Review Article

The Therapeutic Potential of Targeting Hsp90-Cdc37 Interactions in Several Diseases

Author(s): Xuerong Zhang, Shehan Li, Zibo Li, Liangkai Cheng, Zhongqiu Liu and Caiyan Wang*

Volume 23, Issue 10, 2022

Published on: 31 May, 2022

Page: [1023 - 1038] Pages: 16

DOI: 10.2174/1389450123666220408101544

Price: $65

Abstract

Heat shock protein (Hsp) 90 is an ATP-dependent chaperone and plays a vital role in the folding, maturation, and stability of a protein. Hsp90 and its client proteins have become targets of various diseases through the regulation of disease-related proteins. Inhibition of Hsp90 production and activity prevents ATP hydrolysis, resulting in the ubiquitination and proteasome degradation of client proteins. However, the Hsp90 inhibitor has obvious toxic side effects and the inevitable heat shock response. Cell division cycle 37 (Cdc37) is a crucial Hsp90 kinase-specific co-chaperone, which forms a complex with Hsp90 to regulate kinase and non-kinase client’s activities, cell communication, and signal transduction. The Hsp90-Cdc37 complex maintains cell survival by stabilizing abnormal client proteins and regulating cell growth signals. The abnormal activation of Hsp90-Cdc37 protein-protein interaction (PPI) often leads to the aggravation of diseases, such as cancer and neurodegenerative diseases. Compared with ATP competitive Hsp90 inhibitors, blocking Hsp90-Cdc37 PPI has higher selectivity, fewer toxic side effects, and better application prospects. This review detailed the biological characteristics of Hsp90-Cdc37 PPI and its role in several human diseases. Besides, the latest research progress in inhibitors is summarized and discussed to guide further research and clinical application.

Keywords: Heat shock protein 90, cell division cycle 37, protein-protein interaction, diseases, inhibitor, homeostasis.

Graphical Abstract

[1]
Bagatell R, Whitesell L. Altered Hsp90 function in cancer: A unique therapeutic opportunity. Mol Cancer Ther 2004; 3(8): 1021-30.
[PMID: 15299085]
[2]
Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: Emerging mechanistic insights. Nat Rev Mol Cell Biol 2010; 11(7): 515-28.
[http://dx.doi.org/10.1038/nrm2918] [PMID: 20531426]
[3]
Gidalevitz T, Prahlad V, Morimoto RI. The stress of protein misfolding: From single cells to multicellular organisms. Cold Spring Harb Perspect Biol 2011; 3(6): a009704.
[http://dx.doi.org/10.1101/cshperspect.a009704] [PMID: 21536706]
[4]
Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009; 78(1): 959-91.
[http://dx.doi.org/10.1146/annurev.biochem.052308.114844] [PMID: 19298183]
[5]
Gupta A, Bansal A, Hashimoto-Torii K. HSP70 and HSP90 in neurodegenerative diseases. Neurosci Lett 2020; 716: 134678.
[http://dx.doi.org/10.1016/j.neulet.2019.134678] [PMID: 31816334]
[6]
Costa TEMM, Raghavendra NM, Penido C. Natural heat shock protein 90 inhibitors in cancer and inflammation. Eur J Med Chem 2020; 189: 112063.
[http://dx.doi.org/10.1016/j.ejmech.2020.112063] [PMID: 31972392]
[7]
Lee T, Seo YH. Targeting the hydrophobic region of Hsp90's ATP binding pocket with novel 1,3,5-triazines. Bioorg Med Chem Lett 2013; 23(23): 6427-31.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.050] [PMID: 24125885]
[8]
Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: Essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994; 91(18): 8324-8.
[http://dx.doi.org/10.1073/pnas.91.18.8324] [PMID: 8078881]
[9]
Acquaviva J, He S, Sang J, et al. mTOR inhibition potentiates HSP90 inhibitor activity via cessation of HSP synthesis. Mol Cancer Res 2014; 12(5): 703-13.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0605] [PMID: 24554781]
[10]
Pedersen KS, Kim GP, Foster NR, Wang-Gillam A, Erlichman C, McWilliams RR. Phase II trial of gemcitabine and tanespimycin (17AAG) in metastatic pancreatic cancer: A mayo clinic phase ii consortium study. Invest New Drugs 2015; 33(4): 963-8.
[http://dx.doi.org/10.1007/s10637-015-0246-2] [PMID: 25952464]
[11]
Sgobba M, Forestiero R, Degliesposti G, Rastelli G. Exploring the binding site of C-terminal hsp90 inhibitors. J Chem Inf Model 2010; 50(9): 1522-8.
[http://dx.doi.org/10.1021/ci1001857] [PMID: 20828111]
[12]
Forsberg LK, Liu W, Holzbeierlein J, Blagg BSJ. Modified biphenyl Hsp90 C-terminal inhibitors for the treatment of cancer. Bioorg Med Chem Lett 2017; 27(18): 4514-9.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.030] [PMID: 28844386]
[13]
Marcu MG, Schulte TW, Neckers L. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling pro-teins. J Natl Cancer Inst 2000; 92(3): 242-8.
[http://dx.doi.org/10.1093/jnci/92.3.242] [PMID: 10655441]
[14]
Gray PJ Jr, Prince T, Cheng J, Stevenson MA, Calderwood SK. Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer 2008; 8(7): 491-5.
[http://dx.doi.org/10.1038/nrc2420] [PMID: 18511936]
[15]
Taipale M, Krykbaeva I, Koeva M, et al. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 2012; 150(5): 987-1001.
[http://dx.doi.org/10.1016/j.cell.2012.06.047] [PMID: 22939624]
[16]
Bandhakavi S, McCann RO, Hanna DE, Glover CV. A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol Chem 2003; 278(5): 2829-36.
[http://dx.doi.org/10.1074/jbc.M206662200] [PMID: 12435747]
[17]
Kimura Y, Rutherford SL, Miyata Y, et al. Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev 1997; 11(14): 1775-85.
[http://dx.doi.org/10.1101/gad.11.14.1775] [PMID: 9242486]
[18]
Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 2002; 9(2): 401-10.
[http://dx.doi.org/10.1016/S1097-2765(02)00450-1] [PMID: 11864612]
[19]
Bouwmeester T, Bauch A, Ruffner H, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004; 6(2): 97-105.
[http://dx.doi.org/10.1038/ncb1086] [PMID: 14743216]
[20]
Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 2002; 277(42): 39858-66.
[http://dx.doi.org/10.1074/jbc.M206322200] [PMID: 12176997]
[21]
Fliss AE, Fang Y, Boschelli F, Caplan AJ. Differential in vivo regulation of steroid hormone receptor activation by Cdc37p. Mol Biol Cell 1997; 8(12): 2501-9.
[http://dx.doi.org/10.1091/mbc.8.12.2501] [PMID: 9398671]
[22]
Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH. p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 1999; 19(3): 1661-72.
[http://dx.doi.org/10.1128/MCB.19.3.1661] [PMID: 10022854]
[23]
Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 2017; 18(6): 345-60.
[http://dx.doi.org/10.1038/nrm.2017.20] [PMID: 28429788]
[24]
Ihama F, Yamamoto M, Kojima C, et al. Structural characterization of the N-terminal kinase-interacting domain of an Hsp90-cochaperone Cdc37 by CD and solution NMR spectroscopy. Biochim Biophys Acta Proteins Proteomics 2019; 1867(9): 813-20.
[http://dx.doi.org/10.1016/j.bbapap.2019.06.007] [PMID: 31226489]
[25]
Shiau AK, Harris SF, Southworth DR, Agard DA. Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 2006; 127(2): 329-40.
[http://dx.doi.org/10.1016/j.cell.2006.09.027] [PMID: 17055434]
[26]
Keramisanou D, Aboalroub A, Zhang Z, et al. Molecular mechanism of protein kinase recognition and sorting by the Hsp90 kinome-specific cochaperone Cdc37. Mol Cell 2016; 62(2): 260-71.
[http://dx.doi.org/10.1016/j.molcel.2016.04.005] [PMID: 27105117]
[27]
Biebl MM, Buchner J. Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb Perspect Biol 2019; 11(9): a034017.
[http://dx.doi.org/10.1101/cshperspect.a034017] [PMID: 30745292]
[28]
Oberoi J, Dunn DM, Woodford MR, et al. Structural and functional basis of protein phosphatase 5 substrate specificity. Proc Natl Acad Sci USA 2016; 113(32): 9009-14.
[http://dx.doi.org/10.1073/pnas.1603059113] [PMID: 27466404]
[29]
Arlander SJ, Felts SJ, Wagner JM, Stensgard B, Toft DO, Karnitz LM. Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem 2006; 281(5): 2989-98.
[http://dx.doi.org/10.1074/jbc.M508687200] [PMID: 16330544]
[30]
Wang L, Zhang L, Li L, et al. Small-molecule inhibitor targeting the Hsp90-Cdc37 protein-protein interaction in colorectal cancer. Sci Adv 2019; 5(9): eaax2277.
[http://dx.doi.org/10.1126/sciadv.aax2277] [PMID: 31555737]
[31]
Peng B, Gu YJ, Wang Y, et al. Mutations Y493G and K546D in human HSP90 disrupt binding of celastrol and reduce interaction with Cdc37. FEBS Open Bio 2016; 6(7): 729-34.
[http://dx.doi.org/10.1002/2211-5463.12081] [PMID: 27398312]
[32]
D’Annessa I, Hurwitz N, Pirota V, et al. Design of disruptors of the Hsp90-Cdc37 interface. Molecules 2020; 25(2): E360.
[http://dx.doi.org/10.3390/molecules25020360] [PMID: 31952296]
[33]
Zhang T, Li Y, Yu Y, Zou P, Jiang Y, Sun D. Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J Biol Chem 2009; 284(51): 35381-9.
[http://dx.doi.org/10.1074/jbc.M109.051532] [PMID: 19858214]
[34]
Zhang T, Hamza A, Cao X, et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 2008; 7(1): 162-70.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0484] [PMID: 18202019]
[35]
Sreeramulu S, Gande SL, Göbel M, Schwalbe H. Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol. Angew Chem Int Ed Engl 2009; 48(32): 5853-5.
[http://dx.doi.org/10.1002/anie.200900929] [PMID: 19585625]
[36]
Xu Y, Liu F, Liu J, et al. The co-chaperone Cdc37 regulates the rabies virus phosphoprotein stability by targeting to Hsp90AA1 machinery. Sci Rep 2016; 6(1): 27123.
[http://dx.doi.org/10.1038/srep27123] [PMID: 27251758]
[37]
Jiang F, Wang HJ, Bao QC, et al. Optimization and biological evaluation of celastrol derivatives as Hsp90-Cdc37 interaction disruptors with improved druglike properties. Bioorg Med Chem 2016; 24(21): 5431-9.
[http://dx.doi.org/10.1016/j.bmc.2016.08.070] [PMID: 27647369]
[38]
Li N, Xu M, Wang B, et al. Discovery of novel celastrol derivatives as Hsp90-Cdc37 interaction disruptors with antitumor activity. J Med Chem 2019; 62(23): 10798-815.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01290] [PMID: 31725288]
[39]
Xu SW, Law BY, Mok SW, et al. Autophagic degradation of epidermal growth factor receptor in gefitinib-resistant lung cancer by celastrol. Int J Oncol 2016; 49(4): 1576-88.
[http://dx.doi.org/10.3892/ijo.2016.3644] [PMID: 27498688]
[40]
Yang C, Swallows CL, Zhang C, et al. Celastrol increases glucocerebrosidase activity in Gaucher disease by modulating molecular chaperones. Proc Natl Acad Sci USA 2014; 111(1): 249-54.
[http://dx.doi.org/10.1073/pnas.1321341111] [PMID: 24351928]
[41]
Mohan R, Hammers HJ, Bargagna-Mohan P, et al. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 2004; 7(2): 115-22.
[http://dx.doi.org/10.1007/s10456-004-1026-3] [PMID: 15516832]
[42]
Yu Y, Hamza A, Zhang T, et al. Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 2010; 79(4): 542-51.
[http://dx.doi.org/10.1016/j.bcp.2009.09.017] [PMID: 19769945]
[43]
Gu M, Yu Y, Gunaherath GM, Gunatilaka AA, Li D, Sun D. Structure-activity relationship (SAR) of withanolides to inhibit Hsp90 for its activity in pancreatic cancer cells. Invest New Drugs 2014; 32(1): 68-74.
