Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Delocalized Lipophilic Cation Triphenyl Phosphonium: Promising Molecule for Mitochondria Targeting

Author(s): Abhishek Pawar, Swati Korake, Atmaram Pawar and Ravindra Kamble*

Volume 20, Issue 9, 2023

Published on: 11 August, 2022

Page: [1217 - 1223] Pages: 7

DOI: 10.2174/1567201819666220525092527

Price: $65

Abstract

The mitochondria are a dynamic powerhouse organelle that contributes greatly to cancer therapy. Solving the current problems that occur mostly in chemotherapy and diagnosis of various cancers targeting the Mitochondria is an implying approach. In this review, it is discussed how the tethering of mitochondrial-targeting moieties to chemotherapeutics, fluorescent dyes and photothermal molecules can enhance the anticancer effect. The most extensively used mitochondrial targeting conjugate is Triphenyl phosphonium (TPP), which is a delocalized lipophilic cation that gets easily accumulated via the endocytosis mechanism due to the decreased mitochondrial membrane potential of the cancer cell. Credited for this characteristic, TPP has been extensively investigated in targeting mitochondria and delivery of cancer theranostics. This mitochondrial targeting strategy attracted great attention in cancer targeting nanotechnology. The TPP based nanoformulation have exhibited amplified therapeutic outcomes in the treatment of various cancer. Thus, TPP is an ultimate carrier with magnificent potential as a mitochondrial targeting agent.

Keywords: Triphenyl phosphonium (TPP), mitochondria, apoptosis, photodynamic therapy, delocalized cation, cancer.

Next »
Graphical Abstract

[1]
Luo, J.; Solimini, N.L.; Elledge, S.J. Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell, 2009, 136(5), 823-837.
[http://dx.doi.org/10.1016/j.cell.2009.02.024] [PMID: 19269363]
[2]
Bae, K.H.; Chung, H.J.; Park, T.G. Nanomaterials for cancer therapy and imaging. Mol. Cells, 2011, 31(4), 295-302.
[http://dx.doi.org/10.1007/s10059-011-0051-5] [PMID: 21360197]
[3]
Wagstaff, K.M.; Jans, D.A. Nuclear drug delivery to target tumour cells. Eur. J. Pharmacol., 2009, 625(1-3), 174-180.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.069] [PMID: 19836384]
[4]
Chabner, B.A.; Roberts, T.G., Jr Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[5]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027]
[6]
Northfelt, D.W.; Martin, F.J.; Working, P.; Volberding, P.A.; Russell, J.; Newmann, M.; Amantea, M.A.; Kaplan, L.D. Doxorubicin encapsulated in liposomes containing polyethylene glycol: Pharmacokinetics, tumor localization and safety in patients with AIDS-related Kaposi’s sarcoma. J. Clin. Pharmacol., 1996, 36(1), 55-63.
[http://dx.doi.org/10.1002/j.1552-4604.1996.tb04152.x]
[7]
Iyer, A.K.; Khaled, G.; Jun, F.; Hiroshi, M. Exploiting the enhanced permeability and retention effect for tumour targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[8]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387]
[9]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[10]
Nadaf, S.J.; Killedar, S.G. Nanoliposome precursors for shape modulation: Use of heuristic algorithm and QBD principles for encapsulating phytochemicals. Curr. Drug Deliv., 2020, 17(7), 599-612.
[http://dx.doi.org/10.2174/1567201817666200512102532] [PMID: 32394839]
[11]
Nasiri, M.; Azadi, A.; Zanjani, M.R.; Hamidi, M. Indinavir-loaded nanostructured lipid carriers to brain drug delivery: Optimization, characterization and neuro pharmacokinetic evaluation. Curr. Drug Deliv., 2019, 16(4), 341-354.
[http://dx.doi.org/10.2174/1567201816666190123124429] [PMID: 30674257]
[12]
Sambamoorthy, U.; Panduragaiah, V.M.; Sidramappa, M.A.; Eswara, B.R.M. Gemcitabine-loaded folic acid tagged liposomes: Improved pharmacokinetics and biodistribution profile. Curr. Drug Deliv., 2019, 16(2), 111-122.
[http://dx.doi.org/10.2174/1567201815666181024112252] [PMID: 30360740]
[13]
Tretiakova, D.; Svirshchevskaya, E.; Onishchenko, N.; Alekseeva, A.; Boldyrev, I.; Kamyshinsky, R.; Natykan, A.; Lokhmotov, A.; Arantseva, D.; Shobolov, D.; Vodovozova, E. Liposomal formulation of a melphalan lipophilic prodrug: Studies of acute toxicity, tolerability, and antitumor efficacy. Curr. Drug Deliv., 2020, 17(4), 312-323.
[http://dx.doi.org/10.2174/1567201817666200214105357] [PMID: 32056524]
[14]
Jadon, P.S.; Gajbhiye, V.; Jadon, R.S.; Gajbhiye, K.R.; Ganesh, N. Enhanced oral bioavailability of griseofulvin via niosomes. AAPS PharmSciTech, 2009, 10(4), 1186-1192.
[http://dx.doi.org/10.1208/s12249-009-9325-z] [PMID: 19856107]
[15]
Jain, S.K.; Gupta, Y.; Jain, A.; Rai, K. Enhanced transdermal delivery of acyclovir sodium via elastic liposomes. Drug Deliv., 2008, 15(3), 141-147.
[http://dx.doi.org/10.1080/10717540801952407] [PMID: 18379926]
[16]
Rai, K.; Gupta, Y.; Jain, A.; Jain, S.K. Transfersomes: Self-optimizing carriers for bioactive. PDA J. Pharm. Sci. Technol., 2008, 62(5), 362-379.
[PMID: 19055232]
[17]
Chen, L.B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol., 1988, 4(1), 155-181.
[http://dx.doi.org/10.1146/annurev.cb.04.110188.001103] [PMID: 3058159]
[18]
Torchilin, V.P. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng., 2006, 8(1), 343-375.
[http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095735] [PMID: 16834560]
[19]
Heller, A.; Brockhoff, G.; Goepferich, A. Targeting drugs to mitochondria. Eur. J. Pharm. Biopharm., 2012, 82(1), 1-18.
[http://dx.doi.org/10.1016/j.ejpb.2012.05.014] [PMID: 22687572]
[20]
Wang, F.; Ogasawara, M.A.; Huang, P. Small mitochondria-targeting molecules as anti-cancer agents. Mol. Aspects Med., 2010, 31(1), 75-92.
[http://dx.doi.org/10.1016/j.mam.2009.12.003] [PMID: 19995573]
[21]
Weissig, V. DQAsomes as the prototype of mitochondria-targeted pharmaceutical nanocarriers: Preparation, characterization, and use. Methods Mol. Biol., 2015, 1265, 1-11.
[http://dx.doi.org/10.1007/978-1-4939-2288-8_1] [PMID: 25634263]
[22]
Zielonka, J.; Joseph, J.; Sikora, A.; Hardy, M.; Olivier, O. Mitochondria-targeted triphenyl phosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev., 2017, 117(15), 10043-10120.
[23]
Wang, Z.; Guo, W.; Kuang, X.; Hou, S.; Liu, H. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective. Asian J. Pharm. Sci., 2017, 12(6), 498-508.
[http://dx.doi.org/10.1016/j.ajps.2017.05.006]
[24]
Hoye, A.T.; Davoren, J.E.; Wipf, P.; Fink, M.P.; Kagan, V.E. Targeting Mitochondria. Acc. Chem. Res., 2008, 41(1), 87-97.
[http://dx.doi.org/10.1021/ar700135m] [PMID: 18193822]
[25]
Porteous, C.M.; Logan, A.; Evans, C.; Ledgerwood, E.C.; Menon, D.K.; Aigbirhio, F.; Smith, R.A.J.; Murphy, M.P. Rapid uptake of lipophilic triphenylphosphonium cations by mitochondria in vivo following intravenous injection: Implications for mitochondria-specific therapies and probes. Biochim. Biophys. Acta, Gen. Subj., 2010, 1800(9), 1009-1017.
[http://dx.doi.org/10.1016/j.bbagen.2010.06.001] [PMID: 20621583]
[26]
Yousif, L.F.; Stewart, K.M.; Kelley, S.O. Targeting mitochondria with organelle-specific compounds: Strategies and applications. ChemBioChem, 2009, 10(12), 1939-1950.
[http://dx.doi.org/10.1002/cbic.200900185] [PMID: 19637148]
[27]
Millard, M.; Gallagher, J.D.; Olenyuk, B.Z.; Neamati, N. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J. Med. Chem., 2013, 56(22), 9170-9179.
[http://dx.doi.org/10.1021/jm4012438] [PMID: 24147900]
[28]
Battogtokh, G.; Gotov, O.; Kang, J.H.; Cho, J.; Jeong, T.H.; Chimed, G.; Ko, Y.T. Triphenylphosphine-docetaxel conjugate-incorporated albumin nanoparticles for cancer treatment. Nanomedicine (Lond.), 2018, 13(3), 325-338.
[http://dx.doi.org/10.2217/nnm-2017-0274] [PMID: 29338573]
[29]
Qi, M.; Zou, S.; Guo, C.; Wang, K.; Yu, Y.; Zhao, F.; Fan, H.; Wu, Z.; Liu, W.; Chen, D. Enhanced in vitro and in vivo anticancer properties by using a nanocarrier for co-delivery of antitumor polypeptide and curcumin. J. Biomed. Nanotechnol., 2018, 14(1), 139-149.
[http://dx.doi.org/10.1166/jbn.2018.2479] [PMID: 29463371]
[30]
Toumazis, I.; Bastani, M.; Han, S.S.; Plevritis, S.K. Risk-based lung cancer screening: A systematic review. Lung Cancer, 2020, 147, 154-186.
[31]
Tandberg, D.J.; Tong, B.C.; Ackerson, B.G.; Kelsey, C.R. Surgery versus stereotactic body radiation therapy for stage I non-small cell lung cancer: A comprehensive review. Cancer, 2018, 124(4), 667-678.
[http://dx.doi.org/10.1002/cncr.31196] [PMID: 29266226]
[32]
Yue, C.; Yang, Y.; Song, J.; Alfranca, G.; Zhang, C.; Zhang, Q.; Yin, T.; Pan, F.; de la Fuente, J.M.; Cui, D. Mitochondria-targeting near-infrared light-triggered thermosensitive liposomes for localized photothermal and photodynamic ablation of tumors combined with chemotherapy. Nanoscale, 2017, 9(31), 11103-11118.
[http://dx.doi.org/10.1039/C7NR02193C] [PMID: 28741634]
[33]
Cai, X.; Luo, Y.; Song, Y.; Liu, D.; Yan, H.; Li, H.; Du, D.; Zhu, C.; Lin, Y. Integrating in situ formation of nanozymes with three-dimensional dendritic mesoporous silica nanospheres for hypoxia-overcoming photodynamic therapy. Nanoscale, 2018, 10(48), 22937-22945.
[http://dx.doi.org/10.1039/C8NR07679K] [PMID: 30500027]
[34]
Schiffman, M.; Solomon, D. Clinical practice. Cervical-cancer screening with human papillomavirus and cytologic cotesting. N. Engl. J. Med., 2013, 369(24), 2324-2331.
[http://dx.doi.org/10.1056/NEJMcp1210379] [PMID: 24328466]
[35]
Cheng, Y.J.; Zeng, X.; Cheng, D.B.; Xu, X.D.; Zhang, X.Z.; Zhuo, R.X.; He, F. Functional Mesoporous Silica Nanoparticles (MSNs) for highly controllable drug release and synergistic therapy. Colloids Surf. B Biointerfaces, 2016, 145, 217-225.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.051] [PMID: 27182657]
[36]
Wang, H.; Xu, W. Mito-methyl coumarin, a novel mitochondria-targeted drug with great antitumor potential was synthesized. Biochem. Biophys. Res. Commun., 2017, 489(1), 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.116] [PMID: 28546001]
[37]
Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[38]
Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol., 2019, 14(2), 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[39]
Piawah, S.; Venook, A.P. Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer, 2019, 125(23), 4139-4147.
[http://dx.doi.org/10.1002/cncr.32163] [PMID: 31433498]
[40]
Peng, N.; Yu, H.; Yu, W.; Yang, M.; Chen, H.; Zou, T.; Deng, K.; Huang, S.; Liu, Y. Sequential-targeting nanocarriers with pH-controlled charge reversal for enhanced mitochondria-located photodynamic-immunotherapy of cancer. Acta Biomater., 2020, 105, 223-238.
[http://dx.doi.org/10.1016/j.actbio.2020.01.005] [PMID: 31926335]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy