Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Computational Studies and Biological Evaluation on Synthesized Lead 1,3- diphenyl-4,5-dihydro-1H-pyrazole Moiety as Anti-Infective Agents

Author(s): Elangovan Manickavalli, Natarajan Kiruthiga*, Lalitha Vivekanandan, Anitha Roy and Thangavel Sivakumar

Volume 20, Issue 5, 2022

Published on: 06 September, 2022

Article ID: e230522205141 Pages: 15

DOI: 10.2174/2211352520666220523153545

Price: $65

Abstract

Background: Chronic non-communicable diseases were interlinked with inflammation, and infections should respond to the core of major diseases in both acute and chronic conditions. In drug discovery, developing a drug that acts as an anti-infective agent (anti-microbial and antiinflammatory) must be ideal and challenging for managing many chronic diseases.

Objective: In this study, six lead pyrazoline hybrids were synthesized by cyclization of chalcones and characterized by various spectroscopic and elemental analyses. All synthesized compounds were screened for anti-inflammatory and anti-microbial activity by computational tools and biological evaluation.

Methods: Synthesized pyrazoline analogues were characterized by various spectroscopic techniques and evaluated for prediction of pharmacokinetics, physicochemical properties and Molecular docking studies of various targeted enzymes on microbial and inflammatory mediators. Those compounds were screened by anti-microbial and anti-inflammatory activities by several in-vitro and in-vivo methods.

Results: The synthesized compounds (A1-A6) were screened for anti-inflammatory activity in which compound A2 produced effective percentage inhibition (45.8 %) potent activity compared with that of standard indomethacin (49.7 %) in the carrageenan paw edema method were observed. The anti-microbial activity was screened on synthesized compounds, among which A3 [2-(1,3- diphenyl-4,5-dihydro-1H-pyrazol-5-yl) phenol, A2 [5-(4-chlorophenyl)-1,3-diphenyl-4,5-dihydro- 1H-pyrazole] produced potential percentage zone of inhibition between 80 - 70 % for bacterial strains and 94 - 89 % for fungal strains were observed. The minimum inhibitory concentration values of those compounds were 1.56 to 6.25 μg/ml for bacterial strains, and 1.56 to 12.5 μg/ml for fungal strains were noted compared with the standard gatifloxacin and clotrimazole, respectively. The molecular docking, pharmacokinetics and toxicity predictions on those compounds were supported further for developing potent anti-infective agents.

Conclusion: The hypothesis of this research was correlated with the results of anti-inflammatory and anti-microbial activity. The binding interactions of respective enzymes coincided with a reduction of paw edema in the anti-inflammatory model and a zone of inhibition in anti-microbial activity.

Keywords: Pyrazoline derivatives, Cyclooxygenase, Molecular modelling, Anti-microbial, Carrageenan.

Graphical Abstract

[1]
Nethan, S.; Sinha, D.; Mehrotra, R. Non communicable disease risk factors and their trends in India. Asian Pac. J. Cancer Prev., 2017, 18(7), 2005-2010.
[PMID: 28749643]
[2]
Sporn, M.B.; Roberts, A.B. Peptide growth factors and inflammation, tissue repair, and cancer. J. Clin. Invest., 1986, 78(2), 329-332.
[http://dx.doi.org/10.1172/JCI112580] [PMID: 3525608]
[3]
Butcher, E.C.; Picker, L.J. Lymphocyte homing and homeostasis. Science, 1996, 272(5258), 60-66.
[http://dx.doi.org/10.1126/science.272.5258.60] [PMID: 8600538]
[4]
Toussirot, E.; Streit, G.; Wendling, D. The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr. Med. Chem., 2007, 14(10), 1095-1100.
[http://dx.doi.org/10.2174/092986707780362826] [PMID: 17456023]
[5]
Sicras-Mainar, A.; de Cambra-Florensa, S.; Navarro-Artieda, R. Consumption of oral analgesics and dosage forms in elderly patients: Population-based study. Farm. Hosp., 2009, 33(3), 161-171.
[http://dx.doi.org/10.1016/S1130-6343(09)71158-4] [PMID: 19712600]
[6]
Pokela, N.; Bell, J.S.; Lihavainen, K.; Sulkava, R.; Hartikainen, S. Analgesic use among community-dwelling people aged 75 years and older: A population-based interview study. Am. J. Geriatr. Pharmacother., 2010, 8(3), 233-244.
[http://dx.doi.org/10.1016/j.amjopharm.2010.05.001] [PMID: 20624613]
[7]
Bucki, R.; Leszczynska, K.; Byfield, F.J.; Fein, D.E.; Won, E.; Cruz, K.; Namiot, A.; Kulakowska, A.; Namiot, Z.; Savage, P.B.; Diamond, S.L.; Janmey, P.A. Combined antibacterial and anti-inflammatory activity of a cationic disubstituted dexamethasone-spermine conjugate. Antimicrob. Agents Chemother., 2010, 54(6), 2525-2533.
[http://dx.doi.org/10.1128/AAC.01682-09] [PMID: 20308375]
[8]
Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Malecha, J.W.; Miyashiro, J.M.; Rogers, R.S.; Rogier, D.J.; Yu, S.S.; Anderson, G.D. Burton, E.G.; Cogburn, J.N.; Gregory, S.A.; Koboldt, C.M.; Perkins, W.E.; Seibert, K.; Veenhuizen, A.W.; Zhang, Y.Y.; Isakson, P.C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: Identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem., 1997, 40(9), 1347-1365.
[http://dx.doi.org/10.1021/jm960803q] [PMID: 9135032]
[9]
Fioravanti, R.; Bolasco, A.; Manna, F.; Rossi, F.; Orallo, F.; Ortuso, F.; Alcaro, S.; Cirilli, R. Synthesis and biological evaluation of N-substituted-3,5-diphenyl-2-pyrazoline derivatives as cyclooxygenase (COX-2) inhibitors. Eur. J. Med. Chem., 2010, 45(12), 6135-6138.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.005] [PMID: 20974503]
[10]
Isidro, M.L.; Cordido, F. Drug treatment of obesity: Established and emerging therapies. Mini Rev. Med. Chem., 2009, 9(6), 664-673.
[http://dx.doi.org/10.2174/138955709788452739] [PMID: 19519492]
[11]
Reed, G.A.; Griffin, I.O.; Eling, T.E. Inactivation of prostaglandin H synthase and prostacyclin synthase by phenylbutazone. Requirement for peroxidative metabolism. Mol. Pharmacol., 1985, 27(1), 109-114.
[PMID: 3917545]
[12]
Naik, K.; Prasad, A.R.G.; Spoorthy, Y.N.; Ravindranath, L.R.K.R. Design, synthesis, characterization and antimicrobial evaluation of new pyrazoline-5-ones. J. Appl. Pharm., 2013, 5(1), 720-730.
[13]
Sridhar, S.; Rajendraprasad, Y. Synthesis and analgesic studies of some new 2-pyrazolines. E-J. Chem., 2012, 9(4), 1810-1815.
[http://dx.doi.org/10.1155/2012/476989]
[14]
Dipankar, B.; Panneerselvam, P.; Asish, B. Synthesis, characterization and evaluation of analgesic, anti-inflammatory, ulcerogenic potential of some 2-pyrazoline derivatives. Pharma Chem., 2012, 4(4), 1679-1688.
[15]
Fan, N-J.; Tang, J-J.; Li, H.; Li, X-J.; Luo, B.; Gao, J-M. Synthesis and cytotoxic activity of some novel steroidal C-17 pyrazolinyl derivatives. Eur. J. Med. Chem., 2013, 69, 182-190.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.016] [PMID: 24021891]
[16]
Wagner, H.; Farkas, L. The Flavonoids; Springer, 1975, pp. 127-213.
[http://dx.doi.org/10.1007/978-1-4899-2909-9_4]
[17]
Cole, A.L.; Hossain, S.; Cole, A.M.; Phanstiel, O.I.V. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg. Med. Chem., 2016, 24(12), 2768-2776.
[http://dx.doi.org/10.1016/j.bmc.2016.04.045] [PMID: 27161874]
[18]
Jainey, P.; Bhat, I. Antitumor, analgesic, and anti-inflammatory activities of synthesized pyrazolines. J. Young Pharm., 2012, 4(2), 82-87.
[http://dx.doi.org/10.4103/0975-1483.96621] [PMID: 22754259]
[19]
Ma, X.L.; Chen, C.; Yang, J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol. Sin., 2005, 26(4), 500-512.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00068.x] [PMID: 15780201]
[20]
Mannhold, R. Gerd Folkers (Series Editor); Mannhold, R., Ed.; John Wiley & Sons, 2007, pp. 502.
[21]
Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Butina, D.; Beck, G.; Sherborne, B.; Cooper, I.; Platts, J.A. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci., 2001, 90(6), 749-784.
[http://dx.doi.org/10.1002/jps.1031] [PMID: 11357178]
[22]
Abdullahi, M.; Adeniji, S.E. In-silico molecular docking and ADME/Pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents. Chemistry Africa, 2020, 3(4), 989-1000.
[http://dx.doi.org/10.1007/s42250-020-00162-3]
[23]
2.5.5, D.s.v. 2011. Available from: www.accelerys.com
[24]
Penrod, L.V.; Allen, R.E.; Rhoads, M.L.; Limesand, S.W.; Arns, M.J. Oxytocin stimulated release of PGF2α and its inhibition by a cyclooxygenase inhibitor and an oxytocin receptor antagonist from equine endometrial cultures. Anim. Reprod. Sci., 2013, 139(1-4), 69-75.
[http://dx.doi.org/10.1016/j.anireprosci.2013.04.010] [PMID: 23664650]
[25]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med., 1962, 111(3), 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[26]
Nsonde Ntandou, G.F.; Banzouzi, J.T.; Mbatchi, B.; Elion-Itou, R.D.; Etou-Ossibi, A.W.; Ramos, S.; Benoit-Vical, F.; Abena, A.A.; Ouamba, J.M. Analgesic and anti-inflammatory effects of Cassia siamea Lam. stem bark extracts. J. Ethnopharmacol., 2010, 127(1), 108-111.
[http://dx.doi.org/10.1016/j.jep.2009.09.040] [PMID: 19799981]
[27]
Mansouri, M.T.; Hemmati, A.A.; Naghizadeh, B.; Mard, S.A.; Rezaie, A.; Ghorbanzadeh, B. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J. Pharmacol., 2015, 47(3), 292-298.
[http://dx.doi.org/10.4103/0253-7613.157127] [PMID: 26069367]
[28]
Sivakumar, K.K.; Rajasekharan, A.; Rao, R.; Narasimhan, B. Synthesis, SAR study and evaluation of Mannich and Schiff bases of pyrazol-5 (4H)-one moiety containing 3-(hydrazinyl)-2-phenylquinazolin-4 (3H)-one. Indian J. Pharm. Sci., 2013, 75(4), 463-475.
[http://dx.doi.org/10.4103/0250-474X.119832] [PMID: 24302802]
[29]
Attique, S.A.; Hassan, M.; Usman, M.; Atif, R.M.; Mahboob, S.; Al-Ghanim, K.A.; Bilal, M.; Nawaz, M.Z. A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension. Int. J. Environ. Res. Public Health, 2019, 16(6), 923.
[http://dx.doi.org/10.3390/ijerph16060923] [PMID: 30875817]
[30]
Umar, A.B.; Uzairu, A.; Shallangwa, G.A.; Uba, S. Design of potential anti-melanoma agents against SK-MEL-5 cell line using QSAR modeling and molecular docking methods. SN Appl., 2020, 2(5), 1-18.
[http://dx.doi.org/10.1007/s42452-020-2620-8]
[31]
Daina, A.; Zoete, V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[32]
Schönthal, A.H. Direct non-cyclooxygenase-2 targets of celecoxib and their potential relevance for cancer therapy. Br. J. Cancer, 2007, 97(11), 1465-1468.
[http://dx.doi.org/10.1038/sj.bjc.6604049] [PMID: 17955049]
[33]
Austinat, M.; Dunsch, R.; Wittekind, C.; Tannapfel, A.; Gebhardt, R.; Gaunitz, F. Correlation between β-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma. Mol. Cancer, 2008, 7(1), 21.
[http://dx.doi.org/10.1186/1476-4598-7-21] [PMID: 18282277]
[34]
Zhu, J.; Song, X.; Lin, H-P.; Young, D.C.; Yan, S.; Marquez, V.E.; Chen, C-S. Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J. Natl. Cancer Inst., 2002, 94(23), 1745-1757.
[http://dx.doi.org/10.1093/jnci/94.23.1745] [PMID: 12464646]
[35]
Müller, N. COX-2 inhibitors as antidepressants and antipsychotics: Clinical evidence. Curr. Opin. Investig. Drugs, 2010, 11(1), 31-42.
[PMID: 20047157]
[36]
Chowdhury, M.A.; Abdellatif, K.R.; Dong, Y.; Yu, G.; Huang, Z.; Rahman, M.; Das, D.; Velázquez, C.A.; Suresh, M.R.; Knaus, E.E. Celecoxib analogs possessing a N-(4-nitrooxybutyl)piperidin-4-yl or N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridin-4-yl nitric oxide donor moiety: Synthesis, biological evaluation and nitric oxide release studies. Bioorg. Med. Chem. Lett., 2010, 20(4), 1324-1329.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.014] [PMID: 20097072]
[37]
Guo, D.; Xu, L.; Cao, X.; Guo, Y.; Ye, Y.; Chan, C-O.; Mok, D.K.; Yu, Z.; Chen, S. Anti-inflammatory activities and mechanisms of action of the petroleum ether fraction of Rosa multiflora Thunb. hips. J. Ethnopharmacol., 2011, 138(3), 717-722.
[http://dx.doi.org/10.1016/j.jep.2011.10.010] [PMID: 22019508]
[38]
Rock, E.M.; Limebeer, C.L.; Parker, L.A. Effect of cannabidiolic acid and Δ9-tetrahydrocannabinol on carrageenan-induced hyperalgesia and edema in a rodent model of inflammatory pain. Psychopharmacology (Berl.), 2018, 235(11), 3259-3271.
[http://dx.doi.org/10.1007/s00213-018-5034-1] [PMID: 30225659]
[39]
Mansouri, M.T.; Naghizadeh, B.; Ghorbanzadeh, B. Involvement of opioid receptors in the systemic and peripheral antinociceptive actions of ellagic acid in the rat formalin test. Pharmacol. Biochem. Behav., 2014, 120, 43-49.
[http://dx.doi.org/10.1016/j.pbb.2014.02.009] [PMID: 24561064]
[40]
Huang, G.J.; Bhaskar Reddy, M.V.; Kuo, P.C.; Huang, C.H.; Shih, H.C.; Lee, E.J.; Yang, M.L.; Leu, Y.L.; Wu, T.S. A concise synthesis of viscolin, and its anti-inflammatory effects through the suppression of iNOS, COX-2, ERK phosphorylation and proinflammatory cytokines expressions. Eur. J. Med. Chem., 2012, 48, 371-378.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.008] [PMID: 22197135]
[41]
Salvemini, D.; Settle, S.L.; Masferrer, J.L.; Seibert, K.; Currie, M.G.; Needleman, P. Regulation of prostaglandin production by nitric oxide; an in vivo analysis. Br. J. Pharmacol., 1995, 114(6), 1171-1178.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb13330.x] [PMID: 7542531]
[42]
Wu, K.K. Inducible cyclooxygenase and nitric oxide synthase. Adv. Pharmacol., 1995, 33, 179-207.
[http://dx.doi.org/10.1016/S1054-3589(08)60669-9] [PMID: 7495670]
[43]
Davidge, S.T.; Baker, P.N.; Laughlin, M.K.; Roberts, J.M. Nitric oxide produced by endothelial cells increases production of eicosanoids through activation of prostaglandin H synthase. Circ. Res., 1995, 77(2), 274-283.
[http://dx.doi.org/10.1161/01.RES.77.2.274] [PMID: 7614714]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy