Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Review Article

Toxins from Venomous Arthropods in Brazil: Patents and Potential Biotechnological Applications

Author(s): Pedro Henrique Cardoso de Castro, Ana Luiza Bittencourt Paiva, Barbara Bruna Ribeiro Oliveira-Mendes, Clara Guerra-Duarte and Alessandra Matavel*

Volume 2, Issue 2, 2022

Published on: 19 August, 2022

Article ID: e230522205127 Pages: 17

DOI: 10.2174/2666121702666220523143235

Price: $65

Abstract

Background: The diversity of components in arthropod venoms constitute a rich source of bioactive molecules. Brazil is the most biodiverse country in the world, comprising 15 to 20% of the total catalogued species, with approximately 103,870 animal species including arthropods. Although many articles mention the biotechnological potential of these venoms and toxins, only a few studies compile the patented uses of these molecules.

Objective: This review describes the knowledge about the molecular mechanism of venoms and toxins with biotechnological potential, and lists the patents deposited up to 2021 related to the main medical relevant arthropods in Brazil including the orders Araneae (spider genus Phoneutria, Loxosceles, Latrodectus), Scorpiones (scorpion genus Tityus), Lepidoptera (caterpillar genus Lonomia), and Hymenoptera.

Methods: The international patent search engine “Espacenet” and the “Brazilian patent office” were used to search the patents described in this article.

Results: Up to date, 34 patents have been filled involving these Brazilian arthropods' venoms or toxins. Most of them (20) claimed biotechnological inventions with spider toxins, mainly from the genus Phoneutria. Only seven inventions involved venom or toxins from scorpions, one from a bee, three from wasps, and three from caterpillars.

Conclusions: Brazil is one of the main references in venoms and toxins’ studies; however, the limited number of deposited patents related to this area by Brazilian researchers do not reflect their pioneer position in this field. On the other hand, patents were well described and made with purified toxins, rather than with the whole venom. Nevertheless, the vast publication record of venom and toxin characterization that leads to a better understanding of their molecular mechanisms paves the way for turning these promising molecules into possible products.

Keywords: Patent, Venom, Brazil, Arthropod, Toxin, Biotechnological Potential

Graphical Abstract

[1]
King GF. Tying pest insects in knots: The deployment of spider-venom-derived knottins as bioinsecticides. Pest Manag Sci 2019; 75(9): 2437-45.
[http://dx.doi.org/10.1002/ps.5452] [PMID: 31025461]
[2]
The convention on biological diversity Convention on Biological Diversity 2021. Available from: https://www.cbd.int/
[3]
Di Fabio JL, Cortés Castillo MÁ, Griffiths E. Landscape of research, production, and regulation in venoms and antivenoms: A bibliometric analysis. Rev Panam Salud Publica 2021; 45: 1.
[http://dx.doi.org/10.26633/RPSP.2021.55]
[4]
Instituto Nacional de Propriedade Intelectual. INPI. 2021. Available from: https://gru.inpi.gov.br/pePI/
[5]
Espacenet – patent search 2021.https://worldwide.espacenet.com/
[6]
Rezende Júnior L, Cordeiro MN, Oliveira EB, Diniz CR. Isolation of neurotoxic peptides from the venom of the ‘armed’ spider Phoneutria nigriventer. Toxicon 1991; 29(10): 1225-33.
[http://dx.doi.org/10.1016/0041-0101(91)90195-W] [PMID: 1801316]
[7]
Figueiredo SG, Garcia ME, Valentim AC, Cordeiro MN, Diniz CR, Richardson M. Purification and amino acid sequence of the insecticidal neurotoxin Tx4(6-1) from the venom of the ‘armed’ spider Phoneutria nigriventer (Keys). Toxicon 1995; 33(1): 83-93.
[http://dx.doi.org/10.1016/0041-0101(94)00130-Z] [PMID: 7778132]
[8]
de Lima ME, Figueiredo SG, Matavel A, Nunes KP, da Silva CN, De Marco Almeida F, et al. Phoneutria nigriventer Venom and Toxins: A Review Spider Venoms. Springer Netherlands: Dordrecht 2016; pp. 71-99.
[http://dx.doi.org/10.1007/978-94-007-6389-0_6]
[9]
Martin-Moutot N, Mansuelle P, Alcaraz G, et al. Phoneutria nigriventer toxin 1: A novel, state-dependent inhibitor of neuronal sodium channels that interacts with micro conotoxin binding sites. Mol Pharmacol 2006; 69(6): 1931-7.
[http://dx.doi.org/10.1124/mol.105.021147] [PMID: 16505156]
[10]
Silva AO, Peigneur S, Diniz MRV, Tytgat J, Beirão PSL. Inhibitory effect of the recombinant Phoneutria nigriventer Tx1 toxin on voltage-gated sodium channels. Biochimie 2012; 94(12): 2756-63.
[http://dx.doi.org/10.1016/j.biochi.2012.08.016] [PMID: 22968173]
[11]
Peigneur S, de Lima ME, Tytgat J. Phoneutria nigriventer venom: A pharmacological treasure. Toxicon 2018; 151: 96-110.
[http://dx.doi.org/10.1016/j.toxicon.2018.07.008] [PMID: 30003916]
[12]
Cordeiro MN, Diniz CR, Valentim AC, von Eickstedt VR, Gilroy J, Richardson M. The purification and amino acid sequences of four Tx2 neurotoxins from the venom of the Brazilian ‘armed’ spider Phoneutria nigriventer (Keys). FEBS Lett 1992; 310(2): 153-6.
[http://dx.doi.org/10.1016/0014-5793(92)81318-G] [PMID: 1397265]
[13]
Peigneur S, Paiva ALB, Cordeiro MN, et al. Phoneutria nigriventer spider toxin PnTx2-1 (δ-Ctenitoxin-Pn1a) is a modulator of sodium channel gating. Toxins (Basel) 2018; 10(9): 337.
[http://dx.doi.org/10.3390/toxins10090337] [PMID: 30134593]
[14]
Matavel A, Fleury C, Oliveira LC, et al. Structure and activity analysis of two spider toxins that alter sodium channel inactivation kinetics. Biochemistry 2009; 48(14): 3078-88.
[http://dx.doi.org/10.1021/bi802158p] [PMID: 19231838]
[15]
Nunes KP, Costa-Gonçalves A, Lanza LF, et al. Tx2-6 toxin of the Phoneutria nigriventer spider potentiates rat erectile function. Toxicon 2008; 51(7): 1197-206.
[http://dx.doi.org/10.1016/j.toxicon.2008.02.010] [PMID: 18397797]
[16]
Nunes KP, Wynne BM, Cordeiro MN, et al. Increased cavernosal relaxation by Phoneutria nigriventer toxin, PnTx2-6, via activation at NO/cGMP signaling. Int J Impot Res 2012; 24(2): 69-76.
[http://dx.doi.org/10.1038/ijir.2011.47] [PMID: 21975567]
[17]
Sinisterra RD. Método para a potencialização da função erétil através do uso das composições farmacêuticas de toxina tx2-6 da aranha Phoneutria nigriventer. BRPI0800596A2 2009.
[18]
Silva CN, Almeida FM, Lomeo RS, et al. Synthetic Pntx(19) peptide, pharmaceutical compositions and use. WO2014028997A1, 2014.
[19]
Silva CN, Nunes KP, Torres FS, et al. PnPP-19, a synthetic and nontoxic peptide designed from a Phoneutria nigriventer toxin, potentiates erectile function via NO/cGMP. J Urol 2015; 194(5): 1481-90.
[http://dx.doi.org/10.1016/j.juro.2015.06.081] [PMID: 26119670]
[20]
Freitas ACN, Pacheco DF, Machado MFM, Carmona AK, Duarte IDG, de Lima ME. PnPP-19, a spider toxin peptide, induces peripheral antinociception through opioid and cannabinoid receptors and inhibition of neutral endopeptidase. Br J Pharmacol 2016; 173(9): 1491-501.
[http://dx.doi.org/10.1111/bph.13448] [PMID: 26947933]
[21]
da Fonseca Pacheco D, Freitas ACN, Pimenta AMC, Duarte IDG, de Lima ME. A spider derived peptide, PnPP-19, induces central antinociception mediated by opioid and cannabinoid systems. J Venom Anim Toxins Incl Trop Dis 2016; 22(1): 34.
[http://dx.doi.org/10.1186/s40409-016-0091-6] [PMID: 28031732]
[22]
Freitas ACN, Peigneur S, Macedo FHP, et al. The peptide PnPP-19, a spider toxin derivative, activates μ-opioid receptors and modulates calcium channels. Toxins (Basel) 2018; 10(1): E43.
[http://dx.doi.org/10.3390/toxins10010043] [PMID: 29342943]
[23]
da Silva CN, Dourado LFN, de Lima ME, da Silva Cunha-Jr A. PnPP-19 peptide as a novel drug candidate for topical glaucoma therapy through nitric oxide release. Transl Vis Sci Technol 2020; 9(8): 33.
[http://dx.doi.org/10.1167/tvst.9.8.33] [PMID: 32855879]
[24]
Cunha-Jr AS, De Lima ME, Silva SCN, Nunes DLF, Borges DSPV, Lacativa PGS, et al. Method and use of PnPP-19 for preventing and treating eye diseases. US2021060125A1, 2021.
[25]
Choi JN, Choi TW, Kim TH, et al. Sv82 polypeptide and cosmetic composition for improving wrinkle and maintaining elasticity of skin comprising Sv82 polypeptide as effective component. KR101613302B1, 2016.
[26]
Choi JN, Choi TW, Jeong TH, et al. Thermostable human epidermal growth factor-spider venom fusion protein with increased skin cell proliferation and cosmetic composition for improving wrinkle and maintaining elasticity of skin comprising the same as effective component. KR101636851B1, 2016.
[27]
Choi KH, Kim SR, Kim SW, Yu JH. Baculovirus expressing recombinant spider toxin protein or trasngenic silk worm manufactured therefrom. KR101922425B1, 2018.
[28]
de Lima ME, Figueiredo SG, Matavel A, et al. Phoneutria nigriventer venom and toxins: A review Spider Venoms. Springer Netherlands: Dordrecht 2016; pp. 71-99.
[http://dx.doi.org/10.1007/978-94-007-6389-0_6]
[29]
Kushmerick C, Kalapothakis E, Beirão PS, et al. Phoneutria nigriventer toxin Tx3-1 blocks A-type K+ currents controlling Ca2+ oscillation frequency in GH3 cells. J Neurochem 1999; 72(4): 1472-81.
[http://dx.doi.org/10.1046/j.1471-4159.1999.721472.x] [PMID: 10098851]
[30]
Rigo FK, Rossato MF, Trevisan G, et al. PhKv a toxin isolated from the spider venom induces antinociception by inhibition of cholinesterase activating cholinergic system. Scand J Pain 2017; 17: 203-10.
[PMID: 29107209]
[31]
Almeida AP, Andrade AB, Ferreira AJ, et al. Antiarrhythmogenic effects of a neurotoxin from the spider Phoneutria nigriventer. Toxicon 2011; 57(2): 217-24.
[http://dx.doi.org/10.1016/j.toxicon.2010.11.013] [PMID: 21115025]
[32]
Gomez MV, Prado MA, Prado VF. , Pinheiro AC do N, Richardson M, Almeida AP. Toxina PhKv, cDNA do gene da toxina PhKv, composições farmacêuticas contendo a toxina PhKv, processo para sua obtenção, processo para obtenção do Cdna, e produto. BRPI0702734A2 2009.
[33]
Leão RM, Cruz JS, Diniz CR, Cordeiro MN, Beirão PS. Inhibition of neuronal high-voltage activated calcium channels by the omega-Phoneutria nigriventer Tx3-3 peptide toxin. Neuropharmacology 2000; 39(10): 1756-67.
[http://dx.doi.org/10.1016/S0028-3908(99)00267-1] [PMID: 10884557]
[34]
Dalmolin GD, Bannister K, Gonçalves L, et al. Effect of the spider toxin Tx3-3 on spinal processing of sensory information in naive and neuropathic rats: An in vivo electrophysiological study. Pain Rep 2017; 2(4): e610.
[http://dx.doi.org/10.1097/PR9.0000000000000610] [PMID: 29392225]
[35]
Dos Santos RG, Van Renterghem C, Martin-Moutot N, et al. Phoneutria nigriventer ω-phonetoxin IIA blocks the Cav2 family of calcium channels and interacts with ω-conotoxin-binding sites. J Biol Chem 2002; 277(16): 13856-62.
[http://dx.doi.org/10.1074/jbc.M112348200] [PMID: 11827974]
[36]
Agostini RM, do Nascimento Pinheiro AC, Binda NS, et al. Phoneutria spider toxins block ischemia-induced glutamate release and neuronal death of cell layers of the retina. Retina 2011; 31(7): 1392-9.
[http://dx.doi.org/10.1097/IAE.0b013e318205b249] [PMID: 21394062]
[37]
Binda NS, Carayon CP, Agostini RM, et al. PhTx3-4, a spider toxin calcium channel blocker, reduces NMDA-induced injury of the retina. Toxins (Basel) 2016; 8(3): 70.
[http://dx.doi.org/10.3390/toxins8030070] [PMID: 26978403]
[38]
Pinheiro AC, da Silva AJ, Prado MA, et al. Phoneutria spider toxins block ischemia-induced glutamate release, neuronal death, and loss of neurotransmission in hippocampus. Hippocampus 2009; 19(11): 1123-9.
[http://dx.doi.org/10.1002/hipo.20580] [PMID: 19370546]
[39]
Fonseca CG, Reis HJD, Gomes MV, et al. Peptídeo recombinante da toxina pha1a, composições farmacêuticas contendo pha1a, e uso. BRPI1013470A2, 2015.
[40]
Evans MS, Cheng X, Jeffry JA, Disney KE, Premkumar LS. Sumatriptan inhibits TRPV1 channels in trigeminal neurons. Headache 2012; 52(5): 773-84.
[http://dx.doi.org/10.1111/j.1526-4610.2011.02053.x] [PMID: 22289052]
[41]
Nagem RAP, Gomez MV, Pereira EMR, et al. Sequência de nucleotídeos, proteína recombinante, composições farmacêuticas e usos. BR102018010621A2, 2020.
[42]
Verma D, Gupta YK, Parashar A, Ray SB. Differential expression of L- and N-type voltage-sensitive calcium channels in the spinal cord of morphine+nimodipine treated rats. Brain Res 2009; 1249: 128-34.
[http://dx.doi.org/10.1016/j.brainres.2008.10.038] [PMID: 18996361]
[43]
Oliveira SM, Silva CR, Trevisan G, et al. Antinociceptive effect of a novel armed spider peptide Tx3-5 in pathological pain models in mice. Pflugers Arch 2016; 468(5): 881-94.
[http://dx.doi.org/10.1007/s00424-016-1801-1] [PMID: 26898377]
[44]
Souza AH, Ferreira J, Cordeiro MDN, et al. Analgesic effect in rodents of native and recombinant Ph alpha 1beta toxin, a high-voltage-activated calcium channel blocker isolated from armed spider venom. Pain 2008; 140(1): 115-26.
[http://dx.doi.org/10.1016/j.pain.2008.07.014] [PMID: 18774645]
[45]
Vieira LB, Kushmerick C, Hildebrand ME, et al. Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. J Pharmacol Exp Ther 2005; 314(3): 1370-7.
[http://dx.doi.org/10.1124/jpet.105.087023] [PMID: 15933156]
[46]
Palhares MR, Silva JF, Rezende MJS, et al. Synergistic antinociceptive effect of a calcium channel blocker and a TRPV1 blocker in an acute pain model in mice. Life Sci 2017; 182: 122-8.
[http://dx.doi.org/10.1016/j.lfs.2017.06.018] [PMID: 28629730]
[47]
Gomez MV, Maximo PMA, Prado VF. PHa1B toxin, cDNA of PHa1 B toxins gene, pharmaceutical composition containing PHa1B toxin, processes for their obtention and product. WO2008061329A2, 2008.
[48]
Tonello R, Rigo F, Gewehr C, et al. Action of Phα1β a peptide from the venom of the spider Phoneutria nigriventer, on the analgesic and adverse effects caused by morphine in mice. J Pain 2014; 15(6): 619-31.
[http://dx.doi.org/10.1016/j.jpain.2014.02.007] [PMID: 24607814]
[49]
Tonello R, Fusi C, Materazzi S, et al. The peptide Phα1β from spider venom, acts as a TRPA1 channel antagonist with antinociceptive effects in mice. Br J Pharmacol 2017; 174(1): 57-69.
[http://dx.doi.org/10.1111/bph.13652] [PMID: 27759880]
[50]
Silva RBM, Greggio S, Venturin GT, da Costa JC, Gomez MV, Campos MM. Beneficial effects of the calcium channel blocker CTK 01512-2 in a mouse model of multiple sclerosis. Mol Neurobiol 2018; 55(12): 9307-27.
[http://dx.doi.org/10.1007/s12035-018-1049-1] [PMID: 29667130]
[51]
Barreto Dos Santos N, Bonfanti AP, Rocha-E-Silva TAAD, et al. Venom of the Phoneutria nigriventer spider alters the cell cycle, via bility, and migration of cancer cells. J Cell Physiol 2019; 234(2): 1398-415.
[http://dx.doi.org/10.1002/jcp.26935] [PMID: 30078202]
[52]
Bonfanti AP, Barreto N, Munhoz J, et al. Spider venom administration impairs glioblastoma growth and modulates immune response in a non-clinical model. Sci Rep 2020; 10(1): 5876.
[http://dx.doi.org/10.1038/s41598-020-62620-9] [PMID: 32246025]
[53]
Nicoletti NF, Erig TC, Zanin RF, et al. Pre-clinical evaluation of voltage-gated calcium channel blockers derived from the spider P. nigriventer in glioma progression. Toxicon 2017; 129: 58-67.
[http://dx.doi.org/10.1016/j.toxicon.2017.02.001] [PMID: 28202361]
[54]
de Figueiredo SG, de Lima ME, Nascimento Cordeiro M, et al. Purification and amino acid sequence of a highly insecticidal toxin from the venom of the brazilian spider Phoneutria nigriventer which inhibits NMDA-evoked currents in rat hippocampal neurones. Toxicon 2001; 39(2-3): 309-17.
[http://dx.doi.org/10.1016/S0041-0101(00)00129-X] [PMID: 10978749]
[55]
Silva FR, Batista EML, Gomez MV, et al. The Phoneutria nigriventer spider toxin, PnTx4-5-5, promotes neuronal survival by blocking NMDA receptors. Toxicon 2016; 112: 16-21.
[http://dx.doi.org/10.1016/j.toxicon.2016.01.056] [PMID: 26802625]
[56]
Oliveira CFB, Alves DP, Emerich BL, et al. Antinociceptive effect of PnTx4(5-5), a peptide from Phoneutria nigriventer spider venom, in rat models and the involvement of glutamatergic system. J Venom Anim Toxins Incl Trop Dis 2019; 25: e20190022.
[http://dx.doi.org/10.1590/1678-9199-jvatitd-2019-0022] [PMID: 31467512]
[57]
Perez-Garcia MEDL, Paiva ALB, Oliveira CFBD, et al. Composição farmacêutica com atividade analgésica à base de uma toxina de aranha, proteína de fusão, vetor de expressão dessa toxina e usos. BR102014031481A2, 2016.
[58]
Paiva ALB, Matavel A, Peigneur S, et al. Differential effects of the recombinant toxin PnTx4(5-5) from the spider Phoneutria nigriventer on mammalian and insect sodium channels. Biochimie 2016; 121: 326-35.
[http://dx.doi.org/10.1016/j.biochi.2015.12.019] [PMID: 26747232]
[59]
Emerich BL, Ferreira RC, Cordeiro MN, et al. δ-Ctenitoxin-Pn1a, a peptide from Phoneutria nigriventer spider venom, shows antinociceptive effect involving opioid and cannabinoid systems, in rats. Toxins (Basel) 2016; 8(4): 106.
[http://dx.doi.org/10.3390/toxins8040106] [PMID: 27077886]
[60]
Emerich BL, Ferreira RCM, Machado-de-Avila RA, Resende JM, Duarte IDG, de Lima ME. PnAn13, an antinociceptive synthetic peptide inspired in the Phoneutria nigriventer toxin PnTx4(6-1) (δ-Ctenitoxin-Pn1a). Toxicon X 2020; 7: 100045.
[http://dx.doi.org/10.1016/j.toxcx.2020.100045] [PMID: 32875290]
[61]
Cunha-Jr A da S. Perez-Garcia MEDL, Silva FR, Silva CN, Dourado LFN, Toledo CR. Peptídeos sintéticos neuroprotetores e analgésicos, formulações farmacêuticas e usos. BR1020180750615A2,
[62]
de Lima ME, Stankiewicz M, Hamon A, et al. The toxin Tx4(6-1) from the spider Phoneutria nigriventer slows down Na(+) current inactivation in insect CNS via binding to receptor site 3. J Insect Physiol 2002; 48(1): 53-61.
[http://dx.doi.org/10.1016/S0022-1910(01)00143-3] [PMID: 12770132]
[63]
Jiang Y, Li H, Xia Y. Production method of toxin Tx4 (6-1) labelfree recombinant protein. CN106754945A, 2017.
[64]
Avisar D, Shani Z, Stein H. Pest-resistant plants containing a combination of a spider toxin and a chitinase. US2013097731A1, 2013.
[65]
Diniz MRV, Paiva ALB, Guerra-Duarte C, et al. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS One 2018; 13(8): e0200628.
[http://dx.doi.org/10.1371/journal.pone.0200628] [PMID: 30067761]
[66]
Paiva ALB, Mudadu MA, Pereira EHT, Marri CA, Guerra-Duarte C, Diniz MRV. Transcriptome analysis of the spider Phoneutria pertyi venom glands reveals novel venom components for the genus Phoneutria. Toxicon 2019; 163: 59-69.
[http://dx.doi.org/10.1016/j.toxicon.2019.03.014] [PMID: 30902682]
[67]
Lorenzini DM, da Silva PI Jr, Fogaça AC, Bulet P, Daffre S. Acanthoscurrin: A novel glycine-rich antimicrobial peptide constitutively expressed in the hemocytes of the spider Acanthoscurria gomesiana. Dev Comp Immunol 2003; 27(9): 781-91.
[http://dx.doi.org/10.1016/S0145-305X(03)00058-2] [PMID: 12818635]
[68]
Baumann T, Kämpfer U, Schürch S, et al. Ctenidins: Antimicrobial glycine-rich peptides from the hemocytes of the spider Cupiennius salei. Cell Mol Life Sci CMLS 2010; 67(16): 2787-98.
[http://dx.doi.org/10.1007/s00018-010-0364-0] [PMID: 20369272]
[69]
Gremski LH, da Justa HC, da Silva TP, et al. Forty years of the description of brown spider venom phospholipases-D. Toxins (Basel) 2020; 12(3): 164.
[http://dx.doi.org/10.3390/toxins12030164] [PMID: 32155765]
[70]
Karim-Silva S, Becker-Finco A, Jiacomini IG, et al. Loxoscelism: Advances and challenges in the design of antibody fragments with therapeutic potential. Toxins (Basel) 2020; 12(4): 256.
[http://dx.doi.org/10.3390/toxins12040256] [PMID: 32316084]
[71]
Andrade RMGD, Azevedo IDLMJ, Guidolin R, et al. Processo de obtenção de soro eqüino anti-loxoscélico. BRPI0404765A, 2007.
[72]
Alvarenga LM, Figueiredo LFM, Lopes CD, et al. Proteína quimérica recombinante, composição imunogênica, processo de obtenção, uso para a produção de vacinas e soros contra a picada das aranhas loxosceles spp. BR102013026570A2, 2016.
[73]
Kalapothakis E. Proteìna e sequência de dna da aranha loxosceles intermedia para produção de uma proteìna recombinante e sua utilização no processo de produção de soro e vacina especificada contra a picanha de aranhas do gênero loxosceles. BR0202596A, 2004.
[74]
Lopes DL, Olórtegui CDC, Nguyen C, et al. Composição imunogênica vacinal e terapêutica contra picada de aranha marrom BRPI1103104A2, 2017.
[75]
Chaim OM, Ferrer VP, Gremski LH, et al. Proteína identificada como hialuronidase presente no veneno de loxosceles intermedia, clonada e expressa de forma recombinante em sistema de expressão heterólogo BRPI1107350A2, 2015.
[76]
Chaim OM, Trevisan-Silva D, Chaves-Moreira D, et al. Brown spider (Loxosceles genus) venom toxins: Tools for biological purposes. Toxins (Basel) 2011; 3(3): 309-44.
[http://dx.doi.org/10.3390/toxins3030309] [PMID: 22069711]
[77]
Senff-Ribeiro A, Henrique da Silva P, Chaim OM, et al. Biotechnological applications of brown spider (Loxosceles genus) venom toxins. Biotechnol Adv 2008; 26(3): 210-8.
[http://dx.doi.org/10.1016/j.biotechadv.2007.12.003] [PMID: 18207690]
[78]
Chaves-Moreira D, Matsubara FH, Schemczssen-Graeff Z, et al. Brown spider (Loxosceles) venom toxins as potential biotools for the development of novel therapeutics. Toxins (Basel) 2019; 11(6): E355.
[http://dx.doi.org/10.3390/toxins11060355] [PMID: 31248109]
[79]
McGlasson DL, Babcock JL, Berg L, Triplett DA. ARACHnase. An evaluation of a positive control for platelet neutralization procedure testing with seven commercial activated partial thromboplastin time reagents. Am J Clin Pathol 1993; 100(5): 576-8.
[http://dx.doi.org/10.1093/ajcp/100.5.576] [PMID: 8249897]
[80]
de Castro CS, Silvestre FG, Araújo SC, et al. Identification and molecular cloning of insecticidal toxins from the venom of the brown spider Loxosceles intermedia. Toxicon 2004; 44(3): 273-80.
[http://dx.doi.org/10.1016/j.toxicon.2004.05.028] [PMID: 15302533]
[81]
Matsubara FH, Meissner GO, Herzig V, et al. Insecticidal activity of a recombinant knottin peptide from Loxosceles intermedia venom and recognition of these peptides as a conserved family in the genus. Insect Mol Biol 2017; 26(1): 25-34.
[http://dx.doi.org/10.1111/imb.12268] [PMID: 27743460]
[82]
Domingos MO, Neves IV, Vigerelli H, et al. The potential of Loxosceles gaucho spider venom to regulate Pseudomonas aeruginosa mechanisms of virulence. Toxicon 2018; 152: 78-83. https://repositorio.butantan.gov.br/handle/butantan/2548
[83]
Segura-Ramírez PJ, Silva Júnior PI. Loxosceles gaucho spider venom: An untapped source of antimicrobial agents. Toxins (Basel) 2018; 10(12): E522.
[http://dx.doi.org/10.3390/toxins10120522] [PMID: 30563217]
[84]
Siqueira RAGB, Calabria PAL, Caporrino MC, et al. When spider and snake get along: Fusion of a snake disintegrin with a spider phospholipase D to explore their synergistic effects on a tumor cell. Toxicon 2019; 168: 40-8.
[http://dx.doi.org/10.1016/j.toxicon.2019.06.225] [PMID: 31251993]
[85]
Lauria PSS, Casais-E-Silva LL, do Espírito-Santo RF, et al. Pain-like behaviors and local mechanisms involved in the nociception experimentally induced by Latrodectus curacaviensis spider venom. Toxicol Lett 2018; 299: 67-75.
[http://dx.doi.org/10.1016/j.toxlet.2018.09.008] [PMID: 30261224]
[86]
Duan Z, Yan X, Cao R, Liu Z, Wang X, Liang S. Proteomic analysis of Latrodectus tredecimguttatus venom for uncovering potential latrodectism-related proteins. J Biochem Mol Toxicol 2008; 22(5): 328-36.
[http://dx.doi.org/10.1002/jbt.20244] [PMID: 18972397]
[87]
Quan D, Ruha A-M. Priapism associated with Latrodectus mactans envenomation. Am J Emerg Med 2009; 27(6): 759.e1-2.
[http://dx.doi.org/10.1016/j.ajem.2008.10.033] [PMID: 19751653]
[88]
Al Bshabshe A, Alfaifi M, Alsayed AF