Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Ferroptosis Inhibitor Regulates the Disease Progression of Systematic Lupus Erythematosus Mice Model Through Th1/Th2 Ratio

Author(s): Bo Yang, Shihao Hou, Shiqing Huang, Hongwen Li and Yepeng Li*

Volume 23, Issue 8, 2023

Published on: 27 August, 2022

Page: [799 - 807] Pages: 9

DOI: 10.2174/1566524022666220525144630

Price: $65

Abstract

Background: Systematic lupus erythematosus (SLE) is an autoimmunemediated disease. So far, there is no relevant report on ferroptosis in SLE research, and the role of T helper 1 (Th1) and T helper 2 (Th2) cells in SLE is still unclear.

Methods: This study employed SLE mice models with and without ferroptosis inhibitors (Liproxstatin‑1) and normal control mice. Treated mice were analyzed with hematoxylin and eosin (H&E) staining, immunohistochemical detection of glutathione peroxidase 4 (GPX4), malondialdehyde (MDA) detection, ELISA(enzyme-linked immunosorbent assay) detection of Th1 and Th2 cytokines and flow cytometry detection of Th1 and Th2 ratio.

Results: The results showed that compared with the normal group, the SLE group exhibited significantly higher expression of anti-double-stranded deoxyribonucleic acid (anti-dsDNA), MDA and Th1 cytokines, significantly lower expression of GPX4 and Th2 cytokines and increased Th1/Th2 ratio. Similarly, compared with the SLE group, the SLE + liproxstatin-1 group showed significantly low expression of anti-dsDNA, MDA and Th1 cytokines, significantly high expression of GPX4 and Th2 cytokines and reduced Th1/Th2 ratio.

Conclusion: These results demonstrate that ferroptosis may be involved in promoting SLE development. Therefore, inhibiting ferroptosis may be a potential treatment for SLE. Similarly, the Th1/Th2 ratio may have a role in promoting SLE development.

Keywords: SLE, Th1/Th2, ferroptosis, GPX4, mice model, Th1/Th2 ratio.

[1]
Travaglino A, Raffone A, Saccone G, et al. Significant risk of occult cancer in complex non-atypical endometrial hyperplasia. Arch Gynecol Obstet 2019; 300(5): 1147-54.
[http://dx.doi.org/10.1007/s00404-019-05299-2] [PMID: 31531779]
[2]
Joo YB, Bae SC. Assessment of clinical manifestations, disease activity and organ damage in 996 Korean patients with systemic lupus erythematosus: Comparison with other Asian populations. Int J Rheum Dis 2015; 18(2): 117-28.
[http://dx.doi.org/10.1111/1756-185X.12462] [PMID: 25524656]
[3]
Wei S, Yang Z, Xie S, et al. Autoimmune thyroid disease in patients with systemic lupus erythematosus: A 7-year retrospective study in China. Am J Med Sci 2018; 356(4): 344-9.
[http://dx.doi.org/10.1016/j.amjms.2018.06.022] [PMID: 30360802]
[4]
Marks SD, Tullus K. Modern therapeutic strategies for paediatric systemic lupus erythematosus and lupus nephritis. Acta Paediatrica 2010; 99(7): 967-74.
[http://dx.doi.org/10.1111/j.1651-2227.2010.01771.x]
[5]
Choi MY, Flood K, Bernatsky S, Ramsey-Goldman R, Clarke AE. A review on SLE and malignancy. J Am Acad Dermatol 2017; 31(3): 373-96.
[PMID: 29224679]
[6]
Liu Z, Yu Y, Yue Y, et al. Genetic alleles associated with SLE susceptibility and clinical manifestations in Hispanic patients from the Dominican Republic. Curr Mol Med 2019; 19(3): 164-71.
[http://dx.doi.org/10.2174/1566524019666190424130809] [PMID: 31032751]
[7]
Palaga T. Driving forces of inflammatory diseases: Th9 in allergic rhinitis and estrogen in SLE. Asian Pac J Allergy Immunol 2015; 33(4): 265.
[8]
Zandman-Goddard G, Solomon M, Rosman Z, Peeva E, Shoenfeld Y. Environment and lupus-related diseases. Lupus 2012; 21(3): 241-50.
[http://dx.doi.org/10.1177/0961203311426568] [PMID: 22065092]
[9]
Rogers MA, Levine DA, Blumberg N, Fisher GG, Kabeto M, Langa KM. Antigenic challenge in the etiology of autoimmune disease in women. J Autoimmun 2012; 38(2-3): J97-J102.
[http://dx.doi.org/10.1016/j.jaut.2011.08.001] [PMID: 21880464]
[10]
Hitoshi N, Mitsuteru A, Kohsuke M. Th1/Th2 balance of SLE patients with lupus nephritis. Japanese J Clin Pathol 2006; 54(7): 706-13.
[11]
Akahoshi M, Nakashima H, Tanaka Y, et al. Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus. Arthritis Rheum 1999; 42(8): 1644-8.
[http://dx.doi.org/10.1002/1529-0131(199908)42:8<1644::AID-ANR12>3.0.CO;2-L] [PMID: 10446863]
[12]
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 2016; 113(34): E4966-75.
[http://dx.doi.org/10.1073/pnas.1603244113] [PMID: 27506793]
[13]
Cong L, Dong X, Wang Y, Deng Y, Li B, Dai R. On the role of synthesized hydroxylated chalcones as dual functional amyloid-β aggregation and ferroptosis inhibitors for potential treatment of Alzheimer’s Disease. Eur J Med Chem 2019; 166: 11-21.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.039] [PMID: 30684867]
[14]
Yamada N, Karasawa T, Kimura H, et al. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure. Cell Death Dis 2020; 11(2): 144.
[http://dx.doi.org/10.1038/s41419-020-2334-2] [PMID: 32094346]
[15]
Xu T, Ding W, Ji X, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med 2019; 23(8): 4900-12.
[http://dx.doi.org/10.1111/jcmm.14511] [PMID: 31232522]
[16]
Chen X, Zhang B, Liu T, et al. Liproxstatin-1 attenuates morphine tolerance through inhibiting spinal ferroptosis-like cell death. ACS Chem Neurosci 2019; 10(12): 4824-33.
[http://dx.doi.org/10.1021/acschemneuro.9b00539] [PMID: 31682397]
[17]
Xie Y, Hou W, Song X, et al. Ferroptosis: Process and function. Cell Death Differ 2016; 23(3): 369-79.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[18]
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156(1-2): 317-31.
[http://dx.doi.org/10.1016/j.cell.2013.12.010] [PMID: 24439385]
[19]
Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019; 575(7784): 688-92.
[http://dx.doi.org/10.1038/s41586-019-1705-2] [PMID: 31634900]
[20]
Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med 2017; 21(4): 648-57.
[http://dx.doi.org/10.1111/jcmm.13008] [PMID: 27860262]
[21]
Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019; 569(7755): 270-4.
[http://dx.doi.org/10.1038/s41586-019-1170-y] [PMID: 31043744]
[22]
Wei J, Gao J, Ding X. Exploring the mechanism of Jieduquyuziyin prescription on systemic lupus erythematosus by GC-MS-based urine metabolomics. Biomed Chromatogr 2018; 32(2): e4087.
[http://dx.doi.org/10.1002/bmc.4087] [PMID: 28869288]
[23]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060-72.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[24]
Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci 2016; 73(11-12): 2195-209.
[http://dx.doi.org/10.1007/s00018-016-2194-1] [PMID: 27048822]
[25]
Kidd P. Th1/Th2 balance: The hypothesis, its limitations, and implications for health and disease. Altern Med Rev 2003; 8(3): 223-46.
[PMID: 12946237]
[26]
Qiu YY, Zhang YW, Qian XF, Bian T. miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3. Am J Transl Res 2017; 9(7): 3184-99.
[PMID: 28804539]
[27]
Zhang W, Pan Y, Gou P, et al. Effect of xanthohumol on Th1/Th2 balance in a breast cancer mouse model. Oncol Rep 2018; 39(1): 280-8.
[PMID: 29138867]
[28]
Li-Na Z, Xiao-Fan W, Qian-Qian Q, et al. Study on role of TIGIT signal in Th1/Th2 balance in Schistosoma japonicum-infected mice. Chin J Schistosomiasis Control 2018; 30(2): 136-9.
[29]
Postal M, Peliçari KO, Sinicato NA, Marini R, Costallat LT, Appenzeller S. Th1/Th2 cytokine profile in childhood-onset systemic lupus erythematosus. Cytokine 2013; 61(3): 785-91.
[http://dx.doi.org/10.1016/j.cyto.2012.11.023] [PMID: 23332615]
[30]
Mok MY, Wu HJ, Lo Y, Lau CS. The relation of interleukin 17 (IL-17) and IL-23 to Th1/Th2 cytokines and disease activity in systemic lupus erythematosus. J Rheumatol 2010; 37(10): 2046-52.
[http://dx.doi.org/10.3899/jrheum.100293] [PMID: 20682672]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy