Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Assimilating Epigenetics and Transcriptomics for the Identification of Prognostic Novel Biomarkers and Imminent Targets in Colorectal Carcinoma with Therapeutic Potential

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 23, Issue 8, 2023

Published on: 26 August, 2022

Page: [784 - 798] Pages: 15

DOI: 10.2174/1566524022666220511123104

Price: $65

Abstract

Colorectal carcinoma (CRC), the foremost basis of malignancy-related death worldwide, evolves due to the stepwise amassing of a succession of genetic and epigenetic modifications. Epigenetic indicators are significant molecular hallmarks of malignancy. They play a big role in disease pathogenesis and are involved in almost all important cancer-related pathways. They can also be used as clinically useful cancer biomarkers for diagnosis, prognosis, and predicting how well treatment will work. Similarly, as gene changes in the malignant growth genome, a subset of driver genes attempts to play a useful part in CRC. Advances in our understanding of abnormal methylation in CRC have led to the development of epigenetic changes as diagnostic and prognostic biomarkers, and role of non-coding RNAs as epigenetic controllers. Beforehand, mass transcriptomics analysis is used to group CRC based on its distinctive molecular and clinicopathological features for prediction and patient analysis. The development of single-cell transcriptomics flipped the script by making it possible to evaluate the expression levels of particular neoplastic cells within a single tumor. Cell motility, growth, development, proliferation, DNA replication, recombination, their relationships with transcriptomics, and the CRC transcriptome analysis, have shown improvements. Progress in the appraisal of epigenetic alterations in CRC and their clinical applications has indicated that these changes will be ordinarily utilized as molecular markers to coordinate the anticipation and treatment of CRC. Recent improvements in our understanding of CRC and progress in genomics have led to the discovery of a number of epigenetic changes that are strongly linked to both the start and spread of cancer.

Keywords: Colorectal carcinoma, epigenetics, transcriptomics, non-coding RNAs, driver genes, cancer biomarkers.

[1]
Danese E, Montagnana M. Epigenetics of colorectal cancer: Emerging circulating diagnostic and prognostic biomarkers. Ann Transl Med 2017; 5(13): 279.
[http://dx.doi.org/10.21037/atm.2017.04.45] [PMID: 28758105]
[2]
Cunningham D, Atkin W, Lenz HJ, et al. Colorectal cancer. Lancet 2010; 375(9719): 1030-47.
[http://dx.doi.org/10.1016/S0140-6736(10)60353-4] [PMID: 20304247]
[3]
Migliore L, Migheli F, Spisni R, Coppedè F. Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol 2011; 2011: 792362.
[http://dx.doi.org/10.1155/2011/792362] [PMID: 21490705]
[4]
Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 2011; 8(12): 686-700.
[http://dx.doi.org/10.1038/nrgastro.2011.173] [PMID: 22009203]
[5]
Ray SK, Mukherjee S. LncRNAs as an architects in cancer biomarkers with interface of epitranscriptomics-incipient targets in cancer therapy. Curr Cancer Drug Targets 2021; 21(5): 416-27.
[http://dx.doi.org/10.2174/1568009620666210106122421] [PMID: 33413062]
[6]
Pancione M, Remo A, Colantuoni V. Genetic and epigenetic events generate multiple pathways in colorectal cancer progression. Pathol Res Int 2012; 2012: 509348.
[http://dx.doi.org/10.1155/2012/509348] [PMID: 22888469]
[7]
Bardhan K, Liu K. Epigenetics and colorectal cancer pathogenesis. Cancers 2013; 5(2): 676-713.
[http://dx.doi.org/10.3390/cancers5020676] [PMID: 24216997]
[8]
Barrow TM, Michels KB. Epigenetic epidemiology of cancer. Biochem Biophys Res Commun 2014; 455(1-2): 70-83.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.002] [PMID: 25124661]
[9]
Worthley DL, Whitehall VL, Buttenshaw RL, et al. DNA methylation within the normal colorectal mucosa is associated with pathway-specific predisposition to cancer. Oncogene 2010; 29(11): 1653-62.
[http://dx.doi.org/10.1038/onc.2009.449] [PMID: 19966864]
[10]
Belshaw NJ, Elliott GO, Foxall RJ, et al. Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa. Br J Cancer 2008; 99(1): 136-42.
[http://dx.doi.org/10.1038/sj.bjc.6604432] [PMID: 18542073]
[11]
Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 2007; 50(1): 113-30.
[http://dx.doi.org/10.1111/j.1365-2559.2006.02549.x] [PMID: 17204026]
[12]
Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn 2008; 10(1): 13-27.
[http://dx.doi.org/10.2353/jmoldx.2008.070082] [PMID: 18165277]
[13]
Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319(9): 525-32.
[http://dx.doi.org/10.1056/NEJM198809013190901] [PMID: 2841597]
[14]
Vazquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 2008; 7(12): 979-87.
[http://dx.doi.org/10.1038/nrd2656] [PMID: 19043449]
[15]
Koveitypour Z, Panahi F, Vakilian M, et al. Signaling pathways involved in colorectal cancer progression. Cell Biosci 2019; 9(1): 97.
[http://dx.doi.org/10.1186/s13578-019-0361-4] [PMID: 31827763]
[16]
Pellatt AJ, Mullany LE, Herrick JS, et al. The TGFβ-signaling pathway and colorectal cancer: Associations between dysregulated genes and miRNAs. J Transl Med 2018; 16(1): 191.
[http://dx.doi.org/10.1186/s12967-018-1566-8] [PMID: 29986714]
[17]
Itatani Y, Kawada K, Sakai Y. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int J Mol Sci 2019; 20(23): 5822.
[http://dx.doi.org/10.3390/ijms20235822] [PMID: 31756952]
[18]
Fleming NI, Jorissen RN, Mouradov D, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res 2013; 73(2): 725-35.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2706] [PMID: 23139211]
[19]
Xu J, Shao T, Song M, et al. MIR22HG acts as a tumor suppressor via TGFβ/SMAD signaling and facilitates immunotherapy in colorectal cancer. Mol Cancer 2020; 19(1): 51.
[http://dx.doi.org/10.1186/s12943-020-01174-w] [PMID: 32127004]
[20]
Kim BR, Na YJ, Kim JL, et al. RUNX3 suppresses metastasis and stemness by inhibiting Hedgehog signaling in colorectal cancer. Cell Death Differ 2020; 27(2): 676-94.
[http://dx.doi.org/10.1038/s41418-019-0379-5] [PMID: 31278361]
[21]
Kim BR, Kang MH, Kim JL, et al. RUNX3 inhibits the metastasis and angiogenesis of colorectal cancer. Oncol Rep 2016; 36(5): 2601-8.
[http://dx.doi.org/10.3892/or.2016.5086] [PMID: 27633042]
[22]
Xue J, Wu X, Qu M, et al. RUNX3 inhibits the invasion and metastasis of human colon cancer HT-29 cells by upregulating MMP-2/9. Evid Based Complement Alternat Med 2020; 2020: 5978131.
[http://dx.doi.org/10.1155/2020/5978131] [PMID: 32184893]
[23]
Amodeo V, Bazan V, Fanale D, et al. Effects of anti-miR-182 on TSP-1 expression in human colon cancer cells: There is a sense in antisense? Expert Opin Ther Targets 2013; 17(11): 1249-61.
[http://dx.doi.org/10.1517/14728222.2013.832206] [PMID: 24053448]
[24]
Samowitz WS, Albertsen H, Herrick J, et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 2005; 129(3): 837-45.
[http://dx.doi.org/10.1053/j.gastro.2005.06.020] [PMID: 16143123]
[25]
Nosho K, Irahara N, Shima K, et al. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One 2008; 3(11): e3698.
[http://dx.doi.org/10.1371/journal.pone.0003698] [PMID: 19002263]
[26]
Li ZN, Zhao L, Yu LF, Wei MJ. BRAF and KRAS mutations in metastatic colorectal cancer: Future perspectives for personalized therapy. Gastroenterol Rep 2020; 8(3): 192-205.
[http://dx.doi.org/10.1093/gastro/goaa022] [PMID: 32665851]
[27]
Pranteda A, Piastra V, Stramucci L, Fratantonio D, Bossi G. The p38 MAPK signaling activation in colorectal cancer upon therapeutic treatments. Int J Mol Sci 2020; 21(8): 2773.
[http://dx.doi.org/10.3390/ijms21082773] [PMID: 32316313]
[28]
Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 2008; 135(4): 1079-99.
[http://dx.doi.org/10.1053/j.gastro.2008.07.076] [PMID: 18773902]
[29]
Solier S, Zhang YW, Ballestrero A, Pommier Y, Zoppoli G. DNA damage response pathways and cell cycle checkpoints in colorectal cancer: Current concepts and future perspectives for targeted treatment. Curr Cancer Drug Targets 2012; 12(4): 356-71.
[http://dx.doi.org/10.2174/156800912800190901] [PMID: 22385513]
[30]
Ray SK, Mukherjee S. Genome editing with CRISPR-Cas9: A budding biological contrivance for colorectal carcinoma research and its perspective in molecular medicine. Curr Mol Med 2021; 21(6): 462-75.
[http://dx.doi.org/10.2174/1566524020666201119143943] [PMID: 33213345]
[31]
Deichmann U. The social construction of the social epigenome and the larger biological context. Epigenetics Chromatin 2020; 13(1): 37.
[http://dx.doi.org/10.1186/s13072-020-00360-w] [PMID: 32967714]
[32]
Nair N, Shoaib M, Sørensen CS. Chromatin dynamics in genome stability: Roles in suppressing endogenous DNA damage and facilitating DNA repair. Int J Mol Sci 2017; 18(7): 1486.
[http://dx.doi.org/10.3390/ijms18071486] [PMID: 28698521]
[33]
Dueva R, Akopyan K, Pederiva C, et al. Neutralization of the positive charges on histone tails by rna promotes an open chromatin structure. Cell Chem Biol 2019; 26(10): 1436-1449.e5.
[http://dx.doi.org/10.1016/j.chembiol.2019.08.002] [PMID: 31447351]
[34]
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2010; 31(1): 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[35]
Bates SE. Epigenetic Therapies for Cancer. N Engl J Med 2020; 383(7): 650-63.
[http://dx.doi.org/10.1056/NEJMra1805035] [PMID: 32786190]
[36]
Zhang J, Yang C, Wu C, Cui W, Wang L. DNA Methyltransferases in cancer: biology, paradox, aberrations, and targeted therapy. Cancers 2020; 12(8): 2123.
[http://dx.doi.org/10.3390/cancers12082123] [PMID: 32751889]
[37]
Zhang W, Xu J. DNA methyltransferases and their roles in tumorigenesis. Biomark Res 2017; 5(1): 1.
[http://dx.doi.org/10.1186/s40364-017-0081-z] [PMID: 28127428]
[38]
Cervena K, Siskova A, Buchler T, Vodicka P, Vymetalkova V. Methylation-Based therapies for colorectal cancer. Cells 2020; 9(6): 1540.
[http://dx.doi.org/10.3390/cells9061540] [PMID: 32599894]
[39]
Freitas M, Ferreira F, Carvalho S, et al. A novel DNA methylation panel accurately detects colorectal cancer independently of molecular pathway. J Transl Med 2018; 16(1): 45.
[http://dx.doi.org/10.1186/s12967-018-1415-9] [PMID: 29486770]
[40]
Jia M, Gao X, Zhang Y, Hoffmeister M, Brenner H. Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: A systematic review. Clin Epigenetics 2016; 8(1): 25.
[http://dx.doi.org/10.1186/s13148-016-0191-8] [PMID: 26941852]
[41]
Puccini A, Berger MD, Naseem M, et al. Colorectal cancer: Epigenetic alterations and their clinical implications. Biochim Biophys Acta Rev Cancer 2017; 1868(2): 439-48.
[http://dx.doi.org/10.1016/j.bbcan.2017.09.003] [PMID: 28939182]
[42]
Campanero MR, Armstrong MI, Flemington EK. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci USA 2000; 97(12): 6481-6.
[http://dx.doi.org/10.1073/pnas.100340697] [PMID: 10823896]
[43]
Clouaire T, Stancheva I. Methyl-CpG binding proteins: Specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci 2008; 65(10): 1509-22.
[http://dx.doi.org/10.1007/s00018-008-7324-y] [PMID: 18322651]
[44]
van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG. Colorectal cancer epigenetics: Complex simplicity. J Clin Oncol 2011; 29(10): 1382-91.
[http://dx.doi.org/10.1200/JCO.2010.28.2319] [PMID: 21220596]
[45]
Tsai HC, Baylin SB. Cancer epigenetics: Linking basic biology to clinical medicine. Cell Res 2011; 21(3): 502-17.
[http://dx.doi.org/10.1038/cr.2011.24] [PMID: 21321605]
[46]
Udali S, De Santis D, Ruzzenente A, et al. DNA Methylation and Hydroxymethylation in primary colon cancer and synchronous hepatic metastasis. Front Genet 2018; 8: 229.
[http://dx.doi.org/10.3389/fgene.2017.00229] [PMID: 29375619]
[47]
Chapman CG, Mariani CJ, Wu F, et al. TET-catalyzed 5-hydroxymethylcytosine regulates gene expression in differentiating colonocytes and colon cancer. Sci Rep 2015; 5(1): 17568.
[http://dx.doi.org/10.1038/srep17568] [PMID: 26631571]
[48]
Abou Najem S, Khawaja G, Hodroj MH, Rizk S. Synergistic effect of epigenetic inhibitors decitabine and suberoylanilide hydroxamic acid on colorectal cancer in vitro. Curr Mol Pharmacol 2019; 12(4): 281-300.
[http://dx.doi.org/10.2174/1874467212666190313154531] [PMID: 30868973]
[49]
Dong L, Ren H. Blood‐based DNA methylation biomarkers for early detection of colorectal cancer. J Proteomics Bioinform 2018; 11(6): 120-6.
[http://dx.doi.org/10.4172/jpb.1000477] [PMID: 30034186]
[50]
Xie S, Chen W, Chen K, et al. Emerging roles of RNA methylation in gastrointestinal cancers. Cancer Cell Int 2020; 20(1): 585.
[http://dx.doi.org/10.1186/s12935-020-01679-w] [PMID: 33372610]
[51]
Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301(5895): 89-92.
[http://dx.doi.org/10.1038/301089a0] [PMID: 6185846]
[52]
Raskov H, Søby JH, Troelsen J, Bojesen RD, Gögenur I. Driver gene mutations and epigenetics in colorectal cancer. Ann Surg 2020; 271(1): 75-85.
[http://dx.doi.org/10.1097/SLA.0000000000003393] [PMID: 31188207]
[53]
Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of tumor suppressor gene function in human cancer: an overview. Cell Physiol Biochem 2018; 51(6): 2647-93.
[http://dx.doi.org/10.1159/000495956] [PMID: 30562755]
[54]
Sidenna M, Bux R, Fadl T, Ozbek U, Zayed H. Association of genetic variants with colorectal cancer in the extended MENA region: a systematic review. Curr Mol Med 2020; 20(4): 286-98.
[http://dx.doi.org/10.2174/1566524019666191014170136] [PMID: 31612830]
[55]
Wu J, Wang G, He B, Chen X, An Y. Methylation of the UNC5C gene and its protein expression in colorectal cancer. Tumour Biol 2017; 39(4): 1010428317697564.
[http://dx.doi.org/10.1177/1010428317697564] [PMID: 28378635]
[56]
Yazdani Y, Farazmandfar T, Azadeh H, Zekavatian Z. The prognostic effect of PTEN expression status in colorectal cancer development and evaluation of factors affecting it: MiR-21 and promoter methylation. J Biomed Sci 2016; 23(1): 9.
[http://dx.doi.org/10.1186/s12929-016-0228-5] [PMID: 26787105]
[57]
Tse JWT, Jenkins LJ, Chionh F, Mariadason JM. Aberrant DNA methylation in colorectal cancer: what should we target? Trends Cancer 2017; 3(10): 698-712.
[http://dx.doi.org/10.1016/j.trecan.2017.08.003] [PMID: 28958388]
[58]
Hibi K, Mizukami H, Shirahata A, et al. Aberrant methylation of the UNC5C gene is frequently detected in advanced colorectal cancer. Anticancer Res 2009; 29(1): 271-3.
[59]
Wang T, Maden SK, Luebeck GE, et al. Dysfunctional epigenetic aging of the normal colon and colorectal cancer risk. Clin Epigenetics 2020; 12(1): 5.
[http://dx.doi.org/10.1186/s13148-019-0801-3] [PMID: 31900199]
[60]
Toyota M, Issa JP. CpG island methylator phenotypes in aging and cancer. Semin Cancer Biol 1999; 9(5): 349-57.
[http://dx.doi.org/10.1006/scbi.1999.0135] [PMID: 10547343]
[61]
Liu J, Tang L, Yi J, et al. Unique characteristics of CpG Island Methylator Phenotype (CIMP) in a Chinese population with colorectal cancer. BMC Gastroenterol 2019; 19(1): 173.
[http://dx.doi.org/10.1186/s12876-019-1086-x] [PMID: 31690257]
[62]
Jo WS, Carethers JM. Chemotherapeutic implications in microsatellite unstable colorectal cancer. Cancer Biomark 2006; 2(1-2): 51-60.
[http://dx.doi.org/10.3233/CBM-2006-21-206] [PMID: 17192059]
[63]
Schiappacasse Cocio GV, Schiappacasse ED. Is adjuvant chemotherapy efficient in colon cancer with high microsatellite instability? A look towards the future. Cancer Res 2019; 79(3): 441-4.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2991] [PMID: 30679175]
[64]
Shulman K, Barnett-Griness O, Friedman V, et al. Outcomes of chemotherapy for microsatellite instable-high metastatic colorectal cancers. JCO Precis Oncol 2018; 17: 00253.
[http://dx.doi.org/10.1200/PO.17.00253]
[65]
Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 2010; 138(6): 2059-72.
[http://dx.doi.org/10.1053/j.gastro.2009.12.065] [PMID: 20420946]
[66]
Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 2018; 16(1): 9-18.
[http://dx.doi.org/10.3892/ol.2018.8679] [PMID: 29928381]
[67]
Goel A, Nagasaka T, Arnold CN, et al. The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology 2007; 132(1): 127-38.
[http://dx.doi.org/10.1053/j.gastro.2006.09.018] [PMID: 17087942]
[68]
Brammer DW, Gillespie PJ, Tian M, et al. MLH1-rheMac hereditary nonpolyposis colorectal cancer syndrome in rhesus macaques. Proc Natl Acad Sci USA 2018; 115(11): 2806-11.
[http://dx.doi.org/10.1073/pnas.1722106115] [PMID: 29490919]
[69]
Carethers JM. Microsatellite instability pathway and EMAST in colorectal cancer. Curr Colorectal Cancer Rep 2017; 13(1): 73-80.
[http://dx.doi.org/10.1007/s11888-017-0352-y] [PMID: 28367107]
[70]
Alizadeh Naini M, Kavousipour S, Hasanzarini M, Nasrollah A, Monabati A, Mokarram P. O6-Methyguanine-DNA Methyl Transferase (MGMT) promoter methylation in serum DNA of Iranian patients with colorectal cancer. Asian Pac J Cancer Prev 2018; 19(5): 1223-7.
[PMID: 29801405]
[71]
Chen JJ, Wang AQ, Chen QQ. DNA methylation assay for colorectal carcinoma. Cancer Biol Med 2017; 14(1): 42-9.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0082] [PMID: 28443202]
[72]
Calegari MA, Inno A, Monterisi S, et al. A phase 2 study of temozolomide in pretreated metastatic colorectal cancer with MGMT promoter methylation. Br J Cancer 2017; 116(10): 1279-86.
[http://dx.doi.org/10.1038/bjc.2017.109] [PMID: 28427088]
[73]
Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4): 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[74]
Bai M, Ti D, Mei Q, et al. The Role of Posttranslational Modifications in DNA Repair. BioMed Res Int 2020; 2020: 7493902.
[http://dx.doi.org/10.1155/2020/7493902]
[75]
Fenley AT, Anandakrishnan R, Kidane YH, Onufriev AV. Modulation of nucleosomal DNA accessibility via charge-altering post-translational modifications in histone core. Epigenetics Chromatin 2018; 11(1): 11.
[http://dx.doi.org/10.1186/s13072-018-0181-5] [PMID: 29548294]
[76]
Barnes CE, English DM, Cowley SM. Acetylation & Co: An expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem 2019; 63(1): 97-107.
[http://dx.doi.org/10.1042/EBC20180061] [PMID: 30940741]
[77]
Vaiopoulos AG, Athanasoula KCh, Papavassiliou AG. Epigenetic modifications in colorectal cancer: Molecular insights and therapeutic challenges. Biochim Biophys Acta 2014; 1842(7): 971-80.
[http://dx.doi.org/10.1016/j.bbadis.2014.02.006] [PMID: 24561654]
[78]
Mojtabanezhad Shariatpanahi A, Yassi M, Nouraie M, Sahebkar A, Varshoee Tabrizi F, Kerachian MA. The importance of stool DNA methylation in colorectal cancer diagnosis: A meta-analysis. PLoS One 2018; 13(7): e0200735.
[http://dx.doi.org/10.1371/journal.pone.0200735] [PMID: 30024936]
[79]
Loktionov A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? World J Gastrointest Oncol 2020; 12(2): 124-48.
[http://dx.doi.org/10.4251/wjgo.v12.i2.124] [PMID: 32104546]
[80]
Liu C, Fennell LJ, Bettington ML, et al. DNA methylation changes that precede onset of dysplasia in advanced sessile serrated adenomas. Clin Epigenetics 2019; 11(1): 90.
[http://dx.doi.org/10.1186/s13148-019-0691-4] [PMID: 31200767]
[81]
Okugawa Y, Grady WM, Goel A. Epigenetic alterations in colorectal Cancer: Emerging biomarkers. Gastroenterology 2015; 149(5): 1204-25.
[http://dx.doi.org/10.1053/j.gastro.2015.07.011] [PMID: 26216839]
[82]
Barták BK, Kalmár A, Péterfia B, et al. Colorectal adenoma and cancer detection based on altered methylation pattern of SFRP1, SFRP2, SDC2, and PRIMA1 in plasma samples. Epigenetics 2017; 12(9): 751-63.
[http://dx.doi.org/10.1080/15592294.2017.1356957] [PMID: 28753106]
[83]
Laugsand EA, Brenne SS, Skorpen F. DNA methylation markers detected in blood, stool, urine, and tissue in colorectal cancer: A systematic review of paired samples. Int J Colorectal Dis 2021; 36(2): 239-51.
[http://dx.doi.org/10.1007/s00384-020-03757-x] [PMID: 33030559]
[84]
Liu X, Fu J, Bi H, et al. DNA methylation of SFRP1, SFRP2, and WIF1 and prognosis of postoperative colorectal cancer patients. BMC Cancer 2019; 19(1): 1212.
[http://dx.doi.org/10.1186/s12885-019-6436-0] [PMID: 31830937]
[85]
Cabrera-Mulero A, Crujeiras AB, Izquierdo AG, et al. Novel SFRP2 DNA methylation profile following neoadjuvant therapy in colorectal cancer patients with different grades of BMI. J Clin Med 2019; 8(7): 1041.
[http://dx.doi.org/10.3390/jcm8071041] [PMID: 31319558]
[86]
Yang Q, Huang T, Ye G, Wang B, Zhang X. Methylation of SFRP2 gene as a promising noninvasive biomarker using feces in colorectal cancer diagnosis: A systematic meta-analysis. Sci Rep 2016; 6(1): 33339.
[http://dx.doi.org/10.1038/srep33339] [PMID: 27659069]
[87]
Druliner BR, Wang P, Bae T, et al. Molecular characterization of colorectal adenomas with and without malignancy reveals distinguishing genome, transcriptome and methylome alterations. Sci Rep 2018; 8(1): 3161.
[http://dx.doi.org/10.1038/s41598-018-21525-4] [PMID: 29453410]
[88]
Gonzalez RS, Washington K, Shi C. Current applications of molecular pathology in colorectal carcinoma. Appl Cancer Res 2017; 37(1): 13.
[http://dx.doi.org/10.1186/s41241-017-0020-1]
[89]
Zhunussova G, Afonin G, Abdikerim S, et al. Mutation spectrum of cancer-associated genes in patients with early onset of colorectal cancer. Front Oncol 2019; 9: 673.
[http://dx.doi.org/10.3389/fonc.2019.00673] [PMID: 31428572]
[90]
De Palma FDE, D’Argenio V, Pol J, Kroemer G, Maiuri MC, Salvatore F. The molecular hallmarks of the serrated pathway in colorectal cancer. Cancers (Basel) 2019; 11(7): 1017.
[http://dx.doi.org/10.3390/cancers11071017] [PMID: 31330830]
[91]
Kim JH, Kang GH. Evolving pathologic concepts of serrated lesions of the colorectum. J Pathol Transl Med 2020; 54(4): 276-89.
[http://dx.doi.org/10.4132/jptm.2020.04.15] [PMID: 32580537]
[92]
Bormann F, Rodríguez-Paredes M, Lasitschka F, et al. Cell-of-Origin DNA Methylation signatures are maintained during colorectal carcinogenesis. Cell Rep 2018; 23(11): 3407-18.
[http://dx.doi.org/10.1016/j.celrep.2018.05.045] [PMID: 29898408]
[93]
Sugai T, Yoshida M, Eizuka M, et al. Analysis of the DNA methylation level of cancer-related genes in colorectal cancer and the surrounding normal mucosa. Clin Epigenetics 2017; 9(1): 55.
[http://dx.doi.org/10.1186/s13148-017-0352-4] [PMID: 28533824]
[94]
Hearn NL, Coleman AS, Ho V, Chiu CL, Lind JM. Comparing DNA methylation profiles in saliva and intestinal mucosa. BMC Genomics 2019; 20(1): 163.
[http://dx.doi.org/10.1186/s12864-019-5553-0] [PMID: 30819108]
[95]
Sobhani I, Bergsten E, Couffin S, et al. Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proc Natl Acad Sci USA 2019; 116(48): 24285-95.
[http://dx.doi.org/10.1073/pnas.1912129116] [PMID: 31712445]
[96]
Grady WM, Yu M, Markowitz SD. Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Gastroenterology 2021; 160(3): 690-709.
[http://dx.doi.org/10.1053/j.gastro.2020.09.058] [PMID: 33279516]
[97]
Jung G, Hernández-Illán E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: Biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol 2020; 17(2): 111-30.
[http://dx.doi.org/10.1038/s41575-019-0230-y] [PMID: 31900466]
[98]
Draht MXG, Goudkade D, Koch A, et al. Prognostic DNA methylation markers for sporadic colorectal cancer: A systematic review. Clin Epigenetics 2018; 10(1): 35.
[http://dx.doi.org/10.1186/s13148-018-0461-8] [PMID: 29564023]
[99]
Ray SK, Mukherjee S. Cell free DNA as an evolving liquid biopsy biomarker for initial diagnosis and therapeutic nursing in cancer- An evolving aspect in medical biotechnology. Curr Pharm Biotechnol 2022; 23(1): 112-22.
[http://dx.doi.org/10.2174/1389201021666201211102710] [PMID: 33308128]
[100]
Constâncio V, Nunes SP, Henrique R, Jerónimo C. DNA Methylation-based testing in liquid biopsies as detection and prognostic biomarkers for the four major cancer types. Cells 2020; 9(3): 624.
[http://dx.doi.org/10.3390/cells9030624] [PMID: 32150897]
[101]
Liu Y, Chew MH, Tham CK, Tang CL, Ong SY, Zhao Y. Methylation of serum SST gene is an independent prognostic marker in colorectal cancer. Am J Cancer Res 2016; 6(9): 2098-108.
[PMID: 27725914]
[102]
Ma Z, Williams M, Cheng YY, Leung WK. Roles of Methylated DNA Biomarkers in patients with colorectal cancer. Dis Markers 2019; 2019: 2673543.
[http://dx.doi.org/10.1155/2019/2673543] [PMID: 30944663]
[103]
Klomp M, Dalm S, de Jong M, et al. Epigenetic regulation of somatostatin and somatostatin receptors in neuroendocrine tumors and other types of cancer. Rev Endocr Metab Disord 2021; 22(3): 495-510.
[http://dx.doi.org/10.1007/s11154-020-09607-z] [PMID: 33085037]
[104]
Ray SK, Mukherjee S. Cancer Stem Cells: Current status and therapeutic implications in cancer therapy- a new paradigm. Curr Stem Cell Res Ther 2021; 16(8): 970-9.
[http://dx.doi.org/10.2174/1574888X16666210203105800] [PMID: 33563175]
[105]
Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11(1): 25.
[http://dx.doi.org/10.1186/s13148-018-0587-8] [PMID: 30744689]
[106]
Morales S, Monzo M, Navarro A. Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts 2017; 8(5-6): 203-12.
[http://dx.doi.org/10.1515/bmc-2017-0024] [PMID: 29161231]
[107]
Yu Y, Xiao J, Hann SS. The emerging roles of PIWI-interacting RNA in human cancers. Cancer Manag Res 2019; 11: 5895-909.
[http://dx.doi.org/10.2147/CMAR.S209300] [PMID: 31303794]
[108]
Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci 2018; 75(3): 467-84.
[http://dx.doi.org/10.1007/s00018-017-2626-6] [PMID: 28840253]
[109]
Wang S, Wu W, Claret FX. Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics 2017; 12(3): 187-97.
[http://dx.doi.org/10.1080/15592294.2016.1273308] [PMID: 28059592]
[110]
Holubekova V, Mendelova A, Jasek K, Mersakova S, Zubor P, Lasabova Z. Epigenetic regulation by DNA methylation and miRNA molecules in cancer. Future Oncol 2017; 13(25): 2217-22.
[http://dx.doi.org/10.2217/fon-2017-0363] [PMID: 28976205]
[111]
Cui M, Wang H, Yao X, et al. Circulating MicroRNAs in Cancer: Potential and challenge. Front Genet 2019; 10: 626.
[http://dx.doi.org/10.3389/fgene.2019.00626] [PMID: 31379918]
[112]
Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin Epigenetics 2018; 10(1): 59.
[http://dx.doi.org/10.1186/s13148-018-0492-1] [PMID: 29713393]
[113]
Rapado-González Ó, Álvarez-Castro A, López-López R, Iglesias-Canle J, Suárez-Cunqueiro MM, Muinelo-Romay L. Circulating microRNAs as promising biomarkers in colorectal cancer. Cancers 2019; 11(7): 898.
[http://dx.doi.org/10.3390/cancers11070898] [PMID: 31252648]
[114]
Min L, Zhu S, Chen L, et al. Evaluation of circulating small extracellular vesicles derived miRNAs as biomarkers of early colon cancer: A comparison with plasma total miRNAs. J Extracell Vesicles 2019; 8(1): 1643670.
[http://dx.doi.org/10.1080/20013078.2019.1643670] [PMID: 31448068]
[115]
Carter JV, Galbraith NJ, Yang D, Burton JF, Walker SP, Galandiuk S. Blood-based microRNAs as biomarkers for the diagnosis of colorectal cancer: A systematic review and meta-analysis. Br J Cancer 2017; 116(6): 762-74.
[http://dx.doi.org/10.1038/bjc.2017.12] [PMID: 28152545]
[116]
Gmerek L, Martyniak K, Horbacka K, et al. MicroRNA regulation in colorectal cancer tissue and serum. PLoS One 2019; 14(8): e0222013.
[http://dx.doi.org/10.1371/journal.pone.0222013] [PMID: 31469874]
[117]
Tieng FYF, Baharudin R, Abu N, Mohd Yunos RI, Lee LH, Ab Mutalib NS. Single cell transcriptome in colorectal cancer-current updates on its application in metastasis, chemoresistance and the roles of circulating tumor cells. Front Pharmacol 2020; 11: 135.
[http://dx.doi.org/10.3389/fphar.2020.00135] [PMID: 32174835]
[118]
Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487(7407): 330-7.
[http://dx.doi.org/10.1038/nature11252] [PMID: 22810696]
[119]
Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med 2015; 21(11): 1350-6.
[http://dx.doi.org/10.1038/nm.3967] [PMID: 26457759]
[120]
Fan J, Slowikowski K, Zhang F. Single-cell transcriptomics in cancer: Computational challenges and opportunities. Exp Mol Med 2020; 52(9): 1452-65.
[http://dx.doi.org/10.1038/s12276-020-0422-0] [PMID: 32929226]
[121]
Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 2018; 50(8): 1-14.
[http://dx.doi.org/10.1038/s12276-018-0071-8] [PMID: 30089861]
[122]
Wang T, Li B, Nelson CE, Nabavi S. Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinformatics 2019; 20(1): 40.
[http://dx.doi.org/10.1186/s12859-019-2599-6] [PMID: 30658573]
[123]
Li H, Courtois ET, Sengupta D, et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet 2017; 49(5): 708-18.
[http://dx.doi.org/10.1038/ng.3818] [PMID: 28319088]
[124]
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol 2019; 14(2): 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[125]
Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020; 70(3): 145-64.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[126]
Engstrand J, Nilsson H, Strömberg C, Jonas E, Freedman J. Colorectal cancer liver metastases - a population-based study on incidence, management and survival. BMC Cancer 2018; 18(1): 78.
[http://dx.doi.org/10.1186/s12885-017-3925-x] [PMID: 29334918]
[127]
Lim SB, Lim CT, Lim WT. Single-cell analysis of circulating tumor cells: Why heterogeneity matters. Cancers 2019; 11(10): 1595.
[http://dx.doi.org/10.3390/cancers11101595] [PMID: 31635038]
[128]
Di Martino MT, Meschini S, Scotlandi K, et al. From single gene analysis to single cell profiling: A new era for precision medicine. J Exp Clin Cancer Res 2020; 39(1): 48.
[http://dx.doi.org/10.1186/s13046-020-01549-3] [PMID: 32138788]
[129]
Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies. Mol Oncol 2016; 10(3): 374-94.
[http://dx.doi.org/10.1016/j.molonc.2016.01.007] [PMID: 26897752]
[130]
Bork U, Rahbari NN, Schölch S, et al. Circulating tumour cells and outcome in non-metastatic colorectal cancer: A prospective study. Br J Cancer 2015; 112(8): 1306-13.
[http://dx.doi.org/10.1038/bjc.2015.88] [PMID: 25867263]
[131]
Cohen SJ, Punt CJ, Iannotti N, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26(19): 3213-21.
[http://dx.doi.org/10.1200/JCO.2007.15.8923] [PMID: 18591556]
[132]
Rothé F, Maetens M, Rouas G, et al. CTCs as a prognostic and predictive biomarker for stage II/III Colon Cancer: A companion study to the PePiTA trial. BMC Cancer 2019; 19(1): 304.
[http://dx.doi.org/10.1186/s12885-019-5528-1] [PMID: 30943928]
[133]
Pantel K, Speicher MR. The biology of circulating tumor cells. Oncogene 2016; 35(10): 1216-24.
[http://dx.doi.org/10.1038/onc.2015.192] [PMID: 26050619]
[134]
Grillet F, Bayet E, Villeronce O, et al. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut 2017; 66(10): 1802-10.
[http://dx.doi.org/10.1136/gutjnl-2016-311447] [PMID: 27456153]
[135]
Mostert B, Sieuwerts AM, Bolt-de Vries J, et al. mRNA expression profiles in circulating tumor cells of metastatic colorectal cancer patients. Mol Oncol 2015; 9(4): 920-32.
[http://dx.doi.org/10.1016/j.molonc.2015.01.001] [PMID: 25655581]
[136]
Onstenk W, Kraan J, Mostert B, et al. Improved circulating tumor cell detection by a combined EpCAM and MCAM cellsearch enrichment approach in patients with breast cancer undergoing neoadjuvant chemotherapy. Mol Cancer Ther 2015; 14(3): 821-7.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0653] [PMID: 25552367]
[137]
Pakbaz B, Jabinin R, Soltani N, Ayatollahi H, Farzanehfar MR. Quantitative study of vimentin gene methylation in stool samples for colorectal cancer screening. J Adv Pharm Technol Res 2019; 10(3): 121-5.
[http://dx.doi.org/10.4103/japtr.JAPTR_381_18] [PMID: 31334094]
[138]
Kuan TC, Lin PC, Yang SH, et al. Impact of LINE-1 hypomethylation on the clinicopathological and molecular features of colorectal cancer patients. PLoS One 2018; 13(5): e0197681.
[http://dx.doi.org/10.1371/journal.pone.0197681] [PMID: 29795620]
[139]
Nagasaka T, Tanaka N, Cullings HM, et al. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. J Natl Cancer Inst 2009; 101(18): 1244-58.
[http://dx.doi.org/10.1093/jnci/djp265] [PMID: 19700653]
[140]
Hellebrekers DM, Lentjes MH, van den Bosch SM, et al. GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res 2009; 15(12): 3990-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0055] [PMID: 19509152]
[141]
Raut JR, Guan Z, Schrotz-King P, Brenner H. Fecal DNA methylation markers for detecting stages of colorectal cancer and its precursors: A systematic review. Clin Epigenetics 2020; 12(1): 122.
[http://dx.doi.org/10.1186/s13148-020-00904-7] [PMID: 32778176]
[142]
Srivastava S, Ludwig AK, Wong JWH, Hesson LB. An investigation of the potential for epigenetic inactivation by transcription read-through in a sporadic colorectal cancer. Gene 2016; 585(1): 154-8.
[http://dx.doi.org/10.1016/j.gene.2016.03.031] [PMID: 27016300]
[143]
Nemati M, Ajami N, Estiar MA, et al. Deregulated expression of HDAC3 in colorectal cancer and its clinical significance. Adv Clin Exp Med 2018; 27(3): 305-11.
[http://dx.doi.org/10.17219/acem/66207] [PMID: 29558042]
[144]
Weisenberger DJ, Liang G, Lenz HJ. DNA methylation aberrancies delineate clinically distinct subsets of colorectal cancer and provide novel targets for epigenetic therapies. Oncogene 2018; 37(5): 566-77.
[http://dx.doi.org/10.1038/onc.2017.374] [PMID: 28991233]
[145]
Sekeres MA, Tiu RV, Komrokji R, et al. Phase 2 study of the lenalidomide and azacitidine combination in patients with higher-risk myelodysplastic syndromes. Blood 2012; 120(25): 4945-51.
[http://dx.doi.org/10.1182/blood-2012-06-434639] [PMID: 22915641]
[146]
Kim JC, Shin ES, Kim CW, et al. In vitro evaluation of histone deacetylase inhibitors as combination agents for colorectal cancer. Anticancer Res 2009; 29(8): 3027-34.
[PMID: 19661311]
[147]
Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 2003; 106(1): 66-73.
[http://dx.doi.org/10.1002/ijc.11176] [PMID: 12794758]
[148]
Jover R, Nguyen TP, Pérez-Carbonell L, et al. 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology 2011; 140(4): 1174-81.
[http://dx.doi.org/10.1053/j.gastro.2010.12.035] [PMID: 21185836]
[149]
Girardi B, Principi M, Pricci M, et al. Chemoprevention of inflammation-related colorectal cancer by silymarin-, acetyl-11-keto-beta-boswellic acid-, curcumin- and maltodextrinenriched dietetic formulation in animal model. Carcinogenesis 2018; 39(10): 1274-82.
[http://dx.doi.org/10.1093/carcin/bgy104] [PMID: 30084990]
[150]
Wong KE, Ngai SC, Chan KG, Lee LH, Goh BH, Chuah LH. Curcumin nanoformulations for colorectal cancer: A review. Front Pharmacol 2019; 10: 152.
[http://dx.doi.org/10.3389/fphar.2019.00152] [PMID: 30890933]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy