Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Electrospun Beads-on-the-String Nanoproducts: Preparation and Drug Delivery Application

Author(s): Wei Chen, Ping Zhao, Yaoyao Yang* and Deng-Guang Yu*

Volume 20, Issue 9, 2023

Published on: 25 August, 2022

Page: [1224 - 1240] Pages: 17

DOI: 10.2174/1567201819666220525095844

Price: $65

Abstract

The nanoproducts prepared by electrospinning have a large specific surface area, adjustable porosity, and controllable structure. Therefore, electrospinning has attracted an increasing attention in the current drug delivery systems (CDDs). In general cognition, the morphology of electrospinning nanoproducts should be homogeneous and stable to provide reproducible functions. Thus, numerous studies have been conducted to overcome the generation of beads-on-the-string by optimizing experimental conditions. This review introduces a specific electrospun nanoproduct, which is beads-on-thestring nanofibers. The presence of beads in the beads-on-the-string nanofibers can effectively encapsulate the model drug, which reduce the initial burst release of the drug and provide sustained release. At the same time, the beads-on-the-string nanofibers with composite structures can modulate the release properties of model drugs in CDDs. This review mainly summarizes the current research on the preparation of beads-on-the-string nanofibers by electrospinning and the application of beads-on-the-string nanofibers in the field of drug delivery. The future challenges and opportunities of beads-on-the-string nanofibers are also anticipated.

Keywords: Electrospinning, electrospinnable, beads-on-the-string nanofibers, electrospun nanofibers, drug delivery, sustained drug release.

Graphical Abstract

[1]
Chakraborty, S.; Liao, I.C.; Adler, A.; Leong, K.W. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev., 2009, 61(12), 1043-1054.
[http://dx.doi.org/10.1016/j.addr.2009.07.013] [PMID: 19651167]
[2]
Chen, S.; Li, R.; Li, X.; Xie, J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv. Drug Deliv. Rev., 2018, 132, 188-213.
[http://dx.doi.org/10.1016/j.addr.2018.05.001] [PMID: 29729295]
[3]
Sridhar, R.; Lakshminarayanan, R.; Madhaiyan, K.; Amutha Barathi, V.; Lim, K.H.C.; Ramakrishna, S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev., 2015, 44(3), 790-814.
[http://dx.doi.org/10.1039/C4CS00226A] [PMID: 25408245]
[4]
Cui, Z.; Han, Y.; Huang, Q.; Dong, J.; Zhu, Y. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale, 2018, 10(15), 6806-6811.
[http://dx.doi.org/10.1039/C7NR09570H] [PMID: 29537024]
[5]
Ding, J.X.; Zhang, J.; Li, J.N.; Li, D.; Xiao, C.S.; Xiao, H.H.; Yang, H.H.; Zhuang, X.L.; Chen, X.S. Electrospun polymer biomaterials. Prog. Polym. Sci., 2019, 90, 1-34.
[http://dx.doi.org/10.1016/j.progpolymsci.2019.01.002]
[6]
Korycka, P.; Mirek, A.; Kramek-Romanowska, K.; Grzeczkowicz, M.; Lewińska, D. Effect of electrospinning process variables on the size of polymer fibers and bead-on-string structures established with a 23 factorial design. Beilstein J. Nanotechnol., 2018, 9, 2466-2478.
[http://dx.doi.org/10.3762/bjnano.9.231] [PMID: 30345211]
[7]
Divvela, M.J.; Joo, Y.L. Discretized modeling of beads-on-a-string morphology from electrically driven, conducting, and viscoelastic polymer jets. J. Appl. Phys., 2017, 121(13), 134306.
[http://dx.doi.org/10.1063/1.4979917]
[8]
Wang, X.X.; Yu, G.F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci., 2021, 115, 100704.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100704]
[9]
Collins, M.N.; Ren, G.; Young, K.; Pina, S.; Reis, R.L.; Oliveira, J.M. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater., 2021, 31(21), 2010609.
[http://dx.doi.org/10.1002/adfm.202010609]
[10]
Isaacoff, B.P.; Brown, K.A. Progress in top-down control of bottom-up assembly. Nano Lett., 2017, 17(11), 6508-6510.
[http://dx.doi.org/10.1021/acs.nanolett.7b04479] [PMID: 29053922]
[11]
Li, T.; Wang, L.; Huang, Y.; Xin, B.; Liu, S. BSA loaded bead-on-string nanofiber scaffold with core-shell structure applied in tissue engineering. J. Biomater. Sci. Polym. Ed., 2020, 31(9), 1223-1236.
[http://dx.doi.org/10.1080/09205063.2020.1753932] [PMID: 32268835]
[12]
Wang, Z.; Zhao, C.; Pan, Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J. Colloid Interface Sci., 2015, 441, 121-129.
[http://dx.doi.org/10.1016/j.jcis.2014.11.041] [PMID: 25499733]
[13]
Gao, X.; Wen, S.S.; Yang, B.L.; Xue, J.; Wang, H.H. Enhanced air filtration performance under high-humidity condition through electrospun membranes with optimized structure. Chin. J. Chem. Eng., 2020, 28(7), 1788-1795.
[http://dx.doi.org/10.1016/j.cjche.2020.02.025]
[14]
Tan, G.M.; Xue, X.Y.; Zhu, Z.G.; Li, J.S. Ultrahigh and stable water recovery of reverse osmosis-concentrated seawater with membrane distillation by synchronously optimizing membrane interfaces and seawater ingredients. ACS Est. Water, 2021, 1(7), 1577-1586.
[http://dx.doi.org/10.1021/acsestwater.1c00087]
[15]
Zhan, N.; Li, Y.; Zhang, C.; Song, Y.; Wang, H.; Sun, L.; Yang, Q.; Hong, X. A novel multinozzle electrospinning process for preparing superhydrophobic PS films with controllable bead-on-string/microfiber morphology. J. Colloid Interface Sci., 2010, 345(2), 491-495.
[http://dx.doi.org/10.1016/j.jcis.2010.01.051] [PMID: 20149384]
[16]
Wang, Y.; Lai, C.; Wang, X.; Liu, Y.; Hu, H.; Guo, Y.; Ma, K.; Fei, B.; Xin, J.H. Beads-on-string structured nanofibers for smart and reversible oil/water separation with outstanding antifouling property. ACS Appl. Mater. Interfaces, 2016, 8(38), 25612-25620.
[http://dx.doi.org/10.1021/acsami.6b08747] [PMID: 27588341]
[17]
Wang, L.F.; Yang, S.Y.; Wang, J.; Wang, C.F.; Chen, L. Fabrication of superhydrophobic TPU film for oil-water separation based on electrospinning route. Mater. Lett., 2011, 65(5), 869-872.
[http://dx.doi.org/10.1016/j.matlet.2010.12.024]
[18]
Ding, Y.D.; Xu, D.; Shao, H.; Cong, T.; Hong, X.; Zhao, H.Y. Superhydrophobic-superoleophilic SiO2/polystyrene porous micro/nanofibers for efficient oil-water separation. Fibers Polym., 2019, 20(10), 2017-2024.
[http://dx.doi.org/10.1007/s12221-019-9040-7]
[19]
Yang, D.; Ni, W.; Cheng, J.L.; Wang, Z.P.; Wang, T.; Guan, Q.; Zhang, Y.; Wu, H.; Li, X.D.; Wang, B. Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium-sulfur batteries. Appl. Surf. Sci., 2017, 413, 209-218.
[http://dx.doi.org/10.1016/j.apsusc.2017.04.046]
[20]
Li, Y.; Wang, Y.; Pun, E.Y.B.; Lin, H. Bead-on-string fibers electrospun from terbium acetylacetonate hydrate doped poly methyl methacrylate. Opt. Mater. Express, 2018, 8(2), 276-288.
[http://dx.doi.org/10.1364/OME.8.000276]
[21]
Kadam, V.; Kyratzis, I.L.; Truong, Y.B.; Schutz, J.; Wang, L.J.; Padhye, R. Electrospun bilayer nanomembrane with hierarchical placement of bead-on-string and fibers for low resistance respiratory air filtration. Separ. Purif. Tech., 2019, 224, 247-254.
[http://dx.doi.org/10.1016/j.seppur.2019.05.033]
[22]
Fong, H.; Chun, I.; Reneker, D.H. Beaded nanofibers formed during electrospinning. Polymer (Guildf.), 1999, 40(16), 4585-4592.
[http://dx.doi.org/10.1016/S0032-3861(99)00068-3]
[23]
Al-Qadhi, M.; Merah, N.; Matin, A.; Abu-Dheir, N.; Khaled, M.; Youcef-Toumi, K. Preparation of superhydrophobic and self-cleaning polysulfone non-wovens by electrospinning: Influence of process parameters on morphology and hydrophobicity. J. Polym. Res., 2015, 22(11), 207.
[http://dx.doi.org/10.1007/s10965-015-0844-x]
[24]
Tian, X.L.; Bai, H.; Zheng, Y.M.; Jiang, L. Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting. Adv. Funct. Mater., 2011, 21(8), 1398-1402.
[http://dx.doi.org/10.1002/adfm.201002061]
[25]
Gernhardt, M.; Peng, L.; Burgard, M.; Jiang, S.H.; Forster, B.; Schmalz, H.; Agarwal, S. Tailoring the morphology of responsive bioinspired bicomponent fibers. Macromol. Mater. Eng., 2018, 303(1), 1700248.
[http://dx.doi.org/10.1002/mame.201700248]
[26]
Li, T.X.; Ding, X.; Tian, L.L.; Ramakrishna, S. Engineering BSA-dextran particles encapsulated bead-on-string nanofiber scaffold for tissue engineering applications. J. Mater. Sci., 2017, 52(18), 10661-10672.
[http://dx.doi.org/10.1007/s10853-017-1245-9]
[27]
Li, T.X.; Huang, Y.F.; Wang, L.; Xin, B.J. Release behaviors and kinetics of coated bead-on-string nanofibrous multilayer membranes loaded with drug particles. Polym. Int., 2021, 70(9), 1396-1403.
[http://dx.doi.org/10.1002/pi.6214]
[28]
He, H.; Wu, M.A.; Zhu, J.W.; Yang, Y.Y.; Ge, R.L.; Yu, D.G. Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv. Fiber Mater, 2022, 4, 305-317.
[29]
Li, D.; Wang, M.; Song, W.L.; Yu, D.G.; Bligh, S.W.A. Electrospun Janus beads-on-a-string structures for different types of controlled release profiles of double drugs. Biomolecules, 2021, 11(5), 635.
[http://dx.doi.org/10.3390/biom11050635] [PMID: 33922935]
[30]
Cooley, J.F. Apparatus for electrically dispersing fluids U.S. Patent 692,631,4, 1902.
[31]
Bhagure, S.S.; Rao, D.A.R. A review: Electrospinning and electrospinning nanofiber technology, process & application. Int. J. Innov. Sci. Res. Technol., 2020, 5(6), 528-538.
[http://dx.doi.org/10.38124/IJISRT20JUN521]
[32]
Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev., 2019, 119(8), 5298-5415.
[http://dx.doi.org/10.1021/acs.chemrev.8b00593] [PMID: 30916938]
[33]
Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D. Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromol. Mater. Eng., 2013, 298(5), 504-520.
[http://dx.doi.org/10.1002/mame.201200290]
[34]
Wang, K.; Tan, H.Y.; Tian, D.; Xiong, B.J.; Zhang, L.B.; Zhu, J.T. Generation of aligned electrospun fibers by using insulating and hydrophobic collectors. ACS Appl. Polym. Mater., 2020, 2(6), 2151-2159.
[http://dx.doi.org/10.1021/acsapm.0c00121]
[35]
Topuz, F.; Uyar, T. Electrospinning of cyclodextrin nanofibers: The effect of process parameters. J. Nanomater., 2020, 2020, e7529306.
[http://dx.doi.org/10.1155/2020/7529306]
[36]
Castro Coelho, S.; Nogueiro Estevinho, B.; Rocha, F. Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying - A review. Food Chem., 2021, 339, 127850.
[http://dx.doi.org/10.1016/j.foodchem.2020.127850] [PMID: 32861932]
[37]
Haider, A.; Haider, S.; Kang, I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem., 2018, 11(8), 1165-1188.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.015]
[38]
Okutan, N.; Terzi, P.; Altay, F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll., 2014, 39, 19-26.
[http://dx.doi.org/10.1016/j.foodhyd.2013.12.022]
[39]
Tripatanasuwan, S.; Zhong, Z.X.; Reneker, D.H. Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution. Polymer (Guildf.), 2007, 48(19), 5742-5746.
[http://dx.doi.org/10.1016/j.polymer.2007.07.045]
[40]
Jin, S.; Yu, J.; Zheng, Y.; Wang, W.Y.; Xin, B.; Kan, C.W. Preparation and characterization of electrospun PAN/PSA carbonized nanofibers: Experiment and simulation study. Nanomaterials (Basel), 2018, 8(10), 821.
[http://dx.doi.org/10.3390/nano8100821] [PMID: 30314395]
[41]
Kang, S.X.; Zhao, K.; Yu, D.G.; Zheng, X.L.; Huang, C.X. Advances in biosensing and environmental monitoring based on electrospun nanofibers. Adv. Fiber Mater., 2022, 4, 404-435.
[42]
Sun, Y.; Cheng, S.H.; Lu, W.J.; Wang, Y.F.; Zhang, P.P.; Yao, Q.Q. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Advances, 2019, 9(44), 25712-25729.
[http://dx.doi.org/10.1039/C9RA05012D]
[43]
Rasouli, M.; Pirsalami, S.; Zebarjad, S.M. Study on the formation and structural evolution of bead-on-string in electrospun polysulfone mats. Polym. Int., 2020, 69(9), 822-832.
[http://dx.doi.org/10.1002/pi.6021]
[44]
Dodero, A.; Brunengo, E.; Alloisio, M.; Sionkowska, A.; Vicini, S.; Castellano, M. Chitosan-based electrospun membranes: Effects of solution viscosity, coagulant and crosslinker. Carbohydr. Polym., 2020, 235, 115976.
[http://dx.doi.org/10.1016/j.carbpol.2020.115976] [PMID: 32122507]
[45]
Lee, H.; Nishino, M.; Sohn, D.; Lee, J.S.; Kim, I.S. Control of the morphology of cellulose acetate nanofibers via electrospinning. Cellulose, 2018, 25(5), 2829-2837.
[http://dx.doi.org/10.1007/s10570-018-1744-0]
[46]
Vicente, A.C.B.; Medeiros, G.B.; Vieira, D.D.; Garcia, F.P.; Nakamura, C.V.; Muniz, E.C.; Corradini, E. Influence of process variables on the yield and diameter of zein-poly(N-isopropylacrylamide) fiber blends obtained by electrospinning. J. Mol. Liq., 2019, 292, 109971.
[http://dx.doi.org/10.1016/j.molliq.2018.11.061]
[47]
Najafi, S.J.; Nosraty, H.; Shokrieh, M.M.; Gharehaghaji, A.A.; Bahrami, S.H. The effect of electrospinning parameters on the morphology of glass nanofibers. J. Textil. Inst., 2020, 111(7), 941-949.
[http://dx.doi.org/10.1080/00405000.2020.1711993]
[48]
Zargham, S.; Bazgir, S.; Tavakoli, A.; Rashidi, A.S.; Damerchely, R. The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. J. Eng. Fibers Fabrics, 2012, 7(4), 42-49.
[http://dx.doi.org/10.1177/155892501200700414]
[49]
Wang, C.; Chien, H.S.; Hsu, C.H.; Wang, Y.C.; Wang, C.T.; Lu, H.A. Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules, 2007, 40(22), 7973-7983.
[http://dx.doi.org/10.1021/ma070508n]
[50]
Huang, J.J.; Tian, Y.X.; Wang, R.; Tian, M.; Liao, Y. Fabrication of bead-on-string polyacrylonitrile nanofibrous air filters with superior filtration efficiency and ultralow pressure drop. Separ. Purif. Tech., 2020, 237, 116377.
[http://dx.doi.org/10.1016/j.seppur.2019.116377]
[51]
Kim, G.H.; Yoon, H. A direct-electrospinning process by combined electric field and air-blowing system for nanofibrous wound-dressings. Appl. Phys., A Mater. Sci. Process., 2008, 90(3), 389-394.
[http://dx.doi.org/10.1007/s00339-007-4330-0]
[52]
Zheng, J.F.; He, A.H.; Li, J.X.; Xu, J.; Han, C.C. Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying. Polymer (Guildf.), 2006, 47(20), 7095-7102.
[http://dx.doi.org/10.1016/j.polymer.2006.08.019]
[53]
Rayleigh, L. On the equilibrium of liquid conducting masses charged with electricity. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1882, 14(87), 184-186.
[http://dx.doi.org/10.1080/14786448208628425]
[54]
Taylor, G.I. Disintegration of water drops in an electric field. Proc.R. Soc. Lond. Ser. A, 1964, 280, 383-397.
[55]
Reneker, D.H.; Iksoo, C. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996, 7(3), 216-223.
[http://dx.doi.org/10.1088/0957-4484/7/3/009]
[56]
Omer, S.; Forgách, L.; Zelkó, R.; Sebe, I. Scale-up of electrospinning: Market overview of products and devices for pharmaceutical and biomedical purposes. Pharmaceutics, 2021, 13(2), 286.
[http://dx.doi.org/10.3390/pharmaceutics13020286] [PMID: 33671624]
[57]
Xiong, J.A.; Liu, Y.; Li, A.L.; Wei, L.; Wang, L.M.; Qin, X.H.; Yu, J.Y. Mass production of high-quality nanofibers via constructing pre-Taylor cones with high curvature on needleless electrospinning. Mater. Des., 2021, 197, 109247.
[http://dx.doi.org/10.1016/j.matdes.2020.109247]
[58]
Al‐Mezrakchi, R.Y.H.; Naraghi, M. Interfused nanofibres network in scalable manufacturing of polymeric fibres via multi‐nozzle electrospinning. Micro & Nano Lett., 2018, 13(4), 536-540.
[http://dx.doi.org/10.1049/mnl.2017.0640]
[59]
Kao, T.H.; Chen, J.K.; Cheng, C.C.; Su, C.J.; Chang, F.C. Low-surface-free-energy polybenzoxazine/polyacrylonitrile fibers for biononfouling membrane. Polymer (Guildf.), 2013, 54(1), 258-268.
[http://dx.doi.org/10.1016/j.polymer.2012.11.020]
[60]
Zanjani, J.S.M.; Okan, B.S.; Letofsky-Papst, I.; Yildiz, M.; Menceloglu, Y.Z. Rational design and direct fabrication of multi-walled hollow electrospun fibers with controllable structure and surface properties. Eur. Polym. J., 2015, 62, 66-76.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.10.019]
[61]
Zanjani, J.S.M.; Okan, B.S.; Letofsky-Papst, I.; Menceloglu, Y.; Yildiz, M. Repeated self-healing of nano and micro scale cracks in epoxy based composites by tri-axial electrospun fibers including different healing agents. RSC Adv., 2015, 5(89), 73133-73145.
[http://dx.doi.org/10.1039/C5RA15483A]
[62]
Liu, X.; Xu, H.; Zhang, M.; Yu, D.G. Electrospun medicated nanofibers for wound healing. Membranes (Basel), 2021, 11(10), 770.
[http://dx.doi.org/10.3390/membranes11100770] [PMID: 34677536]
[63]
Zhao, K.; Lu, Z.H.; Zhao, P.; Kang, S.X.; Yang, Y.Y.; Yu, D.G. Modified tri-axial electrospun functional core-shell nanofibrous membranes for natural photodegradation of antibiotics. Chem. Eng. J., 2021, 425, 131455.
[http://dx.doi.org/10.1016/j.cej.2021.131455]
[64]
Lv, H.; Guo, S.; Zhang, G.; He, W.; Wu, Y.; Yu, D.G. Electrospun structural hybrids of acyclovir-polyacrylonitrile at acyclovir for modifying drug release. Polymers (Basel), 2021, 13(24), 4286.
[http://dx.doi.org/10.3390/polym13244286] [PMID: 34960834]
[65]
Wei, K.; Gu, X.Y.; Chen, E.Z.; Wang, Y.Q.; Dai, Z.; Zhu, Z.R.; Kang, S.Q.; Wang, A.C.; Gao, X.P.; Sun, G.Z.; Pan, X.J.; Zhou, J.Y.; Xie, E.Q. Dissymmetric interface design of SnO2/TiO2 side-by-side bi-component nanofibers as photoanodes for dye sensitized solar cells: Facilitated electron transport and enhanced carrier separation. J. Colloid Interface Sci., 2021, 583, 24-32.
[http://dx.doi.org/10.1016/j.jcis.2020.09.017] [PMID: 32971502]
[66]
Yoon, J.; Yang, H.S.; Lee, B.S.; Yu, W.R. Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications. Adv. Mater., 2018, 30(42), e1704765.
[http://dx.doi.org/10.1002/adma.201704765] [PMID: 30152180]
[67]
Liu, Y.; Chen, X.; Yu, D.G.; Liu, H.; Liu, Y.; Liu, P. Electrospun PVP-core/PHBV-shell fibers to eliminate tailing off for an improved sustained release of curcumin. Mol. Pharm., 2021, 18(11), 4170-4178.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00559] [PMID: 34582196]
[68]
Xu, H.; Xu, X.; Li, S.; Song, W.L.; Yu, D.G.; Annie Bligh, S.W. The effect of drug heterogeneous distributions within core-sheath nanostructures on its sustained release profiles. Biomolecules, 2021, 11(9), 1330.
[http://dx.doi.org/10.3390/biom11091330] [PMID: 34572545]
[69]
Rathore, P.; Schiffman, J.D. Beyond the single-nozzle: Coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl. Mater. Interfaces, 2021, 13(1), 48-66.
[http://dx.doi.org/10.1021/acsami.0c17706] [PMID: 33356093]
[70]
Ning, T.; Zhou, Y.; Xu, H.; Guo, S.; Wang, K.; Yu, D.G. Orodispersible membranes from a modified coaxial electrospinning for fast dissolution of diclofenac sodium. Membranes (Basel), 2021, 11(11), 802.
[http://dx.doi.org/10.3390/membranes11110802] [PMID: 34832031]
[71]
Zhao, Y.; Cao, X.; Jiang, L. Bio-mimic multichannel microtubes by a facile method. J. Am. Chem. Soc., 2007, 129(4), 764-765.
[http://dx.doi.org/10.1021/ja068165g] [PMID: 17243804]
[72]
George, M.C.; Braun, P.V. Multicompartmental materials by electrohydrodynamic cojetting. Angew. Chem. Int. Ed. Engl., 2009, 48(46), 8606-8609.
[http://dx.doi.org/10.1002/anie.200904089] [PMID: 19816901]
[73]
Zanjani, J.S.M.; Okan, B.S.; Yilmaz, C.; Menceloglu, Y.; Yildiz, M. Monitoring the interface and bulk self-healing capability of tri-axial electrospun fibers in glass fiber reinforced epoxy composites. Compos., Part A Appl. Sci. Manuf., 2017, 99, 221-232.
[http://dx.doi.org/10.1016/j.compositesa.2017.04.017]
[74]
Chang, S.Y.; Wang, M.L.; Zhang, F.Y.; Liu, Y.B.; Liu, X.K.; Yu, D.G.; Shen, H. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning. Mater. Des., 2020, 192, 108782.
[http://dx.doi.org/10.1016/j.matdes.2020.108782]
[75]
Lee, K.J.; Park, T.H.; Hwang, S.; Yoon, J.; Lahann, J. Janus-core and shell microfibers. Langmuir, 2013, 29(20), 6181-6186.
[http://dx.doi.org/10.1021/la4009416] [PMID: 23617390]
[76]
Labbaf, S.; Ghanbar, H.; Stride, E.; Edirisinghe, M. Preparation of multilayered polymeric structures using a novel four-needle coaxial electrohydrodynamic device. Macromol. Rapid Commun., 2014, 35(6), 618-623.
[http://dx.doi.org/10.1002/marc.201300777] [PMID: 24510905]
[77]
Zhang, X.D.; Chi, C.; Chen, J.J.; Zhang, X.D.; Gong, M.; Wang, X.; Yan, J.H.; Shi, R.; Zhang, L.Q.; Xue, J.J. Electrospun quad-axial nanofibers for controlled and sustained drug delivery. Mater. Des., 2021, 206, 109732.
[http://dx.doi.org/10.1016/j.matdes.2021.109732]
[78]
Lee, M.S.; Lee, T.S.; Park, W.H. Highly hydrophobic nanofibrous surfaces genearated by poly(vinylidene fluoride). Fibers Polym., 2013, 14(8), 1271-1275.
[http://dx.doi.org/10.1007/s12221-013-1271-4]
[79]
Li, J.; Zhang, D.Z.; Yang, T.T.; Yang, S.; Yang, X.D.; Zhu, H.W. Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5. J. Membr. Sci., 2018, 551, 85-92.
[http://dx.doi.org/10.1016/j.memsci.2018.01.025]
[80]
Jiang, S.H.; Chen, Y.M.; Duan, G.G.; Mei, C.T.; Greiner, A.; Agarwal, S. Electrospun nanofiber reinforced composites: A review. Polym. Chem., 2018, 9(20), 2685-2720.
[http://dx.doi.org/10.1039/C8PY00378E]
[81]
Zhou, K.C.; Wang, M.L.; Zhou, Y.Q.; Sun, M.J.; Xie, Y.F.; Yu, D.G. Comparisons of antibacterial performances between electrospun polymer@drug nanohybrids with drug-polymer nanocomposites. Adv. Compos. Hybrid Mater., 2022.
[http://dx.doi.org/10.1007/s42114-021-00389-9]
[82]
Yu, D.G.; Lv, H. Preface-striding into nano drug delivery. Curr. Drug Deliv., 2022, 19(1), 1-3.
[http://dx.doi.org/10.2174/156720181901220120094538] [PMID: 34951573]
[83]
Bonfim, D.P.F.; Cruz, F.G.S.; Bretas, R.E.S.; Guerra, V.G.; Aguiar, M.L. A sustainable recycling alternative: Electrospun PET-membranes for air nanofiltration. Polymers (Basel), 2021, 13(7), 1166.
[http://dx.doi.org/10.3390/polym13071166] [PMID: 33916472]
[84]
Liu, Q.; Zhu, J.H.; Zhang, L.W.; Qiu, Y.J. Recent advances in energy materials by electrospinning. Renew. Sustain. Energy Rev., 2018, 81, 1825-1858.
[http://dx.doi.org/10.1016/j.rser.2017.05.281]
[85]
Zhu, S.L.; Nie, L.H. Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. J. Ind. Eng. Chem., 2021, 93, 28-56.
[http://dx.doi.org/10.1016/j.jiec.2020.09.016]
[86]
Zhang, X.L.; Guo, S.Q.; Qin, Y.; Li, C.J. Functional electrospun nanocomposites for efficient oxygen reduction reaction. Chem. Res. Chin. Univ., 2021, 37(3), 379-393.
[http://dx.doi.org/10.1007/s40242-021-1123-5]
[87]
Kamsani, N.H.; Haris, M.S.; Pandey, M.; Taher, M.; Rullah, K. Biomedical application of responsive “smart” electrospun nanofibers in drug delivery system: A minireview. Arab. J. Chem., 2021, 14(7), 103199.
[http://dx.doi.org/10.1016/j.arabjc.2021.103199]
[88]
Tran, P.; Pyo, Y.C.; Kim, D.H.; Lee, S.E.; Kim, J.K.; Park, J.S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics, 2019, 11(3), 132.
[http://dx.doi.org/10.3390/pharmaceutics11030132] [PMID: 30893899]
[89]
Song, Y.D.; Huang, H.; He, D.Y.; Yang, M.; Wang, H.; Zhang, H.; Li, J.L.; Li, Y.X.; Wang, C. Gallic acid/2-hydroxypropyl-β-cyclodextrin inclusion complexes electrospun nanofibrous webs: Fast dissolution, improved aqueous solubility and antioxidant property of gallic acid. Chem. Res. Chin. Univ., 2021, 37(3), 450-455.
[http://dx.doi.org/10.1007/s40242-021-0014-0]
[90]
Kang, S.; Hou, S.; Chen, X.; Yu, D.G.; Wang, L.; Li, X.; R. Williams, G. Energy-saving electrospinning with a concentric Teflon-core rod spinneret to create medicated nanofibers. Polymers (Basel), 2020, 12(10), 2421.
[http://dx.doi.org/10.3390/polym12102421] [PMID: 33092310]
[91]
Yu, D-G.; Wang, M.L.; Ge, R.L. Strategies for sustained drug release from electrospun multi‐layer nanostructures. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, e1772.
[92]
Zhang, M.; Song, W.; Tang, Y.; Xu, X.; Huang, Y.; Yu, D. Polymer-based nanofiber-nanoparticle hybrids and their medical applications. Polymers (Basel), 2022, 14(2), 351.
[http://dx.doi.org/10.3390/polym14020351] [PMID: 35054758]
[93]
Khalf, A.; Madihally, S.V. Recent advances in multiaxial electrospinning for drug delivery. Eur. J. Pharm. Biopharm., 2017, 112, 1-17.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.010] [PMID: 27865991]
[94]
Wang, P.; Li, Y.; Zhang, C.; Feng, F.; Zhang, H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem., 2020, 308, 125599.
[http://dx.doi.org/10.1016/j.foodchem.2019.125599] [PMID: 31648098]
[95]
Singh, A.; Rath, G.; Singh, R.; Goyal, A.K. Nanofibers: An effective tool for controlled and sustained drug delivery. Curr. Drug Deliv., 2018, 15(2), 155-166.
[http://dx.doi.org/10.2174/1567201814666171002115230] [PMID: 28969554]
[96]
Hwang, S.R.; Chakraborty, K.; An, J.M.; Mondal, J.; Yoon, H.Y.; Lee, Y.K. Pharmaceutical aspects of nanocarriers for smart anticancer therapy. Pharmaceutics, 2021, 13(11), 1875.
[http://dx.doi.org/10.3390/pharmaceutics13111875] [PMID: 34834290]
[97]
Ghosal, K.; Augustine, R.; Zaszczynska, A.; Barman, M.; Jain, A.; Hasan, A.; Kalarikkal, N.; Sajkiewicz, P.; Thomas, S. Novel drug delivery systems based on triaxial electrospinning based nanofibers. React. Funct. Polym., 2021, 163, 104895.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2021.104895]
[98]
Samadzadeh, S.; Babazadeh, M.; Zarghami, N.; Pilehvar-Soltanahmadi, Y.; Mousazadeh, H. An implantable smart hyperthermia nanofiber with switchable, controlled and sustained drug release: Possible application in prevention of cancer local recurrence. Mater. Sci. Eng. C, 2021, 118, 111384.
[http://dx.doi.org/10.1016/j.msec.2020.111384] [PMID: 33254991]
[99]
Hou, J.S.; Yang, Y.Y.; Yu, D.G.; Chen, Z.Z.; Wang, K.; Liu, Y.N.; Williams, G.R. Multifunctional fabrics finished using electrosprayed hybrid Janus particles containing nanocatalysts. Chem. Eng. J., 2021, 411, 128474.
[http://dx.doi.org/10.1016/j.cej.2021.128474]
[100]
Zhang, J.H.; Li, Y.; Du, J.H.; Hao, X.H.; Huang, H.T. High-power wearable triboelectric nanogenerator prepared from self-assembled electrospun poly(vinylidene fluoride) fibers with heart-like structure. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(19), 11724-11733.
[http://dx.doi.org/10.1039/C9TA01956A]
[101]
Vadodaria, S.S.; English, R.J. Extensional rheometry of cellulose ether solutions: Flow instability. Cellulose, 2016, 23(1), 339-355.
[http://dx.doi.org/10.1007/s10570-015-0838-1]
[102]
Zuo, W.W.; Zhu, M.F.; Yang, W.; Yu, H.; Chen, Y.M.; Zhang, Y. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym. Eng. Sci., 2005, 45(5), 704-709.
[http://dx.doi.org/10.1002/pen.20304]
[103]
Zhou, J.J.; Doi, M. Dynamics of viscoelastic filaments based on onsager principle. Phys. Rev. Fluids, 2018, 3(8), 084004.
[http://dx.doi.org/10.1103/PhysRevFluids.3.084004]
[104]
Taffetani, M.; Ciarletta, P. Elastocapillarity can control the formation and the morphology of beads-on-string structures in solid fibers. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2015, 91(3), 032413.
[http://dx.doi.org/10.1103/PhysRevE.91.032413] [PMID: 25871129]
[105]
Li, F.; Yin, X.Y.; Yin, X.Z. Transition from a beads-on-string to a spike structure in an electrified viscoelastic jet. Phys. Fluids, 2017, 29(2), 023106.
[http://dx.doi.org/10.1063/1.4976851]
[106]
Shenoy, S.L.; Bates, W.D.; Frisch, H.L.; Wnek, G.E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit. Polymer (Guildf.), 2005, 46(10), 3372-3384.
[http://dx.doi.org/10.1016/j.polymer.2005.03.011]
[107]
Xue, Y.Y.; Guo, X.; Zhou, H.F.; Zhou, J.S. Influence of beads-on-string on Na-Ion storage behavior in electrospun carbon nanofibers. Carbon, 2019, 154, 219-229.
[http://dx.doi.org/10.1016/j.carbon.2019.08.003]
[108]
Li, T.; Ding, X.; Tian, L.; Hu, J.; Yang, X.; Ramakrishna, S. The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs. Mater. Sci. Eng. C, 2017, 74, 471-477.
[http://dx.doi.org/10.1016/j.msec.2016.12.050] [PMID: 28254320]
[109]
Li, T.; Liu, L.; Wang, L.; Ding, X. Solid drug particles encapsulated bead-on-string nanofibers: The control of bead number and its corresponding release profile. J. Biomater. Sci. Polym. Ed., 2019, 30(15), 1454-1469.
[http://dx.doi.org/10.1080/09205063.2019.1643984] [PMID: 31304871]
[110]
Khodaverdi, E.; Eisvand, F.; Nezami, M.S.; Shiadeh, S.N.R.; Kamali, H.; Hadizadeh, F. Injectable in situ forming depot of doxycycline hyclate/alpha-cyclodextrin complex using PLGA for periodontitis treatment: Preparation, characterization, and in vitro evaluation. Curr. Drug Deliv., 2021, 18(6), 729-740.
[http://dx.doi.org/10.2174/1567201817999201103195104] [PMID: 33155908]
[111]
Obeidat, W.M.; Gharaibeh, S.F.; Jaradat, A.A.; Abualsuod, O. Preparation and evaluation of ternary polymeric blends for controlled release matrices containing weakly basic model drug. Curr. Drug Deliv., 2021, 18(1), 54-64.
[http://dx.doi.org/10.2174/1567201817666200731170040] [PMID: 32735522]
[112]
Wang, Q.; Newby, B.Z. Octadecyltrichlorosilane incorporated alginate micro-granules as sustained-release carriers for small hydrophilic molecules. Curr. Drug Deliv., 2020, 17(4), 333-342.
[http://dx.doi.org/10.2174/1567201817666200210123328] [PMID: 32039685]
[113]
Chou, S.F.; Carson, D.; Woodrow, K.A. Current strategies for sustaining drug release from electrospun nanofibers J. Control. Release, 2015, 220(Pt B), 584-591.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.008] [PMID: 26363300]
[114]
Jeckson, T.A.; Neo, Y.P.; Sisinthy, S.P.; Gorain, B. Delivery of therapeutics from layer-by-layer electrospun nanofiber matrix for wound healing: An update. J. Pharm. Sci., 2021, 110(2), 635-653.
[http://dx.doi.org/10.1016/j.xphs.2020.10.003] [PMID: 33039441]
[115]
Pant, B.; Park, M.; Park, S.J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics, 2019, 11(7), 305.
[http://dx.doi.org/10.3390/pharmaceutics11070305] [PMID: 31266186]
[116]
Li, T.X.; Ding, X.; Sui, X.; Tian, L.L.; Zhang, Y.; Hu, J.Y.; Yang, X.D. Sustained release of protein particle encapsulated in bead-on-string electrospun nanofibers. J. Macromol. Sci. Part B Phys., 2015, 54(8), 887-896.
[http://dx.doi.org/10.1080/00222348.2015.1051210]
[117]
Gaharwar, A.K.; Mihaila, S.M.; Kulkarni, A.A.; Patel, A.; Di Luca, A.; Reis, R.L.; Gomes, M.E.; van Blitterswijk, C.; Moroni, L.; Khademhosseini, A. Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. J. Control. Release, 2014, 187, 66-73.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.035] [PMID: 24794894]
[118]
Ma, P.P.; Gou, S.Q.; Wang, M.; Chen, J.C.; Hu, W.; Xiao, B. Knitted silk fibroin-reinforced bead-on-string electrospun fibers for sustained drug delivery against colon cancer. Macromol. Mater. Eng., 2018, 303(5), 1700666.
[http://dx.doi.org/10.1002/mame.201700666]
[119]
Esmailian, S.; Irani, S.; Bakhshi, H.; Zandi, M. Biodegradable bead-on-spring nanofibers releasing β-carotene for bone tissue engineering. Mater. Sci. Eng. C, 2018, 92, 800-806.
[http://dx.doi.org/10.1016/j.msec.2018.07.030] [PMID: 30184809]
[120]
Li, C.; Liu, L.; Zhang, T.; Wang, F.; Wang, L. β-Tricalcium phosphate contained beaded-fiber scaffolds characterized by high early osteoinductive activity for vascularized bone regeneration. Colloids Surf. B Biointerfaces, 2021, 201, 111639.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111639] [PMID: 33639511]
[121]
Yu, D.G.; Branford-White, C.; Bligh, S.W.A.; White, K.; Chatterton, N.P.; Zhu, L.M. Improving polymer nanofiber quality using a modified co-axial electrospinning process. Macromol. Rapid Commun., 2011, 32(9-10), 744-750.
[http://dx.doi.org/10.1002/marc.201100049] [PMID: 21438063]
[122]
Yu, D.G.; Li, X.Y.; Chian, W.; Li, Y.; Wang, X. Influence of sheath solvents on the quality of ethyl cellulose nanofibers in a coaxial electrospinning process. Biomed. Mater. Eng., 2014, 24(1), 695-701.
[http://dx.doi.org/10.3233/BME-130857] [PMID: 24211954]
[123]
Wang, M.L.; Hou, J.S.; Yu, D.G.; Li, S.Y.; Zhu, J.W.; Chen, Z.Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. J. Alloys Compd., 2020, 846, 156471.
[http://dx.doi.org/10.1016/j.jallcom.2020.156471]
[124]
Wang, Q.; Yu, D.G.; Zhang, L.L.; Liu, X.K.; Deng, Y.C.; Zhao, M. Electrospun hypromellose-based hydrophilic composites for rapid dissolution of poorly water-soluble drug. Carbohydr. Polym., 2017, 174, 617-625.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.075] [PMID: 28821112]
[125]
Wang, Q.; Li, H.P.; Yang, C.; Li, J.J.; Yu, D.G. Beads-on-a-string amorphous solid dispersion fabricated using a modified coaxial electrospinning. J. Control. Release, 2017, 259, e111-e112.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.233]
[126]
Thakur, N.; Ranganath, A.S.; Agarwal, K.; Baji, A. Electrospun bead-on-string hierarchical fibers for fog harvesting application. Macromol. Mater. Eng., 2017, 302(7), 1700124.
[http://dx.doi.org/10.1002/mame.201700124]
[127]
Xi, H.J.; Zhao, H.J. Silk fibroin coaxial bead-on-string fiber materials and their drug release behaviors in different pH. J. Mater. Sci., 2019, 54(5), 4246-4258.
[http://dx.doi.org/10.1007/s10853-018-3137-z]
[128]
Zhuo, H.T.; Hu, J.L.; Chen, S.J. Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials. Express Polym. Lett., 2011, 5(2), 182-187.
[http://dx.doi.org/10.3144/expresspolymlett.2011.16]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy