Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Anti-coronaviral Activity of Plant and Seaweed Secondary Metabolites: A Review

Author(s): Taha Gökmen Ülger*, Serkan Yılmaz, Funda Pınar Çakıroğlu and Aslı Uçar

Volume 3, Issue 4, 2022

Published on: 18 July, 2022

Article ID: e260522205293 Pages: 11

DOI: 10.2174/2666796703666220526105934

Abstract

Background: Coronavirus Disease 2019 (COVID-19), one of the greatest challenges facing humanity, continues to affect millions of people worldwide. Vaccines approved and authorized for use are effective against COVID-19, but viral variants of concern may emerge in the near future. The discovery of novel antiviral agents will help humanity overcome COVID-19 and aid in any future viral pandemics.

Objective: This review aimed to evaluate evidence from the plant- and seaweed-derived secondary compound- based interventions for viral diseases caused by coronaviruses.

Methods: A comprehensive search of several databases, including Cochrane Library, Web of Science and PubMed was conducted to identify available studies evaluating the outcomes of plant- and seaweed secondary metabolites in viral diseases such as Severe Acute Respiratory Syndrome, Middle East Respiratory Syndrome and COVID-19.

Results: The volume of existing reports is irrefutable evidence that some plant- and seaweed-derived secondary compounds (e.g., mannose-specific lectins, griffithsin, cyanovirin-N, gallate, curcumin, luteolin, quercetin and betulinic acid) possess a potential antiviral ability against coronaviruses, including SARS-CoV-2.

Conclusion: Plant and seaweed secondary metabolites with antiviral activity show their activity in different metabolic pathways. Besides reducing and preventing the metabolic damage caused by proinflammatory cytokines and oxidative stress, several plants and seaweed secondary metabolites can also be effective in improving some clinical indexes specific to COVID-19. Despite their effectiveness in preclinical studies, plant and seaweed-derived secondary compounds need more pharmacokinetic studies and safety measures concerning their mitogenic and allergenic properties.

Keywords: COVID-19, SARS-CoV-2, phytochemicals, griffithsin, cyanovirin-N, lectins.

[1]
Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus 2020; 12(3): e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[2]
Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 2020; 25(4): 668-88.
[http://dx.doi.org/10.1016/j.drudis.2020.01.015] [PMID: 32006468]
[3]
Hui DS. Epidemic and Emerging coronaviruses severe acute respiratory syndrome and middle east respiratory syndrome. Clin Chest Med 2017; 38(1): 71-86.
[http://dx.doi.org/10.1016/j.ccm.2016.11.007] [PMID: 28159163]
[4]
WHO. Coronavirus disease (COVID-19) pandemic. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 [cited: 9th Nov 2021].
[5]
Ülger TG, Ayhan NY. Functional effects of plant secondary metabolites on health. Acıbadem Univ Health Sci J 2020; 3: 384-90.
[6]
Wen CC, Shyur LF, Jan JT, et al. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. J Tradit Complement Med 2011; 1(1): 41-50.
[http://dx.doi.org/10.1016/S2225-4110(16)30055-4] [PMID: 24716104]
[7]
Li SY, Chen C, Zhang HQ, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 2005; 67(1): 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[8]
Lin CW, Tsai FJ, Tsai CH, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic com-pounds. Antiviral Res 2005; 68(1): 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[9]
Lau KM, Lee KM, Koon CM, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol 2008; 118(1): 79-85.
[http://dx.doi.org/10.1016/j.jep.2008.03.018] [PMID: 18479853]
[10]
Loizzo MR, Saab AM, Tundis R, et al. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon spe-cies. Chem Biodivers 2008; 5(3): 461-70.
[http://dx.doi.org/10.1002/cbdv.200890045] [PMID: 18357554]
[11]
Luo W, Su X, Gong S, et al. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. Biosci Trends 2009; 3(4): 124-6.
[PMID: 20103835]
[12]
Park JY, Jeong HJ, Kim JH, et al. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull 2012; 35(11): 2036-42.
[http://dx.doi.org/10.1248/bpb.b12-00623] [PMID: 22971649]
[13]
Zhuang M, Jiang H, Suzuki Y, et al. Procyanidins and butanol extract of Cinnamomi cortex inhibit SARS-CoV infection. Antiviral Res 2009; 82(1): 73-81.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.001] [PMID: 19428598]
[14]
Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 2014; 29(1): 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[15]
Liu M, Gao Y, Yuan Y, et al. Efficacy and safety of integrated traditional Chinese and western medicine for corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. Pharmacol Res 2020; 158: 104896.
[http://dx.doi.org/10.1016/j.phrs.2020.104896] [PMID: 32438037]
[16]
Wen CC, Kuo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 2007; 50(17): 4087-95.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[17]
Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis 2017; 17(1): 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[18]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[19]
Chen F, Chan KH, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 2004; 31(1): 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[20]
Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem 2005; 48(4): 1256-9.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[21]
Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 2007; 74(2): 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[22]
Mohammadi N, Shaghaghi N. Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID-19 virus protease by molecular docking analysis. Chemrxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.11987475.v1]
[23]
Khan MF, Khan MA, Khan ZA, Ahamad T, Ansari WA. Identification of dietary molecules as therapeutic agents to combat covid-19 using molecular docking studies. Researchsquare 2020.
[http://dx.doi.org/10.21203/rs.3.rs-19560/v1]
[24]
Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine 2021; 85: 153286.
[http://dx.doi.org/10.1016/j.phymed.2020.153286] [PMID: 32741697]
[25]
Chen CN, Lin CP, Huang KK, et al. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3′-digallate (TF3). Evid Based Complement Alternat Med 2005; 2(2): 209-15.
[http://dx.doi.org/10.1093/ecam/neh081] [PMID: 15937562]
[26]
Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints 2020.
[http://dx.doi.org/10.20944/preprints202003.0226.v1]
[27]
Abdel-Mottaleb MS, Abdel-Mottaleb Y. In search for effective and safe drugs against SARS-CoV-2: Part I] simulated interactions between selected nutraceuticals, ACE2 enzyme and S Protein simple peptide sequences. Chemrxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12155235.v1]
[28]
Adem S, Eyupoglu V, Sarfraz I, Rasul A, Ali M. Identification of potent COVID-19 main protease (Mpro) inhibitors from natural poly-phenols: An in silico strategy unveils a hope against CORONA. Preprints 2020.
[http://dx.doi.org/10.20944/preprints202003.0333.v1]
[29]
Thuy BTP, My TTA, Hai NTT, et al. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega 2020; 5(14): 8312-20.
[http://dx.doi.org/10.1021/acsomega.0c00772] [PMID: 32363255]
[30]
Park JY, Ko JA, Kim DW, et al. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem 2016; 31(1): 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[31]
Utomo RY, Meiyanto E. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection. Preprints 2020.
[http://dx.doi.org/10.20944/preprints202003.0214.v1]
[32]
Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 2012; 22(12): 4049-54.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[33]
Wink M. Potential of DNA intercalating alkaloids and other plant secondary metabolites against SARS-CoV-2 causing COVID-19. Diversity (Basel) 2020; 12: 175.
[http://dx.doi.org/10.3390/d12050175]
[34]
Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic. Front Med (Lausanne) 2020; 7: 444.
[http://dx.doi.org/10.3389/fmed.2020.00444] [PMID: 32850918]
[35]
Wyk BE, Wink M. Medicinal plants of the world. CABI 2018. Available from: https://www.springer.com/gp/book/9781588291295[cited: 9th Nov 2021].
[36]
Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 2020; 35(1): 145-51.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[37]
Nguyen TTH, Woo HJ, Kang HK, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett 2012; 34(5): 831-8.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[38]
Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem 2010; 18(22): 7940-7.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[39]
Schwarz S, Sauter D, Wang K, et al. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med 2014; 80(2-3): 177-82.
[http://dx.doi.org/10.1055/s-0033-1360277] [PMID: 24458263]
[40]
Chen L, Li J, Luo C, et al. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): Struc-ture-activity relationship studies reveal salient pharmacophore features. Bioorg Med Chem 2006; 14(24): 8295-306.
[http://dx.doi.org/10.1016/j.bmc.2006.09.014] [PMID: 17046271]
[41]
Park JY, Kim JH, Kim YM, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem 2012; 20(19): 5928-35.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[42]
Wang WY, Xie Y, Zhou H, Liu L. Contribution of traditional Chinese medicine to the treatment of COVID-19. Phytomedicine 2021; 85: 153279.
[http://dx.doi.org/10.1016/j.phymed.2020.153279] [PMID: 32675044]
[43]
Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Des 2019; 94(6): 2023-30.
[http://dx.doi.org/10.1111/cbdd.13604] [PMID: 31436895]
[44]
Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78(20): 11334-9.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[45]
Ryu YB, Park SJ, Kim YM, et al. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett 2010; 20(6): 1873-6.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.152] [PMID: 20167482]
[46]
Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 2013; 21(11): 3051-7.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[47]
Nascimento da Silva LC, Mendonça JSP, de Oliveira WF, et al. Exploring lectin-glycan interactions to combat COVID-19: Lessons ac-quired from other enveloped viruses. Glycobiology 2021; 31(4): 358-71.
[http://dx.doi.org/10.1093/glycob/cwaa099] [PMID: 33094324]
[48]
Wu AM. The molecular immunology of complex carbohydrates—2. Springer Science & Business Media 2012. Available from: https://www.springer.com/gp/book/9780306465321 [cited: 9th Nov 2021].
[49]
El-Maradny YA, El-Fakharany EM, Abu-Serie MM, Hashish MH, Selim HS. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int J Biol Macromol 2021; 179: 239-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.015] [PMID: 33676978]
[50]
Peumans WJ, Van Damme EJ, Barre A, Rougé P. Classification of plant lectins in families of structurally and evolutionary related proteins. Adv Exp Med Biol 2001; 491: 27-54.
[http://dx.doi.org/10.1007/978-1-4615-1267-7_3] [PMID: 14533788]
[51]
Kotecha H, Poduval PB. Microbial lectins: Roles and applications. Adv Biol Sci Res 2019; 135-47.
[52]
Dias Rde O, Machado Ldos S, Migliolo L, Franco OL. Insights into animal and plant lectins with antimicrobial activities. Molecules 2015; 20(1): 519-41.
[http://dx.doi.org/10.3390/molecules20010519] [PMID: 25569512]
[53]
Bhattacharyya M, Patni B. Plant lectins have antagonistic effects against Coronavirus family: Natural products can control Coronaviral infections: A review. Agric Technol Thail 2020; 16: 1077-88.
[54]
Mazalovska M, Kouokam JC. Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections. BioMed Res Int 2018; 2018: 3750646.
[http://dx.doi.org/10.1155/2018/3750646] [PMID: 29854749]
[55]
van der Meer FJUM, de Haan CAM, Schuurman NMP, et al. The carbohydrate-binding plant lectins and the non-peptidic antibiotic pra-dimicin A target the glycans of the coronavirus envelope glycoproteins. J Antimicrob Chemother 2007; 60(4): 741-9.
[http://dx.doi.org/10.1093/jac/dkm301] [PMID: 17704516]
[56]
Mitchell CA, Ramessar K, O’Keefe BR. Antiviral lectins: Selective inhibitors of viral entry. Antiviral Res 2017; 142: 37-54.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.007] [PMID: 28322922]
[57]
Kumaki Y, Wandersee MK, Smith AJ, et al. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Res 2011; 90(1): 22-32.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.003] [PMID: 21338626]
[58]
Keyaerts E, Vijgen L, Pannecouque C, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007; 75(3): 179-87.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.003] [PMID: 17428553]
[59]
Liu YM, Shahed-Al-Mahmud M, Chen X, et al. A carbohydrate-binding protein from the edible Lablab beans effectively blocks the infec-tions of influenza viruses and SARS-CoV-2. Cell Rep 2020; 32(6): 108016.
[http://dx.doi.org/10.1016/j.celrep.2020.108016] [PMID: 32755598]
[60]
Lardone RD, Garay YC, Parodi P, et al. How glycobiology can help us treat and beat the COVID-19 pandemic. J Biol Chem 2021; 296: 100375.
[http://dx.doi.org/10.1016/j.jbc.2021.100375] [PMID: 33548227]
[61]
Gao A, Zeng J, Jia N, et al. SARS-CoV-2 spike protein interacts with multiple innate immune receptors. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.07.29.227462]
[62]
Ip WK, Chan KH, Law HKW, et al. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J Infect Dis 2005; 191(10): 1697-704.
[http://dx.doi.org/10.1086/429631] [PMID: 15838797]
[63]
Sheehan SA, Hamilton KL, Retzbach EP, et al. Evidence that Maackia amurensis seed lectin (MASL) exerts pleiotropic actions on oral squamous cells with potential to inhibit SARS-CoV-2 infection and COVID-19 disease progression. Exp Cell Res 2021.
[64]
O’Keefe BR, Giomarelli B, Barnard DL, et al. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol 2010; 84(5): 2511-21.
[http://dx.doi.org/10.1128/JVI.02322-09] [PMID: 20032190]
[65]
Millet JK, Séron K, Labitt RN, et al. Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res 2016; 133: 1-8.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.011] [PMID: 27424494]
[66]
Capell T, Twyman RM, Armario-Najera V, Ma JKC, Schillberg S, Christou P. Potential applications of plant biotechnology against SARS-CoV-2. Trends Plant Sci 2020; 25(7): 635-43.
[http://dx.doi.org/10.1016/j.tplants.2020.04.009] [PMID: 32371057]
[67]
Caniglia JL, Guda MR, Asuthkar S, Tsung AJ, Velpula KK. A potential role for Galectin-3 inhibitors in the treatment of COVID-19. PeerJ 2020; 8: e9392.
[http://dx.doi.org/10.7717/peerj.9392] [PMID: 32587806]
[68]
Fouad A. Lectin therapy: A way to explore in order to inhibit the binding of COVID-19 to these host cells. Int J Innov Sci Res Technol 2020; 5: 1280-6.

© 2024 Bentham Science Publishers | Privacy Policy