[http://dx.doi.org/10.1007/s10637-013-9987-y] [PMID: 23887853]
[44]
Houghton CA, Fassett RG, Coombes JS. Sulforaphane: Translational research from laboratory bench to clinic. Nutr Rev 2013; 71(11): 709-26.
[http://dx.doi.org/10.1111/nure.12060] [PMID: 24147970]
[45]
Kamal MM, Akter S, Lin CN, Nazzal S. Sulforaphane as an anticancer molecule: Mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Arch Pharm Res 2020; 43(4): 371-84.
[http://dx.doi.org/10.1007/s12272-020-01225-2] [PMID: 32152852]
[46]
Li Y, Karagöz GE, Seo YH, et al. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50(Cdc37) complex and direct interactions with amino acids residues of Hsp90. J Nutr Biochem 2012; 23(12): 1617-26.
[http://dx.doi.org/10.1016/j.jnutbio.2011.11.004] [PMID: 22444872]
[47]
Chen CY, Yu ZY, Chuang YS, Huang RM, Wang TC. Sulforaphane attenuates EGFR signaling in NSCLC cells. J Biomed Sci 2015; 22(1): 38.
[http://dx.doi.org/10.1186/s12929-015-0139-x] [PMID: 26036303]
[48]
Li Y, Zhang T, Schwartz SJ, Sun D. Sulforaphane potentiates the efficacy of 17-allylamino 17-demethoxygeldanamycin against pancreatic cancer through enhanced abrogation of Hsp90 chaperone function. Nutr Cancer 2011; 63(7): 1151-9.
[http://dx.doi.org/10.1080/01635581.2011.596645] [PMID: 21875325]
[49]
Huang W, Ye M, Zhang LR, et al. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Mol Cancer 2014; 13(1): 150.
[http://dx.doi.org/10.1186/1476-4598-13-150] [PMID: 24927996]
[50]
Huang W, Wu QD, Zhang M, et al. Novel Hsp90 inhibitor FW-04-806 displays potent antitumor effects in HER2-positive breast cancer cells as a single agent or in combination with lapatinib. Cancer Lett 2015; 356(2): 862-71.
[http://dx.doi.org/10.1016/j.canlet.2014.10.040]
[51]
Zhang Z, Ma C, Li P, et al. Reversal effect of FW-04-806, a macrolide dilactone compound, on multidrug resistance mediated by ABCB1 and ABCG2 in vitro and in vivo. Cell Commun Signal 2019; 17(1): 110.
[http://dx.doi.org/10.1186/s12964-019-0408-5] [PMID: 31472682]
[52]
Li D, Li C, Li L, et al. Natural Product Kongensin A is a Non-Canonical HSP90 Inhibitor that Blocks RIP3-dependent Necroptosis. Cell Chem Biol 2016; 23(2): 257-66.
[http://dx.doi.org/10.1016/j.chembiol.2015.08.018] [PMID: 27028885]
[53]
Luan X, Gao YG, Guan YY, et al. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway. Toxicol Appl Pharmacol 2014; 281(1): 118-24.
[http://dx.doi.org/10.1016/j.taap.2014.09.009] [PMID: 25250884]
[54]
Zhao R, Chen M, Jiang Z, et al. Platycodin-D Induced autophagy in non-small cell lung cancer cells via PI3K/Akt/mTOR and MAPK signaling pathways. J Cancer 2015; 6(7): 623-31.
[http://dx.doi.org/10.7150/jca.11291] [PMID: 26078792]
[55]
Li T, Chen X, Chen X, Ma DL, Leung CH, Lu JJ. Platycodin D potentiates proliferation inhibition and apoptosis induction upon AKT inhibition via feedback blockade in non-small cell lung cancer cells. Sci Rep 2016; 6(1): 37997.
[http://dx.doi.org/10.1038/srep37997] [PMID: 27897231]
[56]
Gao W, Guo Y, Yang H. Platycodin D protects against cigarette smoke-induced lung inflammation in mice. Int Immunopharmacol 2017; 47: 53-8.
[http://dx.doi.org/10.1016/j.intimp.2017.03.009] [PMID: 28363109]
[57]
Tao W, Su Q, Wang H, et al. Platycodin D attenuates acute lung injury by suppressing apoptosis and inflammation in vivo and in vitro. Int Immunopharmacol 2015; 27(1): 138-47.
[http://dx.doi.org/10.1016/j.intimp.2015.05.005] [PMID: 25981110]
[58]
Li W, Liu Y, Wang Z, et al. Platycodin D isolated from the aerial parts of Platycodon grandiflorum protects alcohol-induced liver injury in mice. Food Funct 2015; 6(5): 1418-27.
[http://dx.doi.org/10.1039/C5FO00094G] [PMID: 25927324]
[59]
Fu CL, Liu Y, Leng J, et al. Platycodin D protects acetaminophen-induced hepatotoxicity by inhibiting hepatocyte MAPK pathway and apoptosis in C57BL/6J mice. Biomed Pharmacother 2018; 107: 867-77.
[http://dx.doi.org/10.1016/j.biopha.2018.08.082] [PMID: 30257399]
[60]
Wang L, Li L, Zhou ZH, Jiang ZY, You QD, Xu XL. Structure-based virtual screening and optimization of modulators targeting Hsp90-Cdc37 interaction. Eur J Med Chem 2017; 136: 63-73.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.074] [PMID: 28482218]
[61]
Chen X, Liu P, Wang Q, et al. DCZ3112, a novel Hsp90 inhibitor, exerts potent antitumor activity against HER2-positive breast cancer through disruption of Hsp90-Cdc37 interaction. Cancer Lett 2018; 434: 70-80.
[http://dx.doi.org/10.1016/j.canlet.2018.07.012] [PMID: 30017966]
[62]
Kou X, Jiang X, Liu H, et al. Simvastatin functions as a heat shock protein 90 inhibitor against triple-negative breast cancer. Cancer Sci 2018; 109(10): 3272-84.
[http://dx.doi.org/10.1111/cas.13748] [PMID: 30039622]
[63]
Zou LW, Li YG, Wang P, et al. Design, synthesis, and structure-activity relationship study of glycyrrhetinic acid derivatives as potent and selective inhibitors against human carboxylesterase 2. Eur J Med Chem 2016; 112: 280-8.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.020] [PMID: 26900660]
[64]
Parida PK, Sau A, Ghosh T, et al. Synthesis and evaluation of triazole linked glycosylated 18β-glycyrrhetinic acid derivatives as anti-cancer agents. Bioorg Med Chem Lett 2014; 24(16): 3865-8.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.054] [PMID: 25027936]
[65]
Subba Rao AV, Swapna K, Shaik SP, et al. Synthesis and biological evaluation of cis-restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers. Bioorg Med Chem 2017; 25(3): 977-99.
[http://dx.doi.org/10.1016/j.bmc.2016.12.010] [PMID: 28034647]
[66]
Wang L, Jiang J, Zhang L, et al. Discovery and optimization of small molecules targeting the protein-protein interaction of heat shock protein 90 (Hsp90) and cell Division Cycle 37 as orally active inhibitors for the treatment of colorectal cancer. J Med Chem 2020; 63(3): 1281-97.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01659] [PMID: 31935086]
[67]
Perlin DS. Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci 2015; 1354(1): 1-11.
[http://dx.doi.org/10.1111/nyas.12831] [PMID: 26190298]
[68]
Wang L, Li L, Fu WT, Jiang ZY, You QD, Xu XL. Optimization and bioevaluation of Cdc37-derived peptides: An insight into Hsp90-Cdc37 protein-protein interaction modulators. Bioorg Med Chem 2017; 25(1): 233-40.
[http://dx.doi.org/10.1016/j.bmc.2016.10.028] [PMID: 27818030]
[69]
Paulmurugan R, Gambhir SS. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal Chem 2003; 75(7): 1584-9.
[http://dx.doi.org/10.1021/ac020731c] [PMID: 12705589]
[70]
Siddiqui FA, Parkkola H, Manoharan GB, Abankwa D. Medium-throughput detection of Hsp90/Cdc37 protein-protein interaction inhibitors using a split Renilla luciferase-based assay. SLAS Discov 2020; 25(2): 195-206.
[http://dx.doi.org/10.1177/2472555219884033] [PMID: 31662027]
[71]
He J, Niu X, Hu C, et al. Expression and purification of recombinant NRL-Hsp90α and Cdc37-CRL proteins for in vitro Hsp90/Cdc37 inhibitors screening. Protein Expr Purif 2013; 92(1): 119-27.
[http://dx.doi.org/10.1016/j.pep.2013.09.007] [PMID: 24056254]
[72]
Tripathy D, Im SA, Colleoni M, et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): A randomised phase 3 trial. Lancet Oncol 2018; 19(7): 904-15.
[http://dx.doi.org/10.1016/S1470-2045(18)30292-4] [PMID: 29804902]
[73]
Rugo HS, Turner NC, Finn RS, et al. Palbociclib plus endocrine therapy in older women with HR+/HER2- advanced breast cancer: A pooled analysis of randomised PALOMA clinical studies. Eur J Cancer 2018; 101: 123-33.
[http://dx.doi.org/10.1016/j.ejca.2018.05.017] [PMID: 30053671]
[74]
Sledge GW Jr, Toi M, Neven P, et al. MONARCH 2: Abemaciclib in combination with fulvestrant in women with hr+/her2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol 2017; 35(25): 2875-84.
[http://dx.doi.org/10.1200/JCO.2017.73.7585] [PMID: 28580882]
[75]
Zhu J, Yan F, Tao J, et al. Cdc37 facilitates cell survival of colorectal carcinoma via activating the CDK4 signaling pathway. Cancer Sci 2018; 109(3): 656-65.
[http://dx.doi.org/10.1111/cas.13495] [PMID: 29288563]
[76]
Man RJ, Zhang YL, Jiang AQ, Zhu HL. A patent review of RAF kinase inhibitors (2010-2018). Expert Opin Ther Pat 2019; 29(9): 675-88.
[http://dx.doi.org/10.1080/13543776.2019.1651842] [PMID: 31370713]
[77]
Roskoski R Jr. Targeting oncogenic Raf protein-serine/threonine kinases in human cancers. Pharmacol Res 2018; 135: 239-58.
[http://dx.doi.org/10.1016/j.phrs.2018.08.013] [PMID: 30118796]
[78]
Wang CY, Guo ST, Wang JY, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget 2016; 7(31): 49597-610.
[http://dx.doi.org/10.18632/oncotarget.10414] [PMID: 27391062]
[79]
Hauschild A, Grob J-J, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012; 380(9839): 358-65.
[http://dx.doi.org/10.1016/S0140-6736(12)60868-X] [PMID: 22735384]
[80]
Engelman JA. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer 2009; 9(8): 550-62.
[http://dx.doi.org/10.1038/nrc2664] [PMID: 19629070]
[81]
Shi H, Zhang W, Zhi Q, Jiang M. Lapatinib resistance in HER2+ cancers: Latest findings and new concepts on molecular mechanisms. Tumour Biol 2016; 37(12): 15411-31.
[http://dx.doi.org/10.1007/s13277-016-5467-2] [PMID: 27726101]
[82]
Liu M, Chen L, Chan TH, et al. Serum and glucocorticoid kinase 3 at 8q13.1 promotes cell proliferation and survival in hepatocellular carcinoma. Hepatology 2012; 55(6): 1754-65.
[http://dx.doi.org/10.1002/hep.25584] [PMID: 22262416]
[83]
Wang Y, Xu W, Zhou D, Neckers L, Chen S. Coordinated regulation of serum- and glucocorticoid-inducible kinase 3 by a C-terminal hydrophobic motif and Hsp90-Cdc37 chaperone complex. J Biol Chem 2014; 289(8): 4815-26.
[http://dx.doi.org/10.1074/jbc.M113.518480] [PMID: 24379398]
[84]
Bago R, Sommer E, Castel P, et al. The hVps34-SGK3 pathway alleviates sustained PI3K/Akt inhibition by stimulating mTORC1 and tumour growth. EMBO J 2016; 35(17): 1902-22.
[http://dx.doi.org/10.15252/embj.201693929] [PMID: 27481935]
[85]
Davis AA, Leyns CEG, Holtzman DM. Intercellular spread of protein aggregates in neurodegenerative disease. Annu Rev Cell Dev Biol 2018; 34(1): 545-68.
[http://dx.doi.org/10.1146/annurev-cellbio-100617-062636] [PMID: 30044648]
[86]
Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 2018; 18(12): 759-72.
[http://dx.doi.org/10.1038/s41577-018-0051-1] [PMID: 30140051]
[87]
Henstridge CM, Hyman BT, Spires-Jones TL. Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci 2019; 20(2): 94-108.
[http://dx.doi.org/10.1038/s41583-018-0113-1] [PMID: 30643230]
[88]
Jinwal UK, Trotter JH, Abisambra JF, et al. The Hsp90 kinase co-chaperone Cdc37 regulates tau stability and phosphorylation dynamics. J Biol Chem 2011; 286(19): 16976-83.
[http://dx.doi.org/10.1074/jbc.M110.182493] [PMID: 21367866]
[89]
Ando M, Fiesel FC, Hudec R, et al. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. Mol Neurodegener 2017; 12(1): 32.
[http://dx.doi.org/10.1186/s13024-017-0174-z] [PMID: 28438176]
[90]
Bowles KR, Jones L. Kinase signalling in Huntington’s disease. J Huntingtons Dis 2014; 3(2): 89-123.
[http://dx.doi.org/10.3233/JHD-140106] [PMID: 25062854]
[91]
Vargas LM, Cerpa W, Muñoz FJ, Zanlungo S, Alvarez AR. Amyloid-β oligomers synaptotoxicity: The emerging role of EphA4/c-Abl signaling in Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 1864; 1864(4): 1148-59.
[http://dx.doi.org/10.1016/j.bbadis.2018.01.023]
[92]
Cancino GI, Perez de Arce K, Castro PU, Toledo EM, von Bernhardi R, Alvarez AR. c-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice. Neurobiol Aging 2011; 32(7): 1249-61.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.07.007] [PMID: 19700222]
[93]
Chin J, Palop JJ, Puoliväli J, et al. Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer’s disease. J Neurosci 2005; 25(42): 9694-703.
[http://dx.doi.org/10.1523/JNEUROSCI.2980-05.2005] [PMID: 16237174]
[94]
Li C, Götz J. Somatodendritic accumulation of Tau in Alzheimer’s disease is promoted by Fyn-mediated local protein translation. EMBO J 2017; 36(21): 3120-38.
[http://dx.doi.org/10.15252/embj.201797724] [PMID: 28864542]
[95]
Yun BG, Matts RL. Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp Cell Res 2005; 307(1): 212-23.
[http://dx.doi.org/10.1016/j.yexcr.2005.03.003] [PMID: 15922741]
[96]
Anderson I, Low JS, Weston S, et al. Heat shock protein 90 controls HIV-1 reactivation from latency. Proc Natl Acad Sci USA 2014; 111(15): E1528-37.
[http://dx.doi.org/10.1073/pnas.1320178111] [PMID: 24706778]
[97]
Mbonye U, Wang B, Gokulrangan G, Shi W, Yang S, Karn J. Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation. J Biol Chem 2018; 293(26): 10009-25.
[http://dx.doi.org/10.1074/jbc.RA117.001347] [PMID: 29743242]
[98]
Pan T, Peng Z, Tan L, et al. Nonsteroidal anti-inflammatory drugs potently inhibit the replication of Zika viruses by inducing the degradation of AXL. J Virol 2018; 92(20): e01018-18.
[http://dx.doi.org/10.1128/JVI.01018-18] [PMID: 30068645]
[99]
Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-beta signaling in vascular fibrosis. Cardiovasc Res 2007; 74(2): 196-206.
[http://dx.doi.org/10.1016/j.cardiores.2007.02.008] [PMID: 17376414]
[100]
Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 2014; 71(4): 549-74.
[http://dx.doi.org/10.1007/s00018-013-1349-6] [PMID: 23649149]
[101]
Datta R, Bansal T, Rana S, et al. Hsp90/Cdc37 assembly modulates TGFβ receptor-II to act as a profibrotic regulator of TGFβ signaling during cardiac hypertrophy. Cell Signal 2015; 27(12): 2410-24.
[http://dx.doi.org/10.1016/j.cellsig.2015.09.005] [PMID: 26362850]
[102]
Rao J, Lee P, Benzeno S, et al. Functional interaction of human Cdc37 with the androgen receptor but not with the glucocorticoid receptor. J Biol Chem 2001; 276(8): 5814-20.
[http://dx.doi.org/10.1074/jbc.M007385200] [PMID: 11085988]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy