinants of antibiotic resistance: Identification of mutated loci in highly methicillin-resistant subpopulations of methicillin-resistant Staphylococcus aureus. MBio, 2014, 5(2), e01000-e01013.
[http://dx.doi.org/10.1128/mBio.01000-13] [PMID: 24713324]
[38]
Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, 2012, 3(5), 421-433.
[http://dx.doi.org/10.4161/viru.21282] [PMID: 23076243]
[39]
Hegstad, K.; Langsrud, S.; Lunestad, B.T.; Scheie, A.A.; Sunde, M.; Yazdankhah, S.P. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb. Drug Resist., 2010, 16(2), 91-104.
[http://dx.doi.org/10.1089/mdr.2009.0120] [PMID: 20370507]
[40]
Kloesges, T.; Popa, O.; Martin, W.; Dagan, T. Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol. Biol. Evol., 2011, 28(2), 1057-1074.
[http://dx.doi.org/10.1093/molbev/msq297] [PMID: 21059789]
[41]
Popa, O.; Dagan, T. Trends and barriers to lateral gene transfer in prokaryotes. Curr. Opin. Microbiol., 2011, 14(5), 615-623.
[http://dx.doi.org/10.1016/j.mib.2011.07.027] [PMID: 21856213]
[42]
Frost, L.S.; Leplae, R.; Summers, A.O.; Toussaint, A. Mobile genetic elements: The agents of open source evolution. Nat. Rev. Microbiol., 2005, 3(9), 722-732.
[http://dx.doi.org/10.1038/nrmicro1235] [PMID: 16138100]
[43]
Koonin, E.V.; Wolf, Y.I. Genomics of bacteria and archaea: The emerging dynamic view of the prokaryotic world. Nucleic Acids Res., 2008, 36(21), 6688-6719.
[http://dx.doi.org/10.1093/nar/gkn668] [PMID: 18948295]
[44]
Lerminiaux, N.A.; Cameron, A.D.S. Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol., 2019, 65(1), 34-44.
[http://dx.doi.org/10.1139/cjm-2018-0275] [PMID: 30248271]
[45]
Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev., 2018, 31(4), e00088-e17.
[http://dx.doi.org/10.1128/CMR.00088-17] [PMID: 30068738]
[46]
Roberts, A.P.; Chandler, M.; Courvalin, P.; Guédon, G.; Mullany, P.; Pembroke, T.; Rood, J.I.; Smith, C.J.; Summers, A.O.; Tsuda, M.; Berg, D.E. Revised nomenclature for transposable genetic elements. Plasmid, 2008, 60(3), 167-173.
[http://dx.doi.org/10.1016/j.plasmid.2008.08.001] [PMID: 18778731]
[47]
Weigel, L.M.; Clewell, D.B.; Gill, S.R.; Clark, N.C.; McDougal, L.K.; Flannagan, S.E.; Kolonay, J.F.; Shetty, J.; Killgore, G.E.; Tenover, F.C. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science, 2003, 302(5650), 1569-1571.
[http://dx.doi.org/10.1126/science.1090956] [PMID: 14645850]
[48]
Gould, I.M. Treatment of bacteraemia: Meticillin-resistant Staphylococcus aureus (MRSA) to vancomycin-resistant S. aureus (VRSA). Int. J. Antimicrob. Agents, 2013, 42(Suppl.), S17-S21.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.04.006] [PMID: 23664580]
[49]
Higgins, D.A.; Pomianek, M.E.; Kraml, C.M.; Taylor, R.K.; Semmelhack, M.F.; Bassler, B.L. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature, 2007, 450(7171), 883-886.
[http://dx.doi.org/10.1038/nature06284] [PMID: 18004304]
[50]
Deng, Y.; Xu, H.; Su, Y. Horizontal gene transfer contributes to virulence and antibiotic resistance of Vibrio harveyi 345 based on complete genome sequence analysis. BMC Genomics, 2019, 20(1), 1-9.
[http://dx.doi.org/10.1186/s12864-018-5379-1] [PMID: 30606130]
[51]
Harrison, J.J.; Turner, R.J.; Marques, L.L.; Ceri, H. Biofilms: A new understanding of these microbial communities is driving a revolution that may transform the science of microbiology. Am. Sci., 2005, 93(6), 508-515.
[http://dx.doi.org/10.1511/2005.56.508]
[52]
de la Fuente-Núñez, C.; Reffuveille, F.; Fernández, L.; Hancock, R.E. Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol., 2013, 16(5), 580-589.
[http://dx.doi.org/10.1016/j.mib.2013.06.013] [PMID: 23880136]
[53]
Seneviratne, C.J.; Suriyanarayanan, T.; Widyarman, A.S.; Lee, L.S.; Lau, M.; Ching, J.; Delaney, C.; Ramage, G. Multi-omics tools for studying microbial biofilms: Current perspectives and future directions. Crit. Rev. Microbiol., 2020, 46(6), 759-778.
[http://dx.doi.org/10.1080/1040841X.2020.1828817] [PMID: 33030973]
[54]
Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J., 2017, 11(1), 53-62.
[http://dx.doi.org/10.2174/1874285801711010053] [PMID: 28553416]
[55]
Fleming, D.; Rumbaugh, K.P. Approaches to dispersing medical biofilms. Microorganisms, 2017, 5(2), 15.
[http://dx.doi.org/10.3390/microorganisms5020015] [PMID: 28368320]
[56]
Francolini, I.; Donelli, G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol., 2010, 59(3), 227-238.
[http://dx.doi.org/10.1111/j.1574-695X.2010.00665.x] [PMID: 20412300]
[57]
Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis., 2002, 8(9), 881-890.
[http://dx.doi.org/10.3201/eid0809.020063] [PMID: 12194761]
[58]
Veerachamy, S.; Yarlagadda, T.; Manivasagam, G.; Yarlagadda, P.K. Bacterial adherence and biofilm formation on medical implants: A review. P I Mech Eng H., 2014, 228(10), 1083-1099.
[http://dx.doi.org/10.1177/0954411914556137] [PMID: 25406229]
[59]
Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 2018, 4(12), e01067.
[http://dx.doi.org/10.1016/j.heliyon.2018.e01067] [PMID: 30619958]
[60]
Siqueira, J.F.; Rôças, I.N.; Ricucci, D. Biofilms in endodontic infection. Endod. Topics, 2010, 22(1), 33-49.
[http://dx.doi.org/10.1111/j.1601-1546.2012.00279.x]
[61]
Hall, C.W.; Mah, T.F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev., 2017, 41(3), 276-301.
[http://dx.doi.org/10.1093/femsre/fux010] [PMID: 28369412]
[62]
Kinane, D.F.; Riggio, M.P.; Walker, K.F.; MacKenzie, D.; Shearer, B. Bacteraemia following periodontal procedures. J. Clin. Periodontol., 2005, 32(7), 708-713.
[http://dx.doi.org/10.1111/j.1600-051X.2005.00741.x] [PMID: 15966875]
[63]
Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc., 2018, 81(1), 7-11.
[http://dx.doi.org/10.1016/j.jcma.2017.07.012] [PMID: 29042186]
[64]
Nomura, A.M.; Pérez-Pérez, G.I.; Lee, J.; Stemmermann, G.; Blaser, M.J. Relation between Helicobacter pylori cagA status and risk of peptic ulcer disease. Am. J. Epidemiol., 2002, 155(11), 1054-1059.
[http://dx.doi.org/10.1093/aje/155.11.1054] [PMID: 12034584]
[65]
Peek, R.M., Jr; Blaser, M.J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer, 2002, 2(1), 28-37.
[http://dx.doi.org/10.1038/nrc703] [PMID: 11902583]
[66]
Morgan, K.L. Johne’s and Crohn’s. Chronic inflammatory bowel diseases of infectious aetiology? Lancet, 1987, 1(8540), 1017-1019.
[http://dx.doi.org/10.1016/S0140-6736(87)92280-X] [PMID: 2883353]
[67]
Taylor, P.R.; Leal, S.M., Jr; Sun, Y.; Pearlman, E. Aspergillus and Fusarium corneal infections are regulated by Th17 cells and IL-17-producing neutrophils. J. Immunol., 2014, 192(7), 3319-3327.
[http://dx.doi.org/10.4049/jimmunol.1302235] [PMID: 24591369]
[68]
Xu, Y.; Gao, C.; Li, X.; He, Y.; Zhou, L.; Pang, G.; Sun, S. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J. Ocul. Pharmacol. Ther., 2013, 29(2), 270-274.
[http://dx.doi.org/10.1089/jop.2012.0155] [PMID: 23410063]
[69]
Baldassarri, L.; Creti, R.; Recchia, S.; Pataracchia, M.; Alfarone, G.; Orefici, G.; Campoccia, D.; Montanaro, L.; Arciola, C.R. Virulence factors in enterococcal infections of orthopedic devices. Int. J. Artif. Organs, 2006, 29(4), 402-406.
[http://dx.doi.org/10.1177/039139880602900410] [PMID: 16705609]
[70]
Rohde, H.; Burandt, E.C.; Siemssen, N.; Frommelt, L.; Burdelski, C.; Wurster, S.; Scherpe, S.; Davies, A.P.; Harris, L.G.; Horstkotte, M.A.; Knobloch, J.K.; Ragunath, C.; Kaplan, J.B.; Mack, D. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials, 2007, 28(9), 1711-1720.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.046] [PMID: 17187854]
[71]
Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science, 1999, 284(5418), 1318-1322.
[http://dx.doi.org/10.1126/science.284.5418.1318] [PMID: 10334980]
[72]
Swidsinski, A.; Mendling, W.; Loening-Baucke, V.; Ladhoff, A.; Swidsinski, S.; Hale, L.P.; Lochs, H. Adherent biofilms in bacterial vaginosis. Obstet. Gynecol., 2005, 106(5 Pt 1), 1013-1023.
[http://dx.doi.org/10.1097/01.AOG.0000183594.45524.d2] [PMID: 16260520]
[73]
Fiori, B.; Posteraro, B.; Torelli, R.; Tumbarello, M.; Perlin, D.S.; Fadda, G.; Sanguinetti, M. In vitro activities of anidulafungin and other antifungal agents against biofilms formed by clinical isolates of different Candida and Aspergillus species. Antimicrob. Agents Chemother., 2011, 55(6), 3031-3035.
[http://dx.doi.org/10.1128/AAC.01569-10] [PMID: 21422210]
[74]
Rogers, S.S.; van der Walle, C.; Waigh, T.A. Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir, 2008, 24(23), 13549-13555.
[http://dx.doi.org/10.1021/la802442d] [PMID: 18980352]
[75]
del Pozo, J.L.; Patel, R. The challenge of treating biofilm-associated bacterial infections. Clin. Pharmacol. Ther., 2007, 82(2), 204-209.
[http://dx.doi.org/10.1038/sj.clpt.6100247] [PMID: 17538551]
[76]
Spoering, A.L.; Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol., 2001, 183(23), 6746-6751.
[http://dx.doi.org/10.1128/JB.183.23.6746-6751.2001] [PMID: 11698361]
[77]
Kumar, A.; Alam, A.; Rani, M.; Ehtesham, N.Z.; Hasnain, S.E. Biofilms: Survival and defense strategy for pathogens. Int. J. Med. Microbiol., 2017, 307(8), 481-489.
[http://dx.doi.org/10.1016/j.ijmm.2017.09.016] [PMID: 28950999]
[78]
Trautner, B.W.; Darouiche, R.O. Role of biofilm in catheter-associated urinary tract infection. Am. J. Infect. Control, 2004, 32(3), 177-183.
[http://dx.doi.org/10.1016/j.ajic.2003.08.005] [PMID: 15153930]
[79]
Gupta, P.; Sarkar, S.; Das, B.; Bhattacharjee, S.; Tribedi, P. Biofilm, pathogenesis and prevention--a journey to break the wall: A review. Arch. Microbiol., 2016, 198(1), 1-15.
[http://dx.doi.org/10.1007/s00203-015-1148-6] [PMID: 26377585]
[80]
Kanematsu, H.; Barry, D.M. Formation and control of biofilm in various environments., 2020.
[http://dx.doi.org/10.1007/978-981-15-2240-6]
[81]
Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol., 2014, 12(7), 465-478.
[http://dx.doi.org/10.1038/nrmicro3270] [PMID: 24861036]
[82]
Talagrand-Reboul, E.; Jumas-Bilak, E.; Lamy, B. The social life of Aeromonas through biofilm and quorum sensing systems. Front. Microbiol., 2017, 8, 37.
[http://dx.doi.org/10.3389/fmicb.2017.00037] [PMID: 28163702]
[83]
Whiteley, M.; Diggle, S.P.; Greenberg, E.P. Progress in and promise of bacterial quorum sensing research. Nature, 2017, 551(7680), 313-320.
[http://dx.doi.org/10.1038/nature24624] [PMID: 29144467]
[84]
Hense, B.A.; Schuster, M. Core principles of bacterial autoinducer systems. Microbiol. Mol. Biol. Rev., 2015, 79(1), 153-169.
[http://dx.doi.org/10.1128/MMBR.00024-14] [PMID: 25694124]
[85]
Bassler, B.L.; Wright, M.; Showalter, R.E.; Silverman, M.R. Intercellular signalling in Vibrio harveyi: Sequence and function of genes regulating expression of luminescence. Mol. Microbiol., 1993, 9(4), 773-786.
[http://dx.doi.org/10.1111/j.1365-2958.1993.tb01737.x] [PMID: 8231809]
[86]
Lee, J.; Wu, J.; Deng, Y.; Wang, J.; Wang, C.; Wang, J.; Chang, C.; Dong, Y.; Williams, P.; Zhang, L.H. A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol., 2013, 9(5), 339-343.
[http://dx.doi.org/10.1038/nchembio.1225] [PMID: 23542643]
[87]
Flavier, A.B.; Clough, S.J.; Schell, M.A.; Denny, T.P. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol. Microbiol., 1997, 26(2), 251-259.
[http://dx.doi.org/10.1046/j.1365-2958.1997.5661945.x] [PMID: 9383151]
[88]
Kai, K.; Ohnishi, H.; Shimatani, M.; Ishikawa, S.; Mori, Y.; Kiba, A.; Ohnishi, K.; Tabuchi, M.; Hikichi, Y. Methyl 3‐hydroxymyristate, a diffusible signal mediating phc quorum sensing in Ralstonia solanacearum. ChemBioChem, 2015, 16(16), 2309-2318.
[http://dx.doi.org/10.1002/cbic.201500456] [PMID: 26360813]
[89]
Rutherford, S.T.; Bassler, B.L. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med., 2012, 2(11), a012427.
[http://dx.doi.org/10.1101/cshperspect.a012427] [PMID: 23125205]
[90]
Lindsay, D.; von Holy, A. Bacterial biofilms within the clinical setting: What healthcare professionals should know. J. Hosp. Infect., 2006, 64(4), 313-325.
[http://dx.doi.org/10.1016/j.jhin.2006.06.028] [PMID: 17046102]
[91]
Driscoll, J.A.; Brody, S.L.; Kollef, M.H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs, 2007, 67(3), 351-368.
[http://dx.doi.org/10.2165/00003495-200767030-00003] [PMID: 17335295]
[92]
Maura, D.; Rahme, L.G. Pharmacological inhibition of the Pseudomonas aeruginosa MvfR quorum-sensing system interferes with biofilm formation and potentiates antibiotic-mediated biofilm disruption. Antimicrob. Agents Chemother., 2017, 61(12), e01362-e17.
[http://dx.doi.org/10.1128/AAC.01362-17] [PMID: 28923875]
[93]
Boles, B.R.; Horswill, A.R. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog., 2008, 4(4), e1000052.
[http://dx.doi.org/10.1371/journal.ppat.1000052] [PMID: 18437240]
[94]
Rasmussen, T.B.; Givskov, M. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol., 2006, 296(2-3), 149-161.
[http://dx.doi.org/10.1016/j.ijmm.2006.02.005] [PMID: 16503194]
[95]
McBrayer, D.N.; Cameron, C.D.; Tal-Gan, Y. Development and utilization of peptide-based quorum sensing modulators in Gram-positive bacteria. Org. Biomol. Chem., 2020, 18(37), 7273-7290.
[http://dx.doi.org/10.1039/D0OB01421D] [PMID: 32914160]
[96]
Paluch, E.; Rewak-Soroczyńska, J.; Jędrusik, I.; Mazurkiewicz, E.; Jermakow, K. Prevention of biofilm formation by quorum quenching. Appl. Microbiol. Biotechnol., 2020, 104(5), 1871-1881.
[http://dx.doi.org/10.1007/s00253-020-10349-w] [PMID: 31927762]
[97]
Cirioni, O.; Mocchegiani, F.; Cacciatore, I.; Vecchiet, J.; Silvestri, C.; Baldassarre, L.; Ucciferri, C.; Orsetti, E.; Castelli, P.; Provinciali, M.; Vivarelli, M.; Fornasari, E.; Giacometti, A. Quorum sensing inhibitor FS3-coated vascular graft enhances daptomycin efficacy in a rat model of Staphylococcal infection. Peptides, 2013, 40, 77-81.
[http://dx.doi.org/10.1016/j.peptides.2012.12.002] [PMID: 23262356]
[98]
Ahmad, S.A.; Bari, S.N.; Mohiuddin, M. Biofilm: Multicellular living of the unicellular bacteria. Int. J. Biosci., 2012, 2, 59-71.
[99]
Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol., 2010, 8(9), 623-633.
[http://dx.doi.org/10.1038/nrmicro2415]
[100]
Limoli, D.H.; Jones, C.J.; Wozniak, D.J. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol. Spectr., 2015, 3(3), 3.
[http://dx.doi.org/10.1128/microbiolspec.MB-0011-2014] [PMID: 26185074]
[101]
Voběrková, S.; Hermanová, S.; Hrubanová, K.; Krzyžánek, V. Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film. Folia Microbiol. (Praha), 2016, 61(2), 91-100.
[http://dx.doi.org/10.1007/s12223-015-0406-y] [PMID: 26139336]
[102]
Kline, K.A.; Kau, A.L.; Chen, S.L.; Lim, A.; Pinkner, J.S.; Rosch, J.; Nallapareddy, S.R.; Murray, B.E.; Henriques-Normark, B.; Beatty, W.; Caparon, M.G.; Hultgren, S.J. Mechanism for sortase localization and the role of sortase localization in efficient pilus assembly in Enterococcus faecalis. J. Bacteriol., 2009, 191(10), 3237-3247.
[http://dx.doi.org/10.1128/JB.01837-08] [PMID: 19286802]
[103]
Cascioferro, S.; Raffa, D.; Maggio, B.; Raimondi, M.V.; Schillaci, D.; Daidone, G. Sortase A inhibitors: Recent advances and future perspectives. J. Med. Chem., 2015, 58(23), 9108-9123.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00779] [PMID: 26280844]
[104]
Luo, H.; Liang, D.F.; Bao, M.Y.; Sun, R.; Li, Y.Y.; Li, J.Z.; Wang, X.; Lu, K.M.; Bao, J.K. In silico identification of potential inhibitors targeting Streptococcus mutans sortase A. Int. J. Oral Sci., 2017, 9(1), 53-62.
[http://dx.doi.org/10.1038/ijos.2016.58] [PMID: 28358034]
[105]
Cascioferro, S.; Totsika, M.; Schillaci, D.; Sortase, A. An ideal target for anti-virulence drug development. Microb. Pathog., 2014, 77, 105-112.
[http://dx.doi.org/10.1016/j.micpath.2014.10.007] [PMID: 25457798]
[106]
Rashidieh, B.; Madani, Z.; Azam, M.K.; Maklavani, S.K.; Akbari, N.R.; Tavakoli, S.; Rigi, G. Molecular docking based virtual screening of compounds for inhibiting sortase A in L.monocytogenes. Bioinformation, 2015, 11(11), 501-505.
[http://dx.doi.org/10.6026/97320630011501] [PMID: 26912950]
[107]
Nitulescu, G.; Nicorescu, I.M.; Olaru, O.T.; Ungurianu, A.; Mihai, D.P.; Zanfirescu, A.; Nitulescu, G.M.; Margina, D. Molecular docking and screening studies of new natural sortase A inhibitors. Int. J. Mol. Sci., 2017, 18(10), 2217.
[http://dx.doi.org/10.3390/ijms18102217] [PMID: 29065551]
[108]
Wallock-Richards, D.J.; Marles-Wright, J.; Clarke, D.J.; Maitra, A.; Dodds, M.; Hanley, B.; Campopiano, D.J. Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone. Chem. Commun. (Camb.), 2015, 51(52), 10483-10485.
[http://dx.doi.org/10.1039/C5CC01816A] [PMID: 26029850]
[109]
Zong, Y.; Bice, T.W.; Ton-That, H.; Schneewind, O.; Narayana, S.V. Crystal structures of Staphylococcus aureus sortase A and its substrate complex. J. Biol. Chem., 2004, 279(30), 31383-31389.
[http://dx.doi.org/10.1074/jbc.M401374200] [PMID: 15117963]
[110]
Das, S.; Srivastava, V.K.; Parray, Z.A.; Jyoti, A.; Islam, A.; Kaushik, S. Identification of potential inhibitors of sortase A: Binding studies, in-silico docking and protein-protein interaction studies of sortase A from Enterococcus faecalis. Int. J. Biol. Macromol., 2018, 120(Pt B), 1906-1916.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.174] [PMID: 30268755]
[111]
Selvaraj, C.; Sivakamavalli, J.; Vaseeharan, B.; Singh, P.; Singh, S.K. Structural elucidation of SrtA enzyme in Enterococcus faecalis: An emphasis on screening of potential inhibitors against the biofilm formation. Mol. Biosyst., 2014, 10(7), 1775-1789.
[http://dx.doi.org/10.1039/C3MB70613C] [PMID: 24718729]
[112]
Lindahl, G.; Stålhammar-Carlemalm, M.; Areschoug, T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin. Microbiol. Rev., 2005, 18(1), 102-127.
[http://dx.doi.org/10.1128/CMR.18.1.102-127.2005] [PMID: 15653821]
[113]
Toledo-Arana, A.; Valle, J.; Solano, C.; Arrizubieta, M.J.; Cucarella, C.; Lamata, M.; Amorena, B.; Leiva, J.; Penadés, J.R.; Lasa, I. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol., 2001, 67(10), 4538-4545.
[http://dx.doi.org/10.1128/AEM.67.10.4538-4545.2001] [PMID: 11571153]
[114]
Tendolkar, P.M.; Baghdayan, A.S.; Gilmore, M.S.; Shankar, N. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect. Immun., 2004, 72(10), 6032-6039.
[http://dx.doi.org/10.1128/IAI.72.10.6032-6039.2004] [PMID: 15385507]
[115]
Shankar, N.; Lockatell, C.V.; Baghdayan, A.S.; Drachenberg, C.; Gilmore, M.S.; Johnson, D.E. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect. Immun., 2001, 69(7), 4366-4372.
[http://dx.doi.org/10.1128/IAI.69.7.4366-4372.2001] [PMID: 11401975]
[116]
Fisher, K.; Phillips, C. The ecology, epidemiology and virulence of Enterococcus. Microbiology, 2009, 155(Pt 6), 1749-1757.
[http://dx.doi.org/10.1099/mic.0.026385-0] [PMID: 19383684]
[117]
Hancock, L.E.; Perego, M. The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J. Bacteriol., 2004, 186(17), 5629-5639.
[http://dx.doi.org/10.1128/JB.186.17.5629-5639.2004] [PMID: 15317767]
[118]
Thomas, V.C.; Thurlow, L.R.; Boyle, D.; Hancock, L.E. Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J. Bacteriol., 2008, 190(16), 5690-5698.
[http://dx.doi.org/10.1128/JB.00314-08] [PMID: 18556793]
[119]
Waters, C.M.; Antiporta, M.H.; Murray, B.E.; Dunny, G.M. Role of the Enterococcus faecalis GelE protease in determination of cellular chain length, supernatant pheromone levels, and degradation of fibrin and misfolded surface proteins. J. Bacteriol., 2003, 185(12), 3613-3623.
[http://dx.doi.org/10.1128/JB.185.12.3613-3623.2003] [PMID: 12775699]
[120]
Qin, X.; Singh, K.V.; Weinstock, G.M.; Murray, B.E. Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J. Bacteriol., 2001, 183(11), 3372-3382.
[http://dx.doi.org/10.1128/JB.183.11.3372-3382.2001] [PMID: 11344145]
[121]
Carniol, K.; Gilmore, M.S. Signal transduction, quorum-sensing, and extracellular protease activity in Enterococcus faecalis biofilm formation. J. Bacteriol., 2004, 186(24), 8161-8163.
[http://dx.doi.org/10.1128/JB.186.24.8161-8163.2004] [PMID: 15576763]
[122]
Coburn, P.S.; Gilmore, M.S. The Enterococcus faecalis cytolysin: A novel toxin active against eukaryotic and prokaryotic cells. Cell. Microbiol., 2003, 5(10), 661-669.
[http://dx.doi.org/10.1046/j.1462-5822.2003.00310.x] [PMID: 12969372]
[123]
Ben Braïek, O.; Smaoui, S. Enterococci: Between emerging pathogens and potential probiotics. BioMed Res. Int., 2019, •••, 5938210.
[http://dx.doi.org/10.1155/2019/5938210]
[124]
Bobeica, S.C.; Zhu, L.; Acedo, J.Z.; Tang, W.; van der Donk, W.A. Structural determinants of macrocyclization in substrate-controlled lanthipeptide biosynthetic pathways. Chem. Sci. (Camb.), 2020, 11(47), 12854-12870.
[http://dx.doi.org/10.1039/D0SC01651A] [PMID: 34094481]
[125]
Cox, C.R.; Coburn, P.S.; Gilmore, M.S. Enterococcal cytolysin: A novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr. Protein Pept. Sci., 2005, 6(1), 77-84.
[http://dx.doi.org/10.2174/1389203053027557] [PMID: 15638770]
[126]
Coburn, P.S. The Enterococcus faecalis cytolysin: Analysis of structure/function relationships and elucidation of a novel means of gene regulation in response to the detection of target cells; The University of Oklahoma Health Sciences Center, 2004.
[127]
Rezzonico, F.; Duffy, B. Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria. BMC Microbiol., 2008, 8(1), 154.
[http://dx.doi.org/10.1186/1471-2180-8-154] [PMID: 18803868]
[128]
Yu, D.; Zhao, L.; Xue, T.; Sun, B. Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiol., 2012, 12(1), 288.
[http://dx.doi.org/10.1186/1471-2180-12-288] [PMID: 23216979]
[129]
Wen, Z.T.; Burne, R.A. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J. Bacteriol., 2004, 186(9), 2682-2691.
[http://dx.doi.org/10.1128/JB.186.9.2682-2691.2004] [PMID: 15090509]
[130]
Kalia, D.; Merey, G.; Nakayama, S.; Zheng, Y.; Zhou, J.; Luo, Y.; Guo, M.; Roembke, B.T.; Sintim, H.O. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem. Soc. Rev., 2013, 42(1), 305-341.
[http://dx.doi.org/10.1039/C2CS35206K] [PMID: 23023210]
[131]
Pereira, C.S.; Thompson, J.A.; Xavier, K.B. AI-2-mediated signalling in bacteria. FEMS Microbiol. Rev., 2013, 37(2), 156-181.
[http://dx.doi.org/10.1111/j.1574-6976.2012.00345.x] [PMID: 22712853]
[132]
Ruzheinikov, S.N.; Das, S.K.; Sedelnikova, S.E.; Hartley, A.; Foster, S.J.; Horsburgh, M.J.; Cox, A.G.; McCleod, C.W.; Mekhalfia, A.; Blackburn, G.M.; Rice, D.W.; Baker, P.J. The 1.2 A structure of a novel quorum-sensing protein, Bacillus subtilis LuxS. J. Mol. Biol., 2001, 313(1), 111-122.
[http://dx.doi.org/10.1006/jmbi.2001.5027] [PMID: 11601850]
[133]
Hilgers, M.T.; Ludwig, M.L. Crystal structure of the quorum-sensing protein LuxS reveals a catalytic metal site. Proc. Natl. Acad. Sci. USA, 2001, 98(20), 11169-11174.
[http://dx.doi.org/10.1073/pnas.191223098] [PMID: 11553770]
[134]
Rajan, R.; Zhu, J.; Hu, X.; Pei, D.; Bell, C.E. Crystal structure of S-ribosylhomocysteinase (LuxS) in complex with a catalytic 2-ketone intermediate. Biochemistry, 2005, 44(10), 3745-3753.
[http://dx.doi.org/10.1021/bi0477384] [PMID: 15751951]
[135]
Wang, Y.; Yi, L.; Wang, S.; Fan, H.; Ding, C.; Mao, X.; Lu, C. Crystal structure and identification of two key amino acids involved in AI-2 production and biofilm formation in Streptococcus suis LuxS. PLoS One, 2015, 10(10), e0138826.
[http://dx.doi.org/10.1371/journal.pone.0138826] [PMID: 26484864]
[136]
Satpathy, S.; Sen, S.K.; Pattanaik, S.; Raut, S. Review on bacterial biofilm: An universal cause of contamination. Biocatal. Agric. Biotechnol., 2016, 7, 56-66.
[http://dx.doi.org/10.1016/j.bcab.2016.05.002]
[137]
Shen, Y.; Köller, T.; Kreikemeyer, B.; Nelson, D.C. Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. J. Antimicrob. Chemother., 2013, 68(8), 1818-1824.
[http://dx.doi.org/10.1093/jac/dkt104] [PMID: 23557924]
[138]
Li, X.H.; Kim, S.K.; Lee, J.H. Anti-biofilm effect s of anthranilate on a broad range of bacteria. Sci. Rep., 2017, 7(1), 1-2.
[http://dx.doi.org/10.1038/s41598-017-06540-1] [PMID: 28127051]
[139]
Simões, M.; Simões, L.C.; Vieira, M.J. Species association increases biofilm resistance to chemical and mechanical treatments. Water Res., 2009, 43(1), 229-237.
[http://dx.doi.org/10.1016/j.watres.2008.10.010] [PMID: 18977505]
[140]
Silva, E. S.S.; Carvalho, J.W.P.; Aires, C.P.; Nitschke, M. Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants. J. Dairy Sci., 2017, 100(10), 7864-7873.
[http://dx.doi.org/10.3168/jds.2017-13012] [PMID: 28822551]
[141]
Subhadra, B.; Kim, D.H.; Woo, K.; Surendran, S.; Choi, C.H. Control of biofilm formation in healthcare: Recent advances exploiting quorum-sensing interference strategies and multidrug efflux pump inhibitors. Materials (Basel), 2018, 11(9), 1676.
[http://dx.doi.org/10.3390/ma11091676] [PMID: 30201944]
[142]
Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 2018, 9(1), 522-554.
[http://dx.doi.org/10.1080/21505594.2017.1313372] [PMID: 28362216]
[143]
Fleitas Martínez, O.; Rigueiras, P.O.; Pires, Á.D.S.; Porto, W.F.; Silva, O.N.; de la Fuente-Nunez, C.; Franco, O.L. Interference with quorum-sensing signal biosynthesis as a promising therapeutic strategy against multidrug-resistant pathogens. Front. Cell. Infect. Microbiol., 2019, 8, 444.
[http://dx.doi.org/10.3389/fcimb.2018.00444] [PMID: 30805311]
[144]
Grassi, L.; Maisetta, G.; Esin, S.; Batoni, G. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front. Microbiol., 2017, 8, 2409.
[http://dx.doi.org/10.3389/fmicb.2017.02409] [PMID: 29375486]
[145]
Gilbert, P; Maira-Litran, T; McBain, AJ; Rickard, AH; Whyte, FW The physiology and collective recalcitrance of microbial biofilm communities. Adv. Microb. Physiol., 2002, 46, 202-256.
[http://dx.doi.org/10.1016/S0065-2911(02)46005-5]
[146]
Falde, E.J.; Yohe, S.T.; Colson, Y.L.; Grinstaff, M.W. Superhydrophobic materials for biomedical applications. Biomaterials, 2016, 104, 87-103.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.050] [PMID: 27449946]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy