Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Review Article

Potential of Polyphenolic Nutraceuticals in the Management of Glioblastoma Multiforme

Author(s): Swati Devendra Raysing* and Ashish Prakash Gorle

Volume 3, Issue 2, 2022

Published on: 22 August, 2022

Article ID: e250522205270 Pages: 13

DOI: 10.2174/2665978603666220525161010

Price: $65

conference banner
Abstract

Glioblastoma Multiforme (GBM) is a malignant central nervous system tumor. GBM is produced by aggressive proliferation of cells and invasion of normal brain tissue. The current conventional therapies for GBM include surgery, chemotherapy, and radiation therapies which are challenging and produce adverse effects. Thus, polyphenolic nutraceuticals are effective natural compounds for preventing and treating GBM due to their chemoprotective activity. Polyphenols are bioactive, non-nutrient plant chemicals structurally sub-divided into 5 groups; among these groups, phenolics and flavonoids are widely studied as they have lesser side effects and a more significant potential to pass the Blood-Brain Barrier (BBB). These polyphenolic nutraceuticals have the potential to advance current GBM treatment options. This review throws light on the anti-cancer efficacy of major polyphenol classes (Phenolic acid, Flavonoids, Stilbenes, Lignans) and discusses their prospective mechanisms of action in GBM.

Keywords: Glioblastoma multiforme, polyphenols, flavonoids, anticancer, phytochemicals, nutraceuticals.

Graphical Abstract

[1]
Holland, E.C. Glioblastoma multiforme: The terminator. Proc. Natl. Acad. Sci., 2000, 97(12), 6242-6244.
[http://dx.doi.org/10.1073/pnas.97.12.6242] [PMID: 10841526]
[2]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[3]
Ohgaki, H.; Kleihues, P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol., 2007, 170(5), 1445-1453.
[http://dx.doi.org/10.2353/ajpath.2007.070011] [PMID: 17456751]
[4]
Preusser, M.; de Ribaupierre, S.; Wöhrer, A.; Erridge, S.C.; Hegi, M.; Weller, M.; Stupp, R. Current concepts and management of glioblastoma. Ann. Neurol., 2011, 70(1), 9-21.
[http://dx.doi.org/10.1002/ana.22425] [PMID: 21786296]
[5]
Fernandes, C.; Andreia, C.; Osório, L.; Lago, C.; Linhares, P.; Carvalho, B.; Caeiro, C. Current Standards of Care in Glioblastoma Therapy; Exon Publ., 2017, pp. 197-241.
[6]
Bartek, J., Jr; Ng, K.; Bartek, J.; Fischer, W.; Carter, B.; Chen, C.C. Key concepts in glioblastoma therapy. J. Neurol. Neurosurg. Psychiatry, 2012, 83(7), 753-760.
[http://dx.doi.org/10.1136/jnnp-2011-300709] [PMID: 22396442]
[7]
Campos-Sandoval, J.A.; Gómez-García, M.C.; Santos-Jiménez, J.L.; Matés, J.M.; Alonso, F.J.; Márquez, J. Antioxidant responses related to temozolomide resistance in glioblastoma. Neurochem. Int., 2021, 149, 105136.
[http://dx.doi.org/10.1016/j.neuint.2021.105136] [PMID: 34274381]
[8]
Salami, A.; Seydi, E.; Pourahmad, J. Use of nutraceuticals for prevention and treatment of cancer. Iran. J. Pharm. Res., 2013, 12(3), 219-220.
[PMID: 24250626]
[9]
Asensi, M.; Ortega, A.; Mena, S.; Feddi, F.; Estrela, J.M. Natural polyphenols in cancer therapy. Crit. Rev. Clin. Lab. Sci., 2011, 48(5-6), 197-216.
[http://dx.doi.org/10.3109/10408363.2011.631268] [PMID: 22141580]
[10]
Arabzadeh, A.; Mortezazadeh, T.; Aryafar, T.; Gharepapagh, E.; Majdaeen, M.; Farhood, B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer Cell Int., 2021, 21(1), 391.
[http://dx.doi.org/10.1186/s12935-021-02099-0] [PMID: 34289841]
[11]
Anjum, K.; Shagufta, B.I.; Abbas, S.Q.; Patel, S.; Khan, I.; Shah, S.A.A.; Akhter, N.; Hassan, S.S.U. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review. Biomed. Pharmacother., 2017, 92, 681-689.
[http://dx.doi.org/10.1016/j.biopha.2017.05.125] [PMID: 28582760]
[12]
Van de Kelft, E. Molecular pathogenesis of astrocytoma and glioblastoma multiforme. Acta Neurochir., 1997, 139(7), 589-599.
[http://dx.doi.org/10.1007/BF01411992] [PMID: 9265950]
[13]
Maher, E.A.; Brennan, C.; Wen, P.Y.; Durso, L.; Ligon, K.L.; Richardson, A.; Khatry, D.; Feng, B.; Sinha, R.; Louis, D.N.; Quackenbush, J.; Black, P.M.L.; Chin, L.; DePinho, R.A. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res., 2006, 66(23), 11502-11513.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2072] [PMID: 17114236]
[14]
Mao, H.; Lebrun, D.G.; Yang, J.; Zhu, V.F.; Li, M. Deregulated signaling pathways in glioblastoma multiforme: Molecular mechanisms and therapeutic targets. Cancer Invest., 2012, 30(1), 48-56.
[http://dx.doi.org/10.3109/07357907.2011.630050] [PMID: 22236189]
[15]
Pearson, J.R.D.; Regad, T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Target. Ther., 2017, 2(1), 17040.
[http://dx.doi.org/10.1038/sigtrans.2017.40] [PMID: 29263927]
[16]
Lee, K.W.; Bode, A.M.; Dong, Z. Molecular targets of phytochemicals for cancer prevention. Nat. Rev. Cancer, 2011, 11(3), 211-218.
[http://dx.doi.org/10.1038/nrc3017] [PMID: 21326325]
[17]
Watanabe, K.; Tachibana, O.; Sata, K.; Yonekawa, Y.; Kleihues, P.; Ohgaki, H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol., 1996, 6(3), 217-223.
[http://dx.doi.org/10.1111/j.1750-3639.1996.tb00848.x] [PMID: 8864278]
[18]
Ramos, A.D.; Magge, R.S.; Ramakrishna, R. Molecular pathogenesis and emerging treatment for glioblastoma. World Neurosurg., 2018, 116, 495-504.
[http://dx.doi.org/10.1016/j.wneu.2018.04.021] [PMID: 30049044]
[19]
Ohgaki, H.; Kleihues, P. Genetic alterations and signaling pathways in the evolution of gliomas. Wiley Online Libr., 2009, 100(12), 2235-2241.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01308.x] [PMID: 19737147]
[20]
Zhang, Y.; Dube, C.; Gibert, M., Jr; Cruickshanks, N.; Wang, B.; Coughlan, M.; Yang, Y.; Setiady, I.; Deveau, C.; Saoud, K.; Grello, C.; Oxford, M.; Yuan, F.; Abounader, R. The p53 pathway in glioblastoma. Cancers, 2018, 10(9), 297.
[http://dx.doi.org/10.3390/cancers10090297] [PMID: 30200436]
[21]
McBrayer, S.K.; Mayers, J.R.; DiNatale, G.J.; Shi, D.D.; Khanal, J.; Chakraborty, A.A.; Sarosiek, K.A.; Briggs, K.J.; Robbins, A.K.; Sewastianik, T.; Shareef, S.J.; Olenchock, B.A.; Parker, S.J.; Tateishi, K.; Spinelli, J.B.; Islam, M.; Haigis, M.C.; Looper, R.E.; Ligon, K.L.; Bernstein, B.E.; Carrasco, R.D.; Cahill, D.P.; Asara, J.M.; Metallo, C.M.; Yennawar, N.H.; Vander Heiden, M.G.; Kaelin, W.G., Jr Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma. Cell, 2018, 175(1), 101-116.
[http://dx.doi.org/10.1016/j.cell.2018.08.038] [PMID: 30220459]
[22]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[23]
Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for cancer: A trigger for metastases. Cancer Res., 2017, 77(7), 1548-1552.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1536] [PMID: 28330928]
[24]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine, 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[25]
Fairchild, A.; Tirumani, S.H.; Rosenthal, M.H.; Howard, S.A.; Krajewski, K.M.; Nishino, M.; Shinagare, A.B.; Jagannathan, J.P.; Ramaiya, N.H. Hormonal therapy in oncology: A primer for the radiologist. AJR Am. J. Roentgenol., 2015, 204(6), W620-30.
[http://dx.doi.org/10.2214/AJR.14.13604] [PMID: 26001251]
[26]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[27]
Chen, C.J.; Hsu, W.L.; Yang, H.I.; Lee, M.H.; Chen, H.C.; Chien, Y.C.; You, S.L. Epidemiology of virus infection and human cancer. Recent Results Cancer Res., 2014, 193, 11-32.
[http://dx.doi.org/10.1007/978-3-642-38965-8_2] [PMID: 24008291]
[28]
Dillman, R.O. Monoclonal antibodies for treating cancer. Ann. Intern. Med., 1989, 111(7), 592-603.
[http://dx.doi.org/10.7326/0003-4819-111-7-592] [PMID: 2672932]
[29]
Kimiz Gebologlu, I.; Gulce-Iz, S. Monoclonal antibodies in cancer immunotherapy. Springer, 2018, 45(6), 2935-2940.
[30]
Rescigno, M.; Avogadri, F.; Curigliano, G. Challenges and prospects of immunotherapy as cancer treatment. Biochim. Biophys. Acta, 2007, 1776(1), 108-123.
[PMID: 17720322]
[31]
Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat., 2019, 80, 101896.
[http://dx.doi.org/10.1016/j.ctrv.2019.101896] [PMID: 31541850]
[32]
Piccolella, S.; Crescente, G.; Candela, L.; Pacifico, S. Nutraceutical polyphenols: New analytical challenges and opportunities. J. Pharm. Biomed. Anal., 2019, 175, 112774.
[http://dx.doi.org/10.1016/j.jpba.2019.07.022] [PMID: 31336288]
[33]
Majidinia, M.; Bishayee, A.; Yousefi, B. Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair, 2019, 82, 102679.
[http://dx.doi.org/10.1016/j.dnarep.2019.102679] [PMID: 31450085]
[34]
Briguglio, G.; Costa, C.; Pollicino, M.; Giambò, F.; Catania, S.; Fenga, C. Polyphenols in cancer prevention: New insights. Int. J. Funct. Nutr., 2020, 1(2), 1-1.
[http://dx.doi.org/10.3892/ijfn.2020.9]
[35]
Kaleem, M.; Ahmad, A. Flavonoids as nutraceuticals. Ther. Probiotic, Unconv. Foods, 2018, 137-155.
[36]
Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J., 2016, 15(1), 99.
[http://dx.doi.org/10.1186/s12937-016-0217-2] [PMID: 27903278]
[37]
Carlos-Reyes, Á.; López-González, J.S.; Meneses-Flores, M.; Gallardo-Rincón, D.; Ruíz-García, E.; Marchat, L.A.; Astudillo-de la Vega, H.; Hernández de la Cruz, O.N.; López-Camarillo, C. Dietary compounds as epigenetic modulating agents in cancer. Front. Genet., 2019, 10(3), 79.
[http://dx.doi.org/10.3389/fgene.2019.00079] [PMID: 30881375]
[38]
Mileo, A.M.; Nisticò, P.; Miccadei, S. Polyphenols: Immunomodulatory and therapeutic implication in colorectal cancer. Front. Immunol., 2019, 10(4), 729.
[http://dx.doi.org/10.3389/fimmu.2019.00729] [PMID: 31031748]
[39]
Romagnolo, D.F.; Selmin, O.I. Flavonoids and cancer prevention: A review of the evidence. J. Nutr. Gerontol. Geriatr., 2012, 31(3), 206-238.
[http://dx.doi.org/10.1080/21551197.2012.702534] [PMID: 22888839]
[40]
Chabot, G.G.; Touil, Y.S.; Pham, M.H.; Dauzonne, D. Flavonoids in cancer prevention and therapy: Chemistry, pharmacology, mechanisms of action, and perspectives for cancer drug discovery. In Alternative and Complementary Therapies for Cancer, , 2010, pp. 583-612.
[41]
Lea, M.A. Flavonol regulation in tumor cells. J. Cell. Biochem., 2015, 116(7), 1190-1194.
[http://dx.doi.org/10.1002/jcb.25098] [PMID: 25676457]
[42]
Sahin, I.; Bilir, B.; Ali, S.; Sahin, K.; Kucuk, O. Soy isoflavones in integrative oncology: Increased efficacy and decreased toxicity of cancer therapy. Integr. Cancer Ther., 2019, 18, 1534735419835310.
[http://dx.doi.org/10.1177/1534735419835310] [PMID: 30897972]
[43]
Lin, B.W.; Gong, C.C.; Song, H.F.; Cui, Y.Y. Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol., 2017, 174(11), 1226-1243.
[http://dx.doi.org/10.1111/bph.13627] [PMID: 27646173]
[44]
Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep., 2019, 24, e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[45]
Wahle, K.W.J.; Brown, I.; Rotondo, D.; Heys, S.D. Plant phenolics in the prevention and treatment of cancer. Adv. Exp. Med. Biol., 2010, 698, 36-51.
[http://dx.doi.org/10.1007/978-1-4419-7347-4_4] [PMID: 21520702]
[46]
Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules, 2020, 10(2), 221.
[http://dx.doi.org/10.3390/biom10020221] [PMID: 32028623]
[47]
Su, C.M.; Lee, W.H.; Wu, A.T.H.; Lin, Y.K.; Wang, L.S.; Wu, C.H.; Yeh, C.T. Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition. J. Nutr. Biochem., 2015, 26(6), 675-685.
[http://dx.doi.org/10.1016/j.jnutbio.2015.01.005] [PMID: 25792283]
[48]
Vidak, M.; Rozman, D.; Komel, R. Effects of flavonoids from food and dietary supplements on glial and glioblastoma multiforme cells. Molecules, 2015, 20(10), 19406-19432.
[http://dx.doi.org/10.3390/molecules201019406] [PMID: 26512639]
[49]
Jang, Y.G.; Ko, E.B.; Choi, K.C. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J. Nutr. Biochem., 2020, 84, 108444.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108444] [PMID: 32615369]
[50]
Aishwarya, V.; Res, T.S. Enhanced blood–brain barrier transmigration using the novel chrysin embedded solid lipid nanoformulation: A salient approach on physico-chemical characterization, pharmacokinetics and biodistribution studies. Int. J. Pharm. Clin. Res., 2016, 8(12), 1574-1582.
[51]
Wang, J.; Wang, H.; Sun, K.; Wang, X.; Pan, H.; Zhu, J.; Ji, X.; Li, X. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway. Drug Des. Devel. Ther., 2018, 12(12), 721-733.
[http://dx.doi.org/10.2147/DDDT.S160020] [PMID: 29662304]
[52]
Weng, M.S.; Ho, Y.S.; Lin, J.K. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: Involvement of p38 mitogen-activated protein kinase. Biochem. Pharmacol., 2005, 69(12), 1815-1827.
[http://dx.doi.org/10.1016/j.bcp.2005.03.011] [PMID: 15869744]
[53]
Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[54]
Tavana, E.; Mollazadeh, H.; Mohtashami, E.; Modaresi, S.M.S.; Hosseini, A.; Sabri, H.; Soltani, A.; Javid, H.; Afshari, A.R.; Sahebkar, A. Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme. Biofactors, 2020, 46(3), 356-366.
[http://dx.doi.org/10.1002/biof.1605] [PMID: 31880372]
[55]
Kim, H.I.; Lee, S.J.; Choi, Y.J.; Kim, M.J.; Kim, T.Y.; Ko, S.G. Quercetin induces apoptosis in glioblastoma cells by suppressing Axl/IL-6/STAT3 signaling pathway. Am. J. Chin. Med., 2021, 49(3), 767-784.
[http://dx.doi.org/10.1142/S0192415X21500361] [PMID: 33657989]
[56]
Lee, K.W.; Kang, N.J.; Heo, Y.S.; Rogozin, E.A.; Pugliese, A.; Hwang, M.K.; Bowden, G.T.; Bode, A.M.; Lee, H.J.; Dong, Z. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res., 2008, 68(3), 946-955.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-3140] [PMID: 18245498]
[57]
Nagle, D.G.; Ferreira, D.; Zhou, Y.D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry, 2006, 67(17), 1849-1855.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.020] [PMID: 16876833]
[58]
Zhang, Y.; Wang, S.X.; Ma, J.W.; Li, H.Y.; Ye, J.C.; Xie, S.M.; Du, B.; Zhong, X.Y. EGCG inhibits properties of glioma stem-like cells and synergizes with temozolomide through downregulation of P-glycoprotein inhibition. J. Neurooncol., 2015, 121(1), 41-52.
[http://dx.doi.org/10.1007/s11060-014-1604-1] [PMID: 25173233]
[59]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[60]
Khoshyomn, S.; Nathan, D.; Manske, G.C.; Osler, T.M.; Penar, P.L. Synergistic effect of genistein and BCNU on growth inhibition and cytotoxicity of glioblastoma cells. J. Neurooncol., 2002, 57(3), 193-200.
[http://dx.doi.org/10.1023/A:1015765616484] [PMID: 12125982]
[61]
Khaw, A.K.; Yong, J.W.Y.; Kalthur, G.; Hande, M.P. Genistein induces growth arrest and suppresses telomerase activity in brain tumor cells. Genes Chromosomes Cancer, 2012, 51(10), 961-974.
[http://dx.doi.org/10.1002/gcc.21979] [PMID: 22736505]
[62]
Wang, D.; Chen, Q.; Tan, Y.; Liu, B.; Liu, C. Ellagic acid inhibits human glioblastoma growth in vitro and in vivo. Oncol. Rep., 2017, 37(2), 1084-1092.
[http://dx.doi.org/10.3892/or.2016.5331] [PMID: 28035411]
[63]
Wang, D.; Chen, Q.; Liu, B.; Li, Y.; Tan, Y.; Yang, B. Ellagic acid inhibits proliferation and induces apoptosis in human glioblastoma cells. Acta Cir. Bras., 2016, 31(2), 143-149.
[http://dx.doi.org/10.1590/S0102-865020160020000010] [PMID: 26959625]
[64]
Paolini, A.; Curti, V.; Pasi, F.; Mazzini, G.; Nano, R.; Capelli, E. Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs. Int. J. Oncol., 2015, 46(4), 1491-1497.
[http://dx.doi.org/10.3892/ijo.2015.2864] [PMID: 25646699]
[65]
Thomasset, S.C.; Berry, D.P.; Garcea, G.; Marczylo, T.; Steward, W.P.; Gescher, A.J. Dietary polyphenolic phytochemicals--promising cancer chemopreventive agents in humans? A review of their clinical properties. Int. J. Cancer, 2007, 120(3), 451-458.
[http://dx.doi.org/10.1002/ijc.22419] [PMID: 17131309]
[66]
Wang, X.; Deng, J.; Yuan, J.; Tang, X.; Wang, Y.; Chen, H.; Liu, Y.; Zhou, L. Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells. Int. J. Oncol., 2017, 51(2), 467-477.
[http://dx.doi.org/10.3892/ijo.2017.4037] [PMID: 28627598]
[67]
Mukherjee, S.; Baidoo, J.; Fried, A.; Atwi, D.; Dolai, S.; Boockvar, J.; Symons, M.; Ruggieri, R.; Raja, K.; Banerjee, P. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma. Int. J. Cancer, 2016, 139(12), 2838-2849.
[http://dx.doi.org/10.1002/ijc.30398] [PMID: 27543754]
[68]
Gersey, Z.C.; Rodriguez, G.A.; Barbarite, E.; Sanchez, A.; Walters, W.M.; Ohaeto, K.C.; Komotar, R.J.; Graham, R.M. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer, 2017, 17(1), 99.
[http://dx.doi.org/10.1186/s12885-017-3058-2] [PMID: 28160777]
[69]
Squillaro, T.; Schettino, C.; Sampaolo, S.; Galderisi, U.; Di Iorio, G.; Giordano, A.; Melone, M.A.B. Adult-onset brain tumors and neurodegeneration: Are polyphenols protective? J. Cell. Physiol., 2018, 233(5), 3955-3967.
[http://dx.doi.org/10.1002/jcp.26170] [PMID: 28884813]
[70]
Yang, Y.P.; Chang, Y.L.; Huang, P.I.; Chiou, G.Y.; Tseng, L.M.; Chiou, S.H.; Chen, M.H.; Chen, M.T.; Shih, Y.H.; Chang, C.H.; Hsu, C.C.; Ma, H.I.; Wang, C.T.; Tsai, L.L.; Yu, C.C.; Chang, C.J. Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis. J. Cell. Physiol., 2012, 227(3), 976-993.
[http://dx.doi.org/10.1002/jcp.22806] [PMID: 21503893]
[71]
Mirzazadeh, A.; Kheirollahi, M.; Farashahi, E.; Sadeghian-Nodoushan, F.; Sheikhha, M.H.; Aflatoonian, B. Assessment effects of resveratrol on human telomerase reverse transcriptase messenger ribonucleic acid transcript in human glioblastoma. Adv. Biomed. Res., 2017, 6(1), 73.
[http://dx.doi.org/10.4103/2277-9175.209047] [PMID: 28706881]
[72]
Luengo, A.; Gui, D.Y.; Vander Heiden, M.G. Targeting metabolism for cancer therapy. Cell Chem. Biol., 2017, 24(9), 1161-1180.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.028] [PMID: 28938091]
[73]
Guerra, A.R.; Duarte, M.F.; Duarte, I.F. Targeting tumor metabolism with plant-derived natural products: Emerging trends in cancer therapy. J. Agric. Food Chem., 2018, 66(41), 10663-10685.
[http://dx.doi.org/10.1021/acs.jafc.8b04104] [PMID: 30227704]
[74]
Shriwas, P.; Chen, X.; Kinghorn, A.D.; Ren, Y. Plant-derived glucose transport inhibitors with potential antitumor activity. Phytother. Res., 2020, 34(5), 1027-1040.
[http://dx.doi.org/10.1002/ptr.6587] [PMID: 31823431]
[75]
Moreira, L.; Araújo, I.; Costa, T.; Correia-Branco, A.; Faria, A.; Martel, F.; Keating, E. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp. Cell Res., 2013, 319(12), 1784-1795.
[http://dx.doi.org/10.1016/j.yexcr.2013.05.001] [PMID: 23664836]
[76]
Yamagishi, S.; Matsui, T.; Fukami, K. Role of Receptor for Advanced Glycation End products (RAGE) and its ligands in cancer risk. Rejuvenation Res., 2015, 18(1), 48-56.
[http://dx.doi.org/10.1089/rej.2014.1625] [PMID: 25472493]
[77]
Cháirez-Ramírez, M.H.; de la Cruz-López, K.G.; García-Carrancá, A. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Front. Pharmacol., 2021, 12(12), 710304.
[http://dx.doi.org/10.3389/fphar.2021.710304] [PMID: 34744708]
[78]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[79]
NavaneethaKrishnan. S.; Rosales, J.L.; Lee, K.Y. ROS-mediated cancer cell killing through dietary phytochemicals. Oxid. Med. Cell. Longev., 2019, 2019, 16.
[80]
Mbaveng, A.T.; Kuete, V.; Efferth, T. Potential of central, eastern and western africa medicinal plants for cancer therapy: Spotlight on resistant cells and molecular targets. Front. Pharmacol., 2017, 8(6), 343.
[http://dx.doi.org/10.3389/fphar.2017.00343] [PMID: 28626426]
[81]
Bhaumik, S.; Anjum, R.; Rangaraj, N.; Pardhasaradhi, B.V.V.; Khar, A. Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS Lett., 1999, 456(2), 311-314.
[http://dx.doi.org/10.1016/S0014-5793(99)00969-2] [PMID: 10456330]
[82]
Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys., 2010, 501(1), 65-72.
[http://dx.doi.org/10.1016/j.abb.2010.06.013] [PMID: 20558130]
[83]
Chen, Y.; Tseng, S.H.; Lai, H.S.; Chen, W.J. Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery, 2004, 136(1), 57-66.
[http://dx.doi.org/10.1016/j.surg.2004.01.017] [PMID: 15232540]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy