Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

Antimicrobial Activity of Bioactive Compounds Isolated from Plant Endophytes

Author(s): Sudesh Kumari, Prity Gulia, Namita Sharma, Sweety Dahiya, Pooja Choudhary and Anil Kumar Chhillar*

Volume 19, Issue 3, 2023

Published on: 03 October, 2022

Article ID: e240522205175 Pages: 9

DOI: 10.2174/1573407218666220524120648

Price: $65

Abstract

To combat the escalating antimicrobial resistance, we must constantly develop new medications. Recently, scientists more focused on endophytes to search for novel antimicrobial natural products. Endophytes are explored as 'bio-factories' of natural bioactive therapeutic compounds. These are microbes exhibited in plant living tissues without causing any harmful effect. Many therapeutic compounds isolated from endophytes are produced from biosynthetic pathways and belong to various structural groups like terpenoids, steroids, quinines, and phenols. Therapeutic compounds produced by endophytes exhibit different pharmacological properties. Fungal genera more commonly reside to plant tissue as compared to bacterial genera. The current review emphasizes comprehensive data on the antibacterial and antifungal activity and bio-therapeutic compounds produced by fungal and bacterial endophytes of some medicinal plants.

Keywords: Medicinal Plants, Endophytes, Natural products, Antibacterial, Antifungal, Therapeutic compounds

Graphical Abstract

[1]
Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev., 2003, 67(4), 491-502.
[http://dx.doi.org/10.1128/MMBR.67.4.491-502.2003] [PMID: 14665674]
[2]
Subbulakshmi, G.K.; Thalavaipandian, A.; Ramesh, V. Bagyalakshmi.; Rajendran, A. Bioactive endophytic fungal iolates of Biota orientalis (L) Endl., Pinus excelsa Wall. and Thuja occidentalis L. Int. J. Adv. Life Sci., 2012, 4, 9-15.
[3]
Chanway, C.P. Endophytes: They’re not just fungi! Can. J. Bot., 1996, 74(3), 321-322.
[http://dx.doi.org/10.1139/b96-040]
[4]
Petrini, O.; Sieber, T.N.; Toti, L.; Viret, O. Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat. Toxins, 1993, 1(3), 185-196.
[http://dx.doi.org/10.1002/nt.2620010306] [PMID: 1344919]
[5]
de Bary, A. Morphologie und Physiologie der Pilze, Flechten und Myxomyceten; W; Engelmann: Leipzig, 1866.
[6]
Gunatilaka, A.A.L. Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J. Nat. Prod., 2006, 69(3), 509-526.
[http://dx.doi.org/10.1021/np058128n] [PMID: 16562864]
[7]
Tan, R.X.; Zou, W.X. Endophytes: A rich source of functional metabolites (1987 to 2000). Nat. Prod. Rep., 2001, 18(4), 448-459.
[http://dx.doi.org/10.1039/b100918o] [PMID: 11548053]
[8]
Bai, Y.; D’Aoust, F.; Smith, D.L.; Driscoll, B.T. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol., 2002, 48(3), 230-238.
[http://dx.doi.org/10.1139/w02-014] [PMID: 11989767]
[9]
Adhikari, T.B.; Joseph, C.M.; Yang, G.; Phillips, D.A.; Nelson, L.M. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can. J. Microbiol., 2001, 47(10), 916-924.
[http://dx.doi.org/10.1139/w01-097] [PMID: 11718545]
[10]
Sturz, A.V.; Nowak, J. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol., 2000, 15(2), 183-190.
[http://dx.doi.org/10.1016/S0929-1393(00)00094-9]
[11]
Schulz, B.; Boyle, C. The endophytic continuum. Mycol. Res., 2005, 109(6), 661-686.
[http://dx.doi.org/10.1017/S095375620500273X]
[12]
Hata, K.; Sone, K. Isolation of endophytes from leaves of Neolitsea sericea in broadleaf and conifer stands. Mycoscience, 2008, 49(4), 229-232.
[http://dx.doi.org/10.1007/S10267-008-0411-Y]
[13]
Specian, V.; Sarragiotto, M.H.; Pamphile, J.A.; Clemente, E. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz. J. Microbiol., 2012, 43(3), 1174-1182.
[http://dx.doi.org/10.1590/S1517-83822012000300045] [PMID: 24031942]
[14]
Stpniewska, Z.; Kuniar, A. Endophytic microorganisms—promising applications in bioremediation of greenhouse gases. Appl. Microbiol. Biotechnol., 2013, 97(22), 9589-9596.
[http://dx.doi.org/10.1007/s00253-013-5235-9] [PMID: 24048641]
[15]
Golinska, P.; Wypij, M.; Agarkar, G.; Rathod, D.; Dahm, H.; Rai, M. Endophytic actinobacteria of medicinal plants: Diversity and bioactivity. Antonie van Leeuwenhoek, 2015, 108(2), 267-289.
[http://dx.doi.org/10.1007/s10482-015-0502-7] [PMID: 26093915]
[16]
Jalgaonwala, R.; Mahajan, R. A review on microbial endophytes from plants: A treasure search for biologically active metabolites. Glob. J. Res. Med. Plants Indig. Med., 2014, 3(6), 263.
[17]
Clay, K. Fungal endophytes of grasses: A defensive mutualism between plants and fungi. Ecology, 1988, 69(1), 10-16.
[http://dx.doi.org/10.2307/1943155]
[18]
Miller, C.M.; Miller, R.V.; Garton-Kenny, D.; Redgrave, B.; Sears, J.; Condron, M.M.; Teplow, D.B.; Strobel, G.A. Ecomycins, unique antimycotics from Pseudomonas viridiflava. J. Appl. Microbiol., 1998, 84(6), 937-944.
[http://dx.doi.org/10.1046/j.1365-2672.1998.00415.x] [PMID: 9717277]
[19]
Harrison, L.; Teplow, D.B.; Rinaldi, M.; Strobel, G. Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. J. Gen. Microbiol., 1991, 137(12), 2857-2865.
[http://dx.doi.org/10.1099/00221287-137-12-2857] [PMID: 1791440]
[20]
Barkodia, M.; Joshi, U.; Wati, L.; Rami, N.V. Endophytes: A hidden treasure inside plant. Int. J. Chem. Stud., 2018, 6(5), 1660-1665.
[21]
Martinez-Klimova, E.; Rodríguez-Peña, K.; Sánchez, S. Endophytes as sources of antibiotics. Biochem. Pharmacol., 2017, 134, 1-17.
[http://dx.doi.org/10.1016/j.bcp.2016.10.010] [PMID: 27984002]
[22]
Radi N.; Štrukelj, B. Endophytic fungi—The treasure chest of antibacterial substances. Phytomedicine, 2012, 19(14), 1270-1284.
[http://dx.doi.org/10.1016/j.phymed.2012.09.007] [PMID: 23079233]
[23]
Levy, S. Antibiotic resistance—the problem intensifies. Adv. Drug Deliv. Rev., 2005, 57(10), 1446-1450.
[http://dx.doi.org/10.1016/j.addr.2005.04.001] [PMID: 15949867]
[24]
Strobel, G.A. Endophytes as sources of bioactive products. Microbes Infect., 2003, 5(6), 535-544.
[http://dx.doi.org/10.1016/S1286-4579(03)00073-X] [PMID: 12758283]
[25]
Yu, H.; Zhang, L.; Li, L.; Zheng, C.; Guo, L.; Li, W.; Sun, P.; Qin, L. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol. Res., 2010, 165(6), 437-449.
[http://dx.doi.org/10.1016/j.micres.2009.11.009]
[26]
Scherlach, K.; Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem., 2009, 7(9), 1753-1760.
[http://dx.doi.org/10.1039/b821578b] [PMID: 19590766]
[27]
Winter, J.M.; Behnken, S.; Hertweck, C. Genomics-inspired discovery of natural products. Curr. Opin. Chem. Biol., 2011, 15(1), 22-31.
[http://dx.doi.org/10.1016/j.cbpa.2010.10.020] [PMID: 21111667]
[28]
Gond, S.K.; Mishra, A.; Sharma, V.K.; Verma, S.K.; Kumar, J.; Kharwar, R.N.; Kumar, A. Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. Mycoscience, 2012, 53(2), 113-121.
[http://dx.doi.org/10.1007/S10267-011-0146-Z]
[29]
Bhagat, J.; Kaur, A.; Sharma, M.; Saxena, A.K.; Chadha, B.S. Molecular and functional characterization of endophytic fungi from traditional medicinal plants. World J. Microbiol. Biotechnol., 2012, 28(3), 963-971.
[http://dx.doi.org/10.1007/s11274-011-0894-0] [PMID: 22805817]
[30]
Kumar, S.; Kaushik, N. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS One, 2013, 8(2)e56202
[http://dx.doi.org/10.1371/journal.pone.0056202] [PMID: 23409154]
[31]
Sinha, A.; Priya, R.; Nimisha, M.; Jabez Osborne, W. Impact of endophytic Ralstonia sp. from Aloe vera gel and its antimicrobial activity. Asian J. Pharm. Clin. Res., 2015, 8(1), 259-262.
[32]
Kuncharoen, N.; Muramatsu, Y.; Shibata, C.; Kamakura, Y.; Nakagawa, Y.; Tanasupawat, S. Achromobacter aloeverae sp. nov., isolated from the root of Aloe vera (L.) Burm.f. Int. J. Syst. Evol. Microbiol., 2017, 67(1), 37-41.
[http://dx.doi.org/10.1099/ijsem.0.001566] [PMID: 27902206]
[33]
Luo, Z.P.; Lin, H.Y.; Ding, W.B.; He, H.L.; Li, Y.Z. Phylogenetic diversity and antifungal activity of endophytic fungi associated with Tephrosia purpurea. Mycobiology, 2015, 43(4), 435-443.
[http://dx.doi.org/10.5941/MYCO.2015.43.4.435] [PMID: 26839503]
[34]
Chathurdevi, G.; Gowrie, S.U. Endophytic fungi isolated from medicinal plant-a source of potential bioactive metabolites. Int. J. Curr. Pharm. Res., 2016, 8, 50-56.
[35]
Lotfalian, S.; Ebrahimi, A.; Mahzoonieh, M.R. Antimicrobial activity of isolated bacterial endophytes from Cichorium intybus L, Pelargonium hortorum, and Portulaca oleracea against human Nosocomial bacterial Pathogens. Jundishapur J. Nat. Pharm. Prod., 2016, 12(1), 1-6.
[http://dx.doi.org/10.5812/jjnpp.32852]
[36]
Egamberdieva, D.; Wirth, S.; Behrendt, U.; Ahmad, P.; Berg, G. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front. Microbiol., 2017, 8, 199.
[http://dx.doi.org/10.3389/fmicb.2017.00199] [PMID: 28232827]
[37]
Manganyi, M.C.; Regnier, T.; Tchatchouang, C.D.K.; Bezuidenhout, C.C.; Ateba, C.N. Antibacterial activity of endophytic fungi isolated from Sceletium tortuosum L. (Kougoed). Ann. Microbiol., 2019, 69(6), 659-663.
[http://dx.doi.org/10.1007/s13213-019-1444-5]
[38]
Maitry, A.; Zalak, R.; Meenu, S. Antimicrobial activity and production of bioactive compounds from endophytic bacteria of tropical cacti plant Euphorbia caducifolia. Int.R. J. of Eng. and Tech., 2020, 7(7), 5188-5191.
[39]
Khruengsai, S.; Pripdeevech, P.; Tanapichatsakul, C.; Srisuwannapa, C.; D’Souza, P.E.; Panuwet, P. Antifungal properties of volatile organic compounds produced by Daldinia eschscholtzii MFLUCC 19-0493 isolated from Barleria prionitis leaves against Colletotrichum acutatum and its post-harvest infections on strawberry fruits. PeerJ, 2021, 9e11242
[http://dx.doi.org/10.7717/peerj.11242] [PMID: 33959421]
[40]
Chandrakar, S.; Gupta, A.K. Studies on the production of broad spectrum antimicrobial compound polypeptide (Actinomycins) and lipopeptide (Fengycin) from Streptomyces Sp. K-R1 associated with root of Abutilon indicum against multidrug resistant human pathogens. Int. J. Pept. Res. Ther., 2019, 25(2), 779-798.
[http://dx.doi.org/10.1007/s10989-018-9727-4]
[41]
Mahobiya, D.; Gupta, A.K. Diversity of endophytic fungi associated with some medicinal herbs and shrubs. Kavaka, 2017, 49, 38-44.
[42]
Musthafa, S.A.; Sadiq, M.; Muthu, K.; Sekar, S.; Umapathy, D.; Ramanujam, G.M. Intracellular reactive oxygen species scavenging activity and lipid peroxidation inhibition by secondary metabolites isolated from the endophytic fungus, Daldinia eschscholtzii; Res. Sq, 2021, pp. 1-37.
[43]
Devi, K.A.; Pandey, G.; Rawat, A.K.S.; Sharma, G.D.; Pandey, P. The endophytic symbiont- Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Front. Microbiol., 2017, 8, 1897.
[http://dx.doi.org/10.3389/fmicb.2017.01897] [PMID: 29021789]
[44]
John, R.; Mathew, L. Endophytic fungal assemblage in Achyranthes aspera Linn. revealed by internal transcribed spacer region of nuclear ribosomal RNA genes. 3 Biotech, 2017, 7(2) 109
[http://dx.doi.org/10.1007/s13205-017-0748-z] [PMID: 28567620]
[45]
Selvi, K. Isolation and screening of endophytic fungi from medicinal plants of Virudhunagar district for antimicrobial activity., 2014, 5(1), 147-155.
[46]
Shankar Naik, B.; Shashikala, J.; Krishnamurthy, Y.L. Diversity of fungal endophytes in shrubby medicinal plants of Malnad region, Western Ghats, Southern India. Fungal Ecol., 2008, 1(2-3), 89-93.
[http://dx.doi.org/10.1016/j.funeco.2008.05.001]
[47]
Gond, S.K.; Verma, V.C.; Kumar, A.; Kumar, V.; Kharwar, R.N. Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India). World J. Microbiol. Biotechnol., 2007, 23(10), 1371-1375.
[http://dx.doi.org/10.1007/s11274-007-9375-x]
[48]
Htet, T.M.; Win, H.Y.; Sein, M.M. Bis-Naphtho -pyrones from endophytic fungus isolated from the leaf of Andrographis paniculata (Burn. f. ) Wall; Ex Nees Bioactivities, 2019.
[49]
Verma, S.K.; Kumar, A.; Debnath, M. Antimicrobial activity of endophytic fungal isolate in Argemone maxicana; a traditional Indian medicinal plant. Int. J. Innov. Res. Sci. Eng. Technol., 2014, 3, 10151-10162.
[50]
Kumar, S.; Aharwal, R.P.; Kumar, S.; Sandhu, S.S. Isolation and detection of anti-bacterial activity of endophytic fungi from Bombex cebia and Argemone mexicana. J. Chem. Pharm. Res., 2014, 6(11), 95-100.
[51]
Sheshrao, D.U.; Devidas, K.T.; Gyananath, G. Preliminary screening of endophytic fungi from Tridax procumbens Linn. and Argemone mexicana Linn. for their antimicrobial activity. Int. J. Curr. Res., 2012, 4(2), 93-96.
[52]
Momsia, P.; Momsia, T. Isolation, frequency distribution and diversity of novel fungal endophytes inhabiting leaves of Catharanthus roseus. Int. J. Life Sci. Biotechnol. Pharma Res., 2013, 2, 83-87.
[53]
Singh, S.; Verma, S.; Yadav, D.K.; Kumar, A.; Tyagi, R.; Gupta, P.; Bawankule, D.U.; Darokar, M.P.; Srivastava, S.K.; Kalra, A. The bioactive potential of culturable fungal endophytes isolated from the leaf of Catharanthus roseus (L.) G. Don. Curr. Top. Med. Chem., 2021, 21(10), 895-907.
[http://dx.doi.org/10.2174/1568026621666210426123437] [PMID: 33902419]
[54]
Xianzhi, Y.; Lingqi, Z.; Bo, G.; Shiping, G. Preliminary study of a Vincristine-proudcing endophytic fungus isolated from leaves of Catharanthus roseus. Zhong cao yao Chinese Tradit. Herb. Drugs, 2004, 35(1), 79-81.
[55]
Singh, A.; Kumar, J.; Sharma, V.K.; Singh, D.K.; Kumari, P.; Nishad, J.H.; Gautam, V.S.; Kharwar, R.N. Phytochemical analysis and antimicrobial activity of an endophytic Fusarium proliferatum (ACQR8), isolated from a folk medicinal plant Cissus quadrangularis L. S. Afr. J. Bot., 2021, 140(4), 87-94.
[http://dx.doi.org/10.1016/j.sajb.2021.03.004]
[56]
Zeenath Anwar, P.; Gowrie Sezhian, U.; Narasingam, A. Bioactive compound analysis and bioactivities of endophytic bacteria from Cissus quadrangularis. Int. J. Pharm. Sci. Res., 2020, 11(11), 5553.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.11(11).5553-60]
[57]
Photolo, M.M.; Mavumengwana, V.; Sitole, L.; Tlou, M.G. Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum seeds. Int. J. Microbiol., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/9483670] [PMID: 32184829]
[58]
Nath, A.; Raghunatha, P.; Joshi, S.R. Diversity and biological activities of endophytic fungi of Emblica officinalis, an ethnomedicinal plant of India. Mycobiology, 2012, 40(1), 8-13.
[http://dx.doi.org/10.5941/MYCO.2012.40.1.008] [PMID: 22783128]
[59]
Rathod, D.; Dar, M.; Gade, A.; Rai, M. Griseofulvin producing endophytic Nigrospora oryzae from Indian Emblica oficinalis Gaertn: A new report. Austin J. Biotechnol. Bioeng., 2014, 1(3), 1-5.
[60]
Akpotu, M.; Eze, P.; Abba, C.; Nwachukwu, C.; Okoye, F.; Esimone, C.O. Metabolites of endophytic fungi isolated from Euphorbia hirta growing in Southern Nigeria. Chem. Sci. Rev. Lett., 2017, 6, 12-19.
[61]
Akpotu, M.O.; Eze, P.M.; Ajaghaku, D.L.; Okoye, F.B.C.; Esimone, C.O. Antimicrobial activity of endophytic fungi isolated from Catharanthus roseus and Euphorbia hirta. Planta Med., 2015, 81(16), 145.
[http://dx.doi.org/10.1055/s-0035-1565522]
[62]
Singh, D.; Rathod, V.; Singh, A.; Joshi, R. Antibacterial activity and phytochemical analysis of the crude extracts of endophytic fungus, Alternaria sp. from the medicinal plant Euphorbia hirta (L). Int.J.Gren Chem., 2015, 5(2), 14-20.
[63]
Rahman, L.; Shinwari, Z.K.; Iqrar, I.; Rahman, L.; Tanveer, F. An assessment on the role of endophytic microbes in the therapeutic potential of Fagonia indica. Ann. Clin. Microbiol. Antimicrob., 2017, 16(1), 53.
[http://dx.doi.org/10.1186/s12941-017-0228-7] [PMID: 28764775]
[64]
Saramanda, G. Antimicrobial activity of endophytic fungi isolated from Ficus. Eur. J. Pharm. Med. Res., 2016, 3(9), 307-311.
[65]
Wang, Q.X.; Li, S.F.; Zhao, F.; Dai, H.Q.; Bao, L.; Ding, R.; Gao, H.; Zhang, L.X.; Wen, H.A.; Liu, H.W. Chemical constituents from endophytic fungus Fusarium oxysporum. Fitoterapia, 2011, 82(5), 777-781.
[http://dx.doi.org/10.1016/j.fitote.2011.04.002] [PMID: 21497643]
[66]
Shah, A.; Rather, M.A.; Hassan, Q.P.; Aga, M.A.; Mushtaq, S.; Shah, A.M.; Hussain, A.; Baba, S.A.; Ahmad, Z. Discovery of anti-microbial and anti-tubercular molecules from Fusarium solani: An endophyte of Glycyrrhiza glabra. J. Appl. Microbiol., 2017, 122(5), 1168-1176.
[http://dx.doi.org/10.1111/jam.13410] [PMID: 28150900]
[67]
Kaur, N.; Arora, D.S.; Kaur, S.; Kumar, A.; Kaur, S. Antiproliferative and oxidative damage protection activities of endophytic fungi Aspergillus fumigatus and Chaetomium globosum from Moringa oleifera Lam. Appl. Biochem. Biotechnol., 2021, 193(11), 3570-3585.
[http://dx.doi.org/10.1007/s12010-021-03625-6] [PMID: 34313919]
[68]
Atri, N.; Rai, N.; Singh, A.K.; Verma, M.; Barik, S.; Gautam, V.; Singh, S.K. Screening for endophytic fungi with antibacterial efficiency from Moringa oleifera and Withania somnifera. J Sci. Res., 2020, 64(1), 127-133.
[http://dx.doi.org/10.37398/JSR.2020.640118]
[69]
Hasegawa, Y. Fukuda, T.; Hagimori, K.; Tomoda, H.; mura, S. Tensyuic acids, new antibiotics produced by Aspergillus niger FKI-2342. Chem. Pharm. Bull. (Tokyo), 2007, 55(9), 1338-1341.
[http://dx.doi.org/10.1248/cpb.55.1338] [PMID: 17827758]
[70]
Kumar, A.; Shawl, M.; Jain, R.; Mathur, A. Antimicrobial potential of endophytes isolated and characterized from aerial and non aerial parts of Murraya koenigii L. Adv. Appl. Sci. Res., 2015, 6(10), 21-29.
[71]
Ratnaweera, P.B.; de Silva, E.D.; Williams, D.E.; Andersen, R.J. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement. Altern. Med., 2015, 15(1), 220.
[http://dx.doi.org/10.1186/s12906-015-0722-4] [PMID: 26160390]
[72]
Kandasamy, P.; Manoharan, S.; Dhakshinamoorthy, M.; Kannan, K.P.M. Evaluation of antioxidant and antibacterial activities of endophytic fungi isolated from Bauhinia racemosa Lam and Phyllanthus amarus Schum and Thonn endophytic fungi from Mimusops elengi. J. Chem. Pharm. Res., 2015, 7(9), 366-379.
[73]
Minh, N.V.; Phat, N.T.; Linh, D.N. Purification of bioactive compound from endophytes Bacillus sp. RD26 of Phyllanthus amarus Schum. et Thonn. Pharmacophore, 2021, 12(3), 29-36.
[http://dx.doi.org/10.51847/4DEIRdiC4c]
[74]
Dhankhar, S.; Kumar, S.; Dhankhar, S.; Yadav, J.P. Antioxidant activity of fungal endophytes isolated from Salvadora oleoides Decne. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 380-385.
[75]
Korejo, F.; Ali, S.A.; Shafique, H.A.; Sultana, V.; Ara, J.; Ehteshamul-Haque, S. Antifungal and antibacterial activity of endophytic Penicillium species isolated from Salvadora Sp. Pak. J. Bot., 2014, 46(6), 2313-2318.
[76]
Liu, D.; Li, X.M.; Li, C.S.; Wang, B.G. Nigerasterols A and B, antiproliferative sterols from the mangrovederived endophytic fungus Aspergillus niger MA132. Helv. Chim. Acta, 2013, 96(6), 1055-1061.
[http://dx.doi.org/10.1002/hlca.201200332]
[77]
dos Santos, M.D.; Martins, P.R.; dos Santos, P.A.; Bortocan, R.; Iamamoto, Y.; Lopes, N.P. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria. Eur. J. Pharm. Sci., 2005, 26(1), 62-70.
[http://dx.doi.org/10.1016/j.ejps.2005.04.014] [PMID: 16019193]
[78]
Yu, J.; Wang, L.; Walzem, R.L.; Miller, E.G.; Pike, L.M.; Patil, B.S. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J. Agric. Food Chem., 2005, 53(6), 2009-2014.
[http://dx.doi.org/10.1021/jf0484632] [PMID: 15769128]
[79]
Makadia, M.O.; Panchal, N.S. Antimicrobial activity of endophytes isolated from Eucalyptus alba and Ziziphus nummularia. Int. J. Adv. Sci. Res., 2016, 1(5), 24-26.
[80]
Mishra, A.; Gond, S.K.; Kumar, A.; Sharma, V.K.; Verma, S.K.; Kharwar, R.N.; Sieber, T.N. Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Microb. Ecol., 2012, 64(2), 388-398.
[http://dx.doi.org/10.1007/s00248-012-0029-7] [PMID: 22430503]
[81]
Yadav, V.; Singh, A.; Mathur, N.; Yadav, R. Isolation and characterization of Alternaria GFAV15, an endophytic fungus from green fruit of Tinospora cordifolia (Willd.) Miers from semi-arid region. S. Afr. J. Bot., 2020, 134, 343-348.
[http://dx.doi.org/10.1016/j.sajb.2020.04.003]
[82]
Duhan, P.; Bansal, P.; Rani, S. Isolation, identification and characterization of endophytic bacteria from medicinal plant Tinospora cordifolia. S. Afr. J. Bot., 2020, 134, 43-49.
[http://dx.doi.org/10.1016/j.sajb.2020.01.047]
[83]
Taechowisan, T.; Singtotong, C.; Phutdhawong, W. Antibacterial and antioxidant activities of acetogenins from Streptomyces sp. VE2; an endophyte in Vernonia cinerea (L.) Less. J. Appl. Pharm. Sci. 2016, 6, 067-072.
[http://dx.doi.org/10.7324/JAPS.2016.60810]
[84]
Arivudainambi, U.S.E.; Anand, T.D.; Shanmugaiah, V.; Karunakaran, C.; Rajendran, A. Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioides against multidrug-resistant Staphylococcus aureus. FEMS Immunol. Med. Microbiol., 2011, 61(3), 340-345.
[http://dx.doi.org/10.1111/j.1574-695X.2011.00780.x] [PMID: 21219448]
[85]
Raviraja, N.S.; Maria, G.L.; Sridhar, K.R. Antimicrobial evaluation of endophytic fungi inhabiting medicinal plants of the Western Ghats of India. Eng. Life Sci., 2006, 6(5), 515-520.
[http://dx.doi.org/10.1002/elsc.200620145]
[86]
Khan, R.; Shahzad, S. Iqbal choudhary, M.; Khan, S.A.; Ahmad, A. Communities of endophytic fungi in medicinal plant Withania somnifera. Pak. J. Bot., 2010, 42(2), 1281-1287.
[87]
Kumar, A.; Kumar, S.P.J.; Chintagunta, A.D.; Agarwal, D.K.; Pal, G.; Singh, A.N.; Simal-Gandara, J. Biocontrol potential of Pseudomonas stutzeri endophyte from Withania somnifera (Ashwagandha) seed extract against pathogenic Fusarium oxysporum and Rhizoctonia solani. Arch. Phytopathol. Pflanzenschutz, 2022, 55(1), 1-18.
[http://dx.doi.org/10.1080/03235408.2021.1983384]
[88]
Haider, N. A brief review on plant taxonomy and its components. J. Plant Sci. Res., 2018, 34(2), 277-292.
[http://dx.doi.org/10.32381/JPSR.2018.34.02.17]
[89]
Yadav, G.; Meena, M. Bioprospecting of endophytes in medicinal plants of Thar Desert: An attractive resource for biopharmaceuticals. Biotechnol. Rep. (Amst.), 2021, 30, e00629.
[http://dx.doi.org/10.1016/j.btre.2021.e00629] [PMID: 34136363]
[90]
Frank, A.; Saldierna Guzmán, J.; Shay, J. Transmission of bacterial endophytes. Microorganisms, 2017, 5(4), 70.
[http://dx.doi.org/10.3390/microorganisms5040070] [PMID: 29125552]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy