Review Article

Recent Update on the Alzheimer's Disease Progression, Diagnosis and Treatment Approaches

Author(s): Akanksha Malaiya, Mansha Singhai, Manisha Singh, Shiv Kumar Prajapati, Hira Choudhury, Mahak Fatima, Amit Alexander, Sunil Kumar Dubey, Khaled Greish and Prashant Kesharwani*

Volume 23, Issue 10, 2022

Published on: 31 May, 2022

Page: [978 - 1001] Pages: 24

DOI: 10.2174/1389450123666220526155144

Price: $65

Abstract

Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disorder, manifested by the loss of memory and cognitive abilities, behavioral disturbance and progressive impairment of activities of daily life. The sharp rise in the number of AD patients has brought it within the top eight health issues in the world. It is associated with the distribution of misfolded aggregates of protein within the brain. However, Alois Alzheimer initially mentioned that the reduction in brain volume in AD might be associated with the “deposition of a special substance in the cortex”. The resulting plaque found in extracellular space in the AD brain and hippocampus region, known as senile plaques, is the characteristic feature underlying Alzheimer’s pathology, where the role of amyloid- β (Aβ) peptide formation from proteolytic cleavage of amyloid precursor protein (APP) by secretase enzyme is eminent. Therefore, this review has highlighted the molecular pathophysiology of AD with a variety of available diagnostic and treatment strategies for the management of the disease, with a focus on the advancement toward clinical research to provide new effective and safe tool in the diagnosis, treatment or management of AD.

Keywords: Alzheimer’s disease, neuroimaging, neurodegenerative, secretase enzyme, biomarker, amyloid precursor protein.

Graphical Abstract

[1]
Shannon KM. Recent advances in the treatment of Huntington’s Disease: Targeting DNA and RNA. CNS Drugs 2020; 34(3): 219-28.
[http://dx.doi.org/10.1007/s40263-019-00695-3] [PMID: 31933283]
[2]
Kantarci O, Wingerchuk D. Epidemiology and natural history of multiple sclerosis: New insights. Curr Opin Neurol 2006; 19(3): 248-54.
[http://dx.doi.org/10.1097/01.wco.0000227033.47458.82] [PMID: 16702830]
[3]
Newland B, Newland H, Werner C, Rosser A, Wang W. Prospects for polymer therapeutics in Parkinson’s disease and other neurodegenerative disorders. Prog Polym Sci 2015; 44: 79.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.12.002]
[4]
Kabanov AV, Gendelman HE. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci 2007; 32(8-9): 1054-82.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.014] [PMID: 20234846]
[5]
Kerkis I, da Silva JM, Wenceslau CV, Mambelli-Lisboa NC, Frare EO. Brain-derived neurotrophic factor and stem cell-based technologies in Huntington’s Disease therapy. In: Nagehan ET, Ed. Neurodegenerative Diseases-Molecular Mechanisms and Current Therapeutic Approaches. London, UK: Intech Open 2020; p. 103.
[6]
Valcour V, Paul R, Paul R. HIV infection and dementia in older adults. Clin Infect Dis 2006; 42(10): 1449-54.
[http://dx.doi.org/10.1086/503565] [PMID: 16619159]
[7]
Peng C, Trojanowski JQ, Lee VM-Y. Protein transmission in neurodegenerative disease. Nat Rev Neurol 2020; 16(4): 199-212.
[http://dx.doi.org/10.1038/s41582-020-0333-7] [PMID: 32203399]
[8]
Jucker M, Walker LC. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 2011; 70(4): 532-40.
[http://dx.doi.org/10.1002/ana.22615] [PMID: 22028219]
[9]
Singh S, Numan A, Agrawal N, Tambuwala MM, Singh V, Kesharwani P. Role of immune checkpoint inhibitors in the revolutionization of advanced melanoma care. Int Immunopharmacol 2020; 83: 106417.
[http://dx.doi.org/10.1016/j.intimp.2020.106417] [PMID: 32200155]
[10]
Singh S, Hassan D, Aldawsari HM, Molugulu N, Shukla R, Kesharwani P. Immune checkpoint inhibitors: A promising anticancer therapy. Drug Discov Today 2020; 25(1): 223-9.
[http://dx.doi.org/10.1016/j.drudis.2019.11.003] [PMID: 31738877]
[11]
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Zlokovic, Blood-brain barrier: From physiology to disease and back. Physiol Rev 2019; 99(1): 21-78.
[http://dx.doi.org/10.1152/physrev.00050.2017] [PMID: 30280653]
[12]
Gendelman HE. Neural immunity: Friend or foe? J Neurovirol 2002; 8(6): 474-9.
[http://dx.doi.org/10.1080/13550280290168631] [PMID: 12476342]
[13]
Patel HK, Gajbhiye V, Kesharwani P, Jain NK. Ligand anchored poly(propyleneimine) dendrimers for brain targeting: Comparative in vitro and in vivo assessment. J Colloid Interface Sci 2016; 482: 142-50.
[http://dx.doi.org/10.1016/j.jcis.2016.07.047] [PMID: 27501037]
[14]
Singh G, Kesharwani P, Srivastava AK. Tuberculosis treated by multiple drugs: An overview. Curr Drug Deliv 2018; 15(3): 312-20.
[http://dx.doi.org/10.2174/1567201814666171120125916] [PMID: 29165080]
[15]
Mishra V, Kesharwani P, Jain NK. siRNA nanotherapeutics: A Trojan horse approach against HIV. Drug Discov Today 2014; 19(12): 1913-20.
[http://dx.doi.org/10.1016/j.drudis.2014.09.019] [PMID: 25281591]
[16]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011; 377(9770): 1019-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[17]
Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: A Delphi consensus study. Lancet 2005; 366(9503): 2112-7.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0] [PMID: 16360788]
[18]
Mignani S, Bryszewska M, Zablocka M, et al. Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Prog Polym Sci 2017; 64: 23.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.09.006]
[19]
Kesharwani P, Jain A, Jain A, et al. Cationic bovine serum albumin (CBA) conjugated poly lactic-: Co -glycolic acid (PLGA) nanoparticles for extended delivery of methotrexate into brain tumors. RSC Advances 2016; 6: 89040.
[http://dx.doi.org/10.1039/C6RA17290C]
[20]
Agrawal M, Saraf S, Saraf S, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release 2020; 327: 235-65.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.044] [PMID: 32739524]
[21]
Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm 2019; 565: 258-68.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.032] [PMID: 31095983]
[22]
Gorain B, Rajeswary DC, Pandey M, Kesharwani P, Kumbhar SA, Choudhury H. Nose to brain delivery of nanocarriers towards attenuation of demented condition. Curr Pharm Des 2020; 26(19): 2233-46.
[http://dx.doi.org/10.2174/1381612826666200313125613] [PMID: 32167424]
[23]
Md S, Bhattmisra SK, Zeeshan F, et al. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol 2018; 43: 295.
[http://dx.doi.org/10.1016/j.jddst.2017.09.022]
[24]
Choudhari M, Hejmady S, Narayan Saha R, et al. Evolving new-age strategies to transport therapeutics across the blood-brain-barrier. Int J Pharm 2021; 599: 120351.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120351] [PMID: 33545286]
[25]
Choudhury H, Pandey M, Chin PX, et al. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Deliv Transl Res 2018; 8(5): 1545-63.
[http://dx.doi.org/10.1007/s13346-018-0552-2] [PMID: 29916012]
[26]
Mishra V, Kesharwani P. Dendrimer technologies for brain tumor. Drug Discov Today 2016; 21(5): 766-78.
[http://dx.doi.org/10.1016/j.drudis.2016.02.006] [PMID: 26891979]
[27]
Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release 2021; 340: 221-42.
[http://dx.doi.org/10.1016/j.jconrel.2021.10.028] [PMID: 34757195]
[28]
Dwivedi N, Shah J, Mishra V, et al. Dendrimer-mediated approaches for the treatment of brain tumor. J Biomater Sci Polym Ed 2016; 27(7): 557-80.
[http://dx.doi.org/10.1080/09205063.2015.1133155] [PMID: 26928261]
[29]
Pardridge WM. Alzheimer’s disease: future drug development and the blood-brain barrier. Expert Opin Investig Drugs 2019; 28(7): 569-72.
[http://dx.doi.org/10.1080/13543784.2019.1627325] [PMID: 31155971]
[30]
Meher JG, Kesharwani P, Chaurasia M, Singh A, Chourasia MK. Carbon Nanotubes (CNTs): A novel drug delivery tool in brain tumor treatment, nanotechnology-based target. Drug Delivery System Brain Tumors 2018; pp. 375-96.
[http://dx.doi.org/10.1016/B978-0-12-812218-1.00014-2]
[31]
Gorain B, Choudhury H, Pandey M, et al. Dendrimers as effective carriers for the treatment of brain tumor, nanotechnology-based target. Drug Deliv Syst Brain Tumors 2018; p. 267.
[32]
Gothwal A, Khan I, Kesharwani P, Chourasia MK, Gupta U. Micelle-based drug delivery for brain tumors. In: Nanotechnology-Based Target. Academic Press 2018; p. 307.
[33]
Kakoty V. K C S, Dubey SK, Yang CH, Kesharwani P, Taliyan R. The gut-brain connection in the pathogenicity of Parkinson disease: Putative role of autophagy. Neurosci Lett 2021.: 753135865.
[http://dx.doi.org/10.1016/j.neulet.2021.135865] [PMID: 33812929]
[34]
Zeeshan F, Mishra DK, Kesharwani P. From the nose to the brain, nanomedicine drug delivery Theory Appl Nonparenteral Nanomedicines. Academic Press 2021; p. 153.
[http://dx.doi.org/10.1016/B978-0-12-820466-5.00008-9]
[35]
Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005; 2(1): 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[36]
Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39: 268.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[37]
Gorain B, Choudhury H, Pandey M, et al. Dendrimers as effective carriers for the treatment of brain tumor. In: Nanotechnology-Based Target Drug Delivery System Brain Tumors. Academic Press 2018; p. 267.
[http://dx.doi.org/10.1016/B978-0-12-812218-1.00010-5]
[38]
Gadhave D, Gorain B, Tagalpallewar A, Kokare C. Intranasal teriflunomide microemulsion: An improved chemotherapeutic approach in glioblastoma. J Drug Deliv Sci Technol 2019; 51: 276.
[http://dx.doi.org/10.1016/j.jddst.2019.02.013]
[39]
Hippius H, Neundörfer G. The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 2003; 5(1): 101-8.
[http://dx.doi.org/10.31887/DCNS.2003.5.1/hhippius] [PMID: 22034141]
[40]
Godyń J, Jończyk J, Panek D, Malawska B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 2016; 68(1): 127-38.
[http://dx.doi.org/10.1016/j.pharep.2015.07.006] [PMID: 26721364]
[41]
James BD, Bennett DA. Causes and patterns of dementia: An update in the era of redefining Alzheimer’s Disease. Annu Rev Public Health 2019; 40: 65-84.
[http://dx.doi.org/10.1146/annurev-publhealth-040218-043758] [PMID: 30642228]
[42]
2020 Alzheimer’s disease facts and figures. Alzheimers Dement 2020; 16: 391.
[http://dx.doi.org/10.1002/alz.12068]
[43]
Alzheimer's Association | Alzheimer's Disease & Dementia Help. Available from: https://www.alz.org/ Accessed on 11-11-2021
[44]
Canet G, Pineau F, Zussy C, et al. Glucocorticoid receptors signaling impairment potentiates amyloid-β oligomers-induced pathology in an acute model of Alzheimer’s disease. FASEB J 2020; 34(1): 1150-68.
[http://dx.doi.org/10.1096/fj.201900723RRR] [PMID: 31914623]
[45]
Herrera-Rivero M, Santarelli F, Brosseron F, Kummer MP, Heneka MT. Dysregulation of TLR5 and TAM ligands in the Alzheimer’s brain as contributors to disease progression. Mol Neurobiol 2019; 56(9): 6539-50.
[http://dx.doi.org/10.1007/s12035-019-1540-3] [PMID: 30852796]
[46]
Pan X, Wang Z, Wu X, Wen SW, Liu A. Salivary cortisol in post-traumatic stress disorder: A systematic review and meta-analysis. BMC Psychiatry 2018; 18(1): 324.
[http://dx.doi.org/10.1186/s12888-018-1910-9] [PMID: 30290789]
[47]
Emre C, Hjorth E, Bharani K, Carroll S, Granholm AC, Schultzberg M. Receptors for pro-resolving mediators are increased in Alzheimer’s disease brain. Brain Pathol 2020; 30(3): 614-40.
[http://dx.doi.org/10.1111/bpa.12812] [PMID: 31912564]
[48]
Wang R, Reddy PH. Role of Glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis 2017; 57(4): 1041-8.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[49]
Baron R. Mechanisms of disease: Neuropathic pain - A clinical perspective. Nat Rev Neurol 2006; 2: 95-106.
[50]
Câmara AB. Alzheimer’s disease neuroprotection: associated receptors. In: Neuroprotection - New Approaches Prospect IntechOpen. 2020.
[51]
Stokin GB, Goldstein LS. Axonal transport and Alzheimer’s disease. Annu Rev Biochem 2006; 75: 607-27.
[http://dx.doi.org/10.1146/annurev.biochem.75.103004.142637] [PMID: 16756504]
[52]
Majocha RE, Tate B, Marotta CA. PC12 cells release stimulatory factors after transfection with β/A4-C-terminal DNA of the Alzheimer amyloid precursor protein. Mol Chem Neuropathol 1993; 18(1-2): 99-113.
[http://dx.doi.org/10.1007/BF03160024] [PMID: 8466596]
[53]
Castellani RJ, Zhu X, Perry G, Moreira PI. Alzheimer’s Disease: An overview. Ref Modul Biomed Sci 2014; 56: 484.
[54]
Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: The implications of systematic meta-analyses. Nat Rev Neurosci 2008; 9(10): 768-78.
[http://dx.doi.org/10.1038/nrn2494] [PMID: 18802446]
[55]
Bell RD, Winkler EA, Sagare AP, et al. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Neuron 2010; 68: 409.
[http://dx.doi.org/10.1016/j.neuron.2010.09.043] [PMID: 21040844]
[56]
Glenner GG, Wong CW. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885-90.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[57]
Minati L, Edginton T, Bruzzone MG, Giaccone G. Current concepts in Alzheimer’s disease: A multidisciplinary review. Am J Alzheimers Dis Other Demen 2009; 24(2): 95-121.
[http://dx.doi.org/10.1177/1533317508328602] [PMID: 19116299]
[58]
Goedert M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ tau, and α-synuclein. Science 2015; 349(6248): 1255555.
[http://dx.doi.org/10.1126/science.1255555] [PMID: 26250687]
[59]
Jakob-Roetne R, Jacobsen H. Alzheimer’s disease: From pathology to therapeutic approaches. Angew Chem Int Ed Engl 2009; 48(17): 3030-59.
[http://dx.doi.org/10.1002/anie.200802808] [PMID: 19330877]
[60]
Allinson TM, Parkin ET, Turner AJ, Hooper NM. ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 2003; 74(3): 342-52.
[http://dx.doi.org/10.1002/jnr.10737] [PMID: 14598310]
[61]
Vassar R, Bennett BD, Babu-Khan S, et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999; 286(5440): 735-41.
[http://dx.doi.org/10.1126/science.286.5440.735] [PMID: 10531052]
[62]
Kojro E, Fahrenholz F. The non-amyloidogenic pathway: Structure and function of α-secretases. In: Alzheimer’s Dis. Boston: Springer 2005; 38: p. 105.
[http://dx.doi.org/10.1007/0-387-23226-5_5]
[63]
Haass C, Hung AY, Schlossmacher MG, Teplow DB, Selkoe DJ. β-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem 1993; 268(5): 3021-4.
[http://dx.doi.org/10.1016/S0021-9258(18)53650-4] [PMID: 8428976]
[64]
D’Andrea MR, Nagele RG, Wang HY, Peterson PA, Lee DHS. Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 2001; 38(2): 120-34.
[http://dx.doi.org/10.1046/j.1365-2559.2001.01082.x] [PMID: 11207825]
[65]
Xu H, Greengard P, Gandy S. Regulated formation of Golgi secretory vesicles containing Alzheimer β-amyloid precursor protein. J Biol Chem 1995; 270(40): 23243-5.
[http://dx.doi.org/10.1074/jbc.270.40.23243] [PMID: 7559474]
[66]
LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 2007; 8(7): 499-509.
[http://dx.doi.org/10.1038/nrn2168] [PMID: 17551515]
[67]
Nagele RG, D’Andrea MR, Anderson WJ, Wang HY. Intracellular accumulation of β-amyloid(1-42) in neurons is facilitated by the α 7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience 2002; 110(2): 199-211.
[http://dx.doi.org/10.1016/S0306-4522(01)00460-2] [PMID: 11958863]
[68]
Caspersen C, Wang N, Yao J, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 2005; 19(14): 2040-1.
[http://dx.doi.org/10.1096/fj.05-3735fje] [PMID: 16210396]
[69]
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000; 33(1): 95-130.
[http://dx.doi.org/10.1016/S0165-0173(00)00019-9] [PMID: 10967355]
[70]
Ballatore C, Lee VMY, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 2007; 8(9): 663-72.
[http://dx.doi.org/10.1038/nrn2194] [PMID: 17684513]
[71]
Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 2001; 155(1): 65-76.
[http://dx.doi.org/10.1083/jcb.200106025] [PMID: 11581286]
[72]
Köpke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 1993; 268(32): 24374-84.
[http://dx.doi.org/10.1016/S0021-9258(20)80536-5] [PMID: 8226987]
[73]
Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 1994; 91(12): 5562-6.
[http://dx.doi.org/10.1073/pnas.91.12.5562] [PMID: 8202528]
[74]
Zimmer HG, Fye WB, Zimmer HG. Otto Loewi and the chemical transmission of vagus stimulation in the heart. Clin Cardiol 2006; 29(3): 135-6.
[http://dx.doi.org/10.1002/clc.4960290313] [PMID: 16596840]
[75]
Ovsepian SV, Herms J. Cholinergic neurons-keeping check on amyloid β in the cerebral cortex. Front Cell Neurosci 2013; 7: 252.
[http://dx.doi.org/10.3389/fncel.2013.00252] [PMID: 24376398]
[76]
Ladner CJ, Lee JM. Pharmacological drug treatment of Alzheimer disease: the cholinergic hypothesis revisited. J Neuropathol Exp Neurol 1998; 57(8): 719-31.
[http://dx.doi.org/10.1097/00005072-199808000-00001] [PMID: 9720487]
[77]
Geula C, Darvesh S. Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer’s disease. Drugs Today (Barc) 2004; 40(8): 711-21.
[http://dx.doi.org/10.1358/dot.2004.40.8.850473] [PMID: 15510242]
[78]
Sahu PK, Tiwari P, Prusty SK, Subudhi BB. Past and present drug development for Alzheimer’s disease. Bentham Science 2018; 7: 214.
[http://dx.doi.org/10.2174/9781681085609118070009]
[79]
Anand P, Singh B. Synthesis and evaluation of novel 4-[(3H,3aH,6aH)-3-phenyl)-4,6-dioxo-2-phenyldihydro-2H-pyrrolo[3,4-d]isoxazol-5(3H,6H,6aH)-yl]benzoic acid derivatives as potent acetylcholinesterase inhibitors and anti-amnestic agents. Bioorg Med Chem 2012; 20(1): 521-30.
[http://dx.doi.org/10.1016/j.bmc.2011.05.027] [PMID: 22172310]
[80]
Mesulam MM. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol 2013; 521(18): 4124-44.
[http://dx.doi.org/10.1002/cne.23415] [PMID: 23852922]
[81]
Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res 2013; 36(4): 375-99.
[http://dx.doi.org/10.1007/s12272-013-0036-3] [PMID: 23435942]
[82]
Brinkman SD, Gershon S. Measurement of cholinergic drug effects on memory in Alzheimer’s disease. Neurobiol Aging 1983; 4(2): 139-45.
[http://dx.doi.org/10.1016/0197-4580(83)90038-6] [PMID: 6355883]
[83]
Blennow K, Mattsson N, Schöll M, Hansson O, Zetterberg H. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci 2015; 36(5): 297-309.
[http://dx.doi.org/10.1016/j.tips.2015.03.002] [PMID: 25840462]
[84]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[85]
Coulson EJ, Paliga K, Beyreuther K, Masters CL. What the evolution of the amyloid protein precursor supergene family tells us about its function. Neurochem Int 2000; 36(3): 175-84.
[http://dx.doi.org/10.1016/S0197-0186(99)00125-4] [PMID: 10676850]
[86]
Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1994; 57(4): 419-25.
[http://dx.doi.org/10.1136/jnnp.57.4.419] [PMID: 8163989]
[87]
Bird TD. Genetic aspects of Alzheimer disease. Genet Med 2008; 10(4): 231-9.
[http://dx.doi.org/10.1097/GIM.0b013e31816b64dc] [PMID: 18414205]
[88]
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991; 12(10): 383-8.
[http://dx.doi.org/10.1016/0165-6147(91)90609-V] [PMID: 1763432]
[89]
Citron M, Oltersdorf T, Haass C, et al. Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 1992; 360(6405): 672-4.
[http://dx.doi.org/10.1038/360672a0] [PMID: 1465129]
[90]
Recuero M, Serrano E, Bullido MJ, Valdivieso F. Abeta production as consequence of cellular death of a human neuroblastoma overexpressing APP. FEBS Lett 2004; 570(1-3): 114-8.
[http://dx.doi.org/10.1016/j.febslet.2004.06.025] [PMID: 15251450]
[91]
Rhein V, Eckert A. Effects of Alzheimer’s amyloid-beta and tau protein on mitochondrial function - role of glucose metabolism and insulin signalling. Arch Physiol Biochem 2007; 113(3): 131-41.
[http://dx.doi.org/10.1080/13813450701572288] [PMID: 17922309]
[92]
Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996; 2(8): 864-70.
[http://dx.doi.org/10.1038/nm0896-864] [PMID: 8705854]
[93]
Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987; 325(6106): 733-6.
[http://dx.doi.org/10.1038/325733a0] [PMID: 2881207]
[94]
Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol 2021; 20(1): 68-80.
[http://dx.doi.org/10.1016/S1474-4422(20)30412-9] [PMID: 33340485]
[95]
Tan C, Lu NN, Wang CK, et al. Endothelium-derived semaphorin 3g regulates hippocampal synaptic structure and plasticity via neuro-pilin-2/plexina4. Neuron 2019; 101(5): 920-937.e13.
[http://dx.doi.org/10.1016/j.neuron.2018.12.036] [PMID: 30685224]
[96]
Yadav K, Diana MM, Bhutia GT, Owoalade SA. Therapeutics, review on aetiology, diagnosis and treatment of alzheimer’s disease. J Drug Deliv Therap 2019; 15: 626.
[97]
Albayram O, Angeli P, Bernstein E, et al. Parkinsonism, Targeting prion-like cis phosphorylated tau pathology in neurodegenerative diseases. J Alzheimers Dis Parkinsonism 2018; 8: 1.
[http://dx.doi.org/10.4172/2161-0460.1000443]
[98]
Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 2015; 52: 1-18.
[http://dx.doi.org/10.1016/j.npep.2015.06.008] [PMID: 26149638]
[99]
Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov 2007; 6(6): 464-79.
[http://dx.doi.org/10.1038/nrd2111] [PMID: 17541419]
[100]
Cummings JL. Challenges to demonstrating disease-modifying effects in Alzheimer’s disease clinical trials. Alzheimers Dement 2006; 2(4): 263-71.
[http://dx.doi.org/10.1016/j.jalz.2006.07.001] [PMID: 19595897]
[101]
Swerdlow RH. Is aging part of Alzheimer’s disease, or is Alzheimer’s disease part of aging? Neurobiol Aging 2007; 28(10): 1465-80.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.06.021] [PMID: 16876913]
[102]
Razay G, Wilcock GK. Hyperinsulinaemia and Alzheimer’s disease. Age Ageing 1994; 23(5): 396-9.
[http://dx.doi.org/10.1093/ageing/23.5.396] [PMID: 7825486]
[103]
Craft S, Asthana S, Schellenberg G, et al. Insulin metabolism in Alzheimer’s disease differs according to apolipoprotein E genotype and gender. Neuroendocrinology 1999; 70(2): 146-52.
[http://dx.doi.org/10.1159/000054469] [PMID: 10461029]
[104]
Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr. Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 1998; 50(1): 164-8.
[http://dx.doi.org/10.1212/WNL.50.1.164] [PMID: 9443474]
[105]
Leibson CL, Rocca WA, Hanson VA, et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 1997; 145(4): 301-8.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009106] [PMID: 9054233]
[106]
Ott A, Stolk RP, van Harskamp F, Pols HAP, Hofman A, Breteler MMB. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999; 53(9): 1937-42.
[http://dx.doi.org/10.1212/WNL.53.9.1937] [PMID: 10599761]
[107]
Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs 2003; 17(1): 27-45.
[http://dx.doi.org/10.2165/00023210-200317010-00003] [PMID: 12467491]
[108]
Takahashi RH, Capetillo-Zarate E, Lin MT, Milner TA, Gouras GK. Co-occurrence of Alzheimer’s disease ß-amyloid and τ pathologies at synapses. Neurobiol Aging 2010; 31(7): 1145-52.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.07.021] [PMID: 18771816]
[109]
van der Wal EA, Gómez-Pinilla F, Cotman CW. Transforming growth factor-beta 1 is in plaques in Alzheimer and Down pathologies. Neuroreport 1993; 4(1): 69-72.
[http://dx.doi.org/10.1097/00001756-199301000-00018] [PMID: 8453039]
[110]
Vlad SC, Miller DR, Kowall NW, Felson DT. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 2008; 70(19): 1672-7.
[http://dx.doi.org/10.1212/01.wnl.0000311269.57716.63] [PMID: 18458226]
[111]
Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: A comparative overview. Mol Neurobiol 2014; 50(2): 534-44.
[http://dx.doi.org/10.1007/s12035-014-8657-1] [PMID: 24567119]
[112]
Zhu XC, Tan L, Jiang T, Tan MS, Zhang W, Yu JT. Association of IL-12A and IL-12B polymorphisms with Alzheimer’s disease susceptibility in a Han Chinese population. J Neuroimmunol 2014; 274(1-2): 180-4.
[http://dx.doi.org/10.1016/j.jneuroim.2014.06.026] [PMID: 25037175]
[113]
Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77(1): 43-51.
[http://dx.doi.org/10.1016/j.biopsych.2014.05.006] [PMID: 24951455]
[114]
Jamieson GA, Maitland NJ, Wilcock GK, Yates CM, Itzhaki RF. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J Pathol 1992; 167(4): 365-8.
[http://dx.doi.org/10.1002/path.1711670403] [PMID: 1328575]
[115]
Readhead B, Haure-Mirande JV, Funk CC, et al. Multiscale analysis of independent alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 2018; 99(1): 64-82.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.05.023] [PMID: 29937276]
[116]
Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019; 179(2): 312-39.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[117]
Zhang B, Gaiteri C, Bodea LG, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 2013; 153(3): 707-20.
[http://dx.doi.org/10.1016/j.cell.2013.03.030] [PMID: 23622250]
[118]
Felsky D, Roostaei T, Nho K, et al. Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nat Commun 2019; 10(1): 409.
[http://dx.doi.org/10.1038/s41467-018-08279-3] [PMID: 30679421]
[119]
Price JL, Davis PB, Morris JC, White DL. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 1991; 12(4): 295-312.
[http://dx.doi.org/10.1016/0197-4580(91)90006-6] [PMID: 1961359]
[120]
O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250(10): 4007-21.
[http://dx.doi.org/10.1016/S0021-9258(19)41496-8] [PMID: 236308]
[121]
Wardlaw JM, Sandercock PAG, Dennis MS, Starr J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 2003; 34(3): 806-12.
[http://dx.doi.org/10.1161/01.STR.0000058480.77236.B3] [PMID: 12624314]
[122]
Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 2003; 9(7): 907-13.
[http://dx.doi.org/10.1038/nm890] [PMID: 12808450]
[123]
Choudhury H, Gorain B, Pandey M, Khurana RK, Kesharwani P. Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int J Pharm 2019; 565: 509-22.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.042] [PMID: 31102804]
[124]
Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987; 325(6101): 253-7.
[http://dx.doi.org/10.1038/325253a0] [PMID: 3543687]
[125]
Tamai I, Tsuji A. Drug delivery through the blood-brain barrier. Adv Drug Deliv Rev 1996; 19: 401.
[http://dx.doi.org/10.1016/0169-409X(96)00011-7]
[126]
Gorain B, Choudhury H, Pandey M. MohdZaki, H.L.; Bakar, N.I.B.; Hamdhan, N.H.B.; Musa, N.A.B.; Mustafa, N.F.B.; Sangkari, J.S.; Azmi, N.A.A.B.; Yeang, L.P. Mechanistic description of natural herbs in the treatment of dementia: A systematic review. Curr Psychopharmacol 2018; 7: 149.
[http://dx.doi.org/10.2174/2211556007666180420124544]
[127]
Selkoe DJ. Clearing the brain’s amyloid cobwebs. Neuron 2001; 32(2): 177-80.
[http://dx.doi.org/10.1016/S0896-6273(01)00475-5] [PMID: 11683988]
[128]
Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382(6593): 685-91.
[http://dx.doi.org/10.1038/382685a0] [PMID: 8751438]
[129]
Barnes LL, Bennett DA. Alzheimer’s disease in African Americans: risk factors and challenges for the future. Health Aff (Millwood) 2014; 33(4): 580-6.
[http://dx.doi.org/10.1377/hlthaff.2013.1353] [PMID: 24711318]
[130]
Riedel BC, Thompson PM, Brinton RD. Age, APOE and sex: Triad of risk of Alzheimer’s disease. J Steroid Biochem Mol Biol 2016; 160: 134-47.
[http://dx.doi.org/10.1016/j.jsbmb.2016.03.012] [PMID: 26969397]
[131]
Armstrong RA. A critical analysis of the ‘amyloid cascade hypothesis’. Folia Neuropathol 2014; 52(3): 211-25.
[http://dx.doi.org/10.5114/fn.2014.45562] [PMID: 25310732]
[132]
Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet 2017; 390(10113): 2673-734.
[http://dx.doi.org/10.1016/S0140-6736(17)31363-6] [PMID: 28735855]
[133]
Caruso A, Nicoletti F, Mango D, Saidi A, Orlando R, Scaccianoce S. Stress as risk factor for Alzheimer’s disease. Pharmacol Res 2018; 132: 130-4.
[http://dx.doi.org/10.1016/j.phrs.2018.04.017] [PMID: 29689315]
[134]
Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimers Dement 2015; 11(6): 718-26.
[http://dx.doi.org/10.1016/j.jalz.2015.05.016] [PMID: 26045020]
[135]
de Bruijn RF, Ikram MA. Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Med 2014; 12: 130.
[http://dx.doi.org/10.1186/s12916-014-0130-5] [PMID: 25385322]
[136]
Muqtadar H, Testai FD, Gorelick PB. The dementia of cardiac disease. Curr Cardiol Rep 2012; 14(6): 732-40.
[http://dx.doi.org/10.1007/s11886-012-0304-8] [PMID: 22968344]
[137]
Iadecola C. The pathobiology of vascular dementia. Neuron 2013; 80(4): 844-66.
[http://dx.doi.org/10.1016/j.neuron.2013.10.008] [PMID: 24267647]
[138]
A Armstrong R. Risk factors for Alzheimer’s disease. Folia Neuropathol 2019; 57(2): 87-105.
[http://dx.doi.org/10.5114/fn.2019.85929] [PMID: 31556570]
[139]
Pierce AL, Bullain SS, Kawas CH. UC irvine previously published works. Neurol Clin 2017; 35: 283.
[http://dx.doi.org/10.1016/j.ncl.2017.01.006] [PMID: 28410660]
[140]
Xu W, Tan L, Wang HF, et al. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2015; 86(12): 1299-306.
[http://dx.doi.org/10.1136/jnnp-2015-310548] [PMID: 26294005]
[141]
De Bock M, Thorstensen EB, Derraik JG, et al. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol Nutr Food Res 2013; 57: 2079.
[142]
Moro ML, Giaccone G, Lombardi R, et al. APP mutations in the Aβ coding region are associated with abundant cerebral deposition of Aβ38. Acta Neuropathologica 2012; 124: 809.
[http://dx.doi.org/10.1016/j.biocel.2012.07.019] [PMID: 22842534]
[143]
Honarnejad K, Herms J. Presenilins: role in calcium homeostasis. Int J Biochem Cell Biol 2012; 44(11): 1983-6.
[http://dx.doi.org/10.1016/j.biocel.2012.07.019] [PMID: 22842534]
[144]
Ashok A, Rai NK, Tripathi S, Bandyopadhyay S. Exposure to As-, Cd-, and Pb-mixture induces Aβ amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci 2015; 143(1): 64-80.
[http://dx.doi.org/10.1093/toxsci/kfu208] [PMID: 25288670]
[145]
Samieri C. Epidemiology and risk factors of Alzheimer’s disease: A focus on diet In: Neuromethods. New York: Humana Press 2018; 137: p. 15.
[http://dx.doi.org/10.1007/978-1-4939-7674-4_2]
[146]
Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ. Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. J Comp Neurol 2006; 495(1): 70-83.
[http://dx.doi.org/10.1002/cne.20840] [PMID: 16432899]
[147]
Ortega-Martinez S, Palla N, Zhang X, Lipman E, Sisodia SS. Deficits in enrichment-dependent neurogenesis and enhanced anxiety behaviors mediated by expression of alzheimer’s disease-linked ps1 variants are rescued by microglial depletion. J Neurosci 2019; 39(34): 6766-80.
[http://dx.doi.org/10.1523/JNEUROSCI.0884-19.2019] [PMID: 31217332]
[148]
Janghel RR. Deep-learning-based classification and diagnosis of alzheimer’s disease. IGI Global 2020; pp. 1358-82.
[149]
Chételat GJ. Multimodal neuroimaging in Alzheimer’s disease: early diagnosis, physiopathological mechanisms, and impact of lifestyle. Alzheimer’s Dis 2018; 64: 199.
[http://dx.doi.org/10.3233/JAD-179920]
[150]
Johnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2(4): a006213.
[http://dx.doi.org/10.1101/cshperspect.a006213] [PMID: 22474610]
[151]
Miatto O, Gonzalez RG, Buonanno F, Growdon JH. In vitro 31P NMR spectroscopy detects altered phospholipid metabolism in Alzheimer’s disease. Can J Neurol Sci 1986; 13(4)(Suppl.): 535-9.
[http://dx.doi.org/10.1017/S0317167100037276] [PMID: 3791069]
[152]
Hanin I, Reynolds CF III, Kupfer DJ, et al. Elevated red blood cell/plasma choline ratio in dementia of the Alzheimer type: clinical and polysomnographic correlates. Psychiatry Res 1984; 13(2): 167-73.
[http://dx.doi.org/10.1016/0165-1781(84)90060-X] [PMID: 6596584]
[153]
Steckl C. Diagnosis Of Alzheimer’s Disease- Neuropsychological Testing. 2008. Available from: https://www.mentalhelp.net/articles/diagnosis-of-alzheimer-s-disease-imaging-procedures-and-psychological-evaluation/
[154]
Sun LH, Ban T, Liu CD, et al. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation. J Neurochem 2015; 134(6): 1139-51.
[http://dx.doi.org/10.1111/jnc.13212] [PMID: 26118667]
[155]
Shields RK, Chen L, Cheng S, et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother Antimicrob Agents Chemother 2017; 61: 02097.
[http://dx.doi.org/10.1128/AAC.02097-16]
[156]
El Kadmiri N, Said N, Slassi I, El Moutawakil B, Nadifi S. Biomarkers for Alzheimer disease: Classical and novel candidates’ review. Neuroscience 2018; 370: 181-90.
[http://dx.doi.org/10.1016/j.neuroscience.2017.07.017] [PMID: 28729061]
[157]
Lashley T, Schott JM, Weston P, et al. Molecular biomarkers of Alzheimer’s disease: Progress and prospects. Dis Model Mech 2018; 11(5): 031781.
[http://dx.doi.org/10.1242/dmm.031781] [PMID: 29739861]
[158]
Richardson A. Congo red absorption, distribution and sojourn in blood. Am J Med Sci 1939; 198: 82.
[http://dx.doi.org/10.1097/00000441-193907000-00014]
[159]
Richardson A. Congo red: Hematologic actions. Am J Med Sci 1939; 198: 87.
[http://dx.doi.org/10.1097/00000441-193907000-00015]
[160]
Richardson A, Dillon J. Congo red: Toxicity and systemic actions. Am J Med Sci 1939; 198: 73.
[http://dx.doi.org/10.1097/00000441-193907000-00013]
[161]
Jack CR Jr, Knopman DS, Jagust WJ, et al. Amyloid imaging in dementia. Lancet Neurol 2010; 9: 119.
[http://dx.doi.org/10.1016/S1474-4422(09)70299-6] [PMID: 20083042]
[162]
Anoop A, Singh PK, Jacob RS, Maji SK. CSF biomarkers for Alzheimer’s disease diagnosis. Int J Alzheimers Dis 2010; 2010: 606802.
[http://dx.doi.org/10.4061/2010/606802] [PMID: 20721349]
[163]
Reitz C, Mayeux R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88(4): 640-51.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[164]
De Meyer G, Shapiro F, Vanderstichele H, et al. Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch Neurol 2010; 67(8): 949-56.
[http://dx.doi.org/10.1001/archneurol.2010.179] [PMID: 20697045]
[165]
Barthélemy NR, Bateman RJ, Hirtz C, et al. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimers Res Ther 2020; 12(1): 26.
[http://dx.doi.org/10.1186/s13195-020-00596-4] [PMID: 32183883]
[166]
Cummings J. The National Institute on Aging-Alzheimer’s Association Framework on Alzheimer’s disease: Application to clinical trials. Alzheimers Dement 2019; 15(1): 172-8.
[http://dx.doi.org/10.1016/j.jalz.2018.05.006] [PMID: 29936146]
[167]
Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol 2016; 15(7): 673-84.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[168]
Brys M, Pirraglia E, Rich K, et al. Prediction and longitudinal study of CSF biomarkers in mild cognitive impairment. Neurobiol Aging 2009; 30(5): 682-90.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.08.010] [PMID: 17889968]
[169]
Zetterberg H, Burnham SC. Blood-based molecular biomarkers for Alzheimer’s disease. Mol Brain 2019; 12(1): 26.
[http://dx.doi.org/10.1186/s13041-019-0448-1] [PMID: 30922367]
[170]
Sharma N, Singh AN. Exploring biomarkers for Alzheimer’s disease. J Clin Diagnostic Res 2016; 10: 01.
[http://dx.doi.org/10.7860/JCDR/2016/18828.8166]
[171]
Yang CC, Chiu MJ, Chen TF, Chang HL, Liu BH, Yang SY. Assay of plasma phosphorylated tau protein (threonine 181) and total tau protein in early-stage Alzheimer’s disease. J Alzheimers Dis 2018; 61(4): 1323-32.
[http://dx.doi.org/10.3233/JAD-170810] [PMID: 29376870]
[172]
Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 2018; 14(10): 577-89.
[http://dx.doi.org/10.1038/s41582-018-0058-z] [PMID: 30171200]
[173]
Hashimoto M, Yamazaki A, Ohno A, Kimura T, Winblad B, Tjernberg LO. A fragment of S38AA is a novel plasma biomarker of Alzheimer’s disease. J Alzheimers Dis 2019; 71(4): 1163-74.
[http://dx.doi.org/10.3233/JAD-190700] [PMID: 31524172]
[174]
Alexopoulos P, Thierjung N, Economou P, et al. Plasma levels of soluble AβPPβ as a biomarker for Alzheimer’s disease with dementia. J Alzheimers Dis 2019; 69(1): 83-90.
[http://dx.doi.org/10.3233/JAD-181088] [PMID: 30909232]
[175]
Yamasaki T, Tobimatsu S. Electrophysiological biomarkers for improved etiological diagnosis of cognitive impairment. Curr Biomark Find 2014; 4: 69.
[http://dx.doi.org/10.2147/CBF.S46067]
[176]
Petrella JR, Hao W, Rao A, Doraiswamy PM. Computational causal modeling of the dynamic biomarker cascade in alzheimer’s disease. Comput Math Methods Med 2019; 2019: 6216530.
[http://dx.doi.org/10.1155/2019/6216530] [PMID: 30863455]
[177]
Tepper S, Ashina M, Reuter U, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2017; 16(6): 425-34.
[http://dx.doi.org/10.1016/S1474-4422(17)30083-2] [PMID: 28460892]
[178]
Koch G, Martorana A, Caltagirone C. Transcranial magnetic stimulation: Emerging biomarkers and novel therapeutics in Alzheimer’s disease. Neurosci Lett 2020; 719: 134355.
[http://dx.doi.org/10.1016/j.neulet.2019.134355] [PMID: 31260726]
[179]
Khoury R, Ghossoub E. Diagnostic biomarkers of Alzheimer’s disease: A state-of-the-art review. Biomarkers Neuropsychiatr 2019; p. 1100005.
[http://dx.doi.org/10.1016/j.bionps.2019.100005]
[180]
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: Targeting the cholinergic system. Curr Neuropharmacol 2016; 14(1): 101-15.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[181]
Chen XQ, Mobley WC. Exploring the pathogenesis of Alzheimer disease in basal forebrain cholinergic neurons: Converging insights from alternative hypotheses. Front Neurosci 2019; 13: 446.
[http://dx.doi.org/10.3389/fnins.2019.00446] [PMID: 31133787]
[182]
Knowles J. Donepezil in Alzheimer’s disease: an evidence-based review of its impact on clinical and economic outcomes. Core Evid 2006; 1(3): 195-219.
[PMID: 22500154]
[183]
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. (Review) Mol Med Rep 2019; 20(2): 1479-87.
[PMID: 31257471]
[184]
Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology 1998; 50(1): 136-45.
[http://dx.doi.org/10.1212/WNL.50.1.136] [PMID: 9443470]
[185]
Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimers Dis 2012; 2012: 728983.
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[186]
Lilienfeld S. Galantamine--a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev 2002; 8(2): 159-76.
[http://dx.doi.org/10.1111/j.1527-3458.2002.tb00221.x] [PMID: 12177686]
[187]
Marco-Contelles J, do Carmo Carreiras M, Rodríguez C, Villarroya M, García AG. Synthesis and pharmacology of galantamine. Chem Rev 2006; 106(1): 116-33.
[http://dx.doi.org/10.1021/cr040415t] [PMID: 16402773]
[188]
Popova EN, Bogolepov NN. Changes in neurons of certain regions of the brain under the influence of nivaline. Bull Exp Biol Med 1965; 59: 572.
[http://dx.doi.org/10.1007/BF00783088]
[189]
Razay G, Wilcock GK. Galantamine in Alzheimer’s disease. Expert Rev Neurother 2008; 8(1): 9-17.
[http://dx.doi.org/10.1586/14737175.8.1.9] [PMID: 18088197]
[190]
Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf 2020; 19(2): 147-57.
[http://dx.doi.org/10.1080/14740338.2020.1721456] [PMID: 31976781]
[191]
van Marum RJ. Update on the use of memantine in Alzheimer’s disease. Neuropsychiatr Dis Treat 2009; 5: 237-47.
[http://dx.doi.org/10.2147/NDT.S4048] [PMID: 19557118]
[192]
Kishi T, Matsunaga S, Oya K, Nomura I, Ikuta T, Iwata N. Memantine for Alzheimer’s Disease: An Updated Systematic Review and Meta-analysis. J Alzheimers Dis 2017; 60(2): 401-25.
[http://dx.doi.org/10.3233/JAD-170424] [PMID: 28922160]
[193]
Joshi I, Yang YM, Wang LY. Coincident activation of metabotropic glutamate receptors and NMDA receptors (NMDARs) downregulates perisynaptic/extrasynaptic NMDARs and enhances high-fidelity neurotransmission at the developing calyx of Held synapse. J Neurosci 2007; 27(37): 9989-99.
[http://dx.doi.org/10.1523/JNEUROSCI.2506-07.2007] [PMID: 17855613]
[194]
McShane R, Westby MJ, Roberts E, et al. Memantine for dementia. Cochrane Database Syst Rev 2019.: 3CD003154.
[PMID: 30891742]
[195]
Ahmed M, Rocha JBT, Corrêa M, et al. Inhibition of two different cholinesterases by tacrine. Chem Biol Interact 2006; 162(2): 165-71.
[http://dx.doi.org/10.1016/j.cbi.2006.06.002] [PMID: 16860785]
[196]
Tumiatti V, Minarini A, Bolognesi ML, Milelli A, Rosini M, Melchiorre C. Tacrine derivatives and Alzheimer’s disease. Curr Med Chem 2010; 17(17): 1825-38.
[http://dx.doi.org/10.2174/092986710791111206] [PMID: 20345341]
[197]
Qizilbash N, Birks J, Lopez Arrieta J, Lewington S, Szeto S. WITHDRAWN: Tacrine for Alzheimer’s disease. Cochrane Database Syst Rev 2007; (3): : CD000202.
[PMID: 17636619]
[198]
Minarini A, Milelli A, Simoni E, et al. Multifunctional tacrine derivatives in Alzheimer’s disease. Curr Top Med Chem 2013; 13(15): 1771-86.
[http://dx.doi.org/10.2174/15680266113139990136] [PMID: 23931443]
[199]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[200]
Knopman DS, Jones DT, Greicius MD. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement 2021; 17(4): 696-701.
[http://dx.doi.org/10.1002/alz.12213] [PMID: 33135381]
[201]
Nisticò R, Borg JJ. Aducanumab for Alzheimer’s disease: A regulatory perspective. Pharmacol Res 2021; 17: 1105754.
[http://dx.doi.org/10.1016/j.phrs.2021.105754] [PMID: 34217830]
[202]
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Target Ther 2019; 4: 1.
[http://dx.doi.org/10.1038/s41392-019-0063-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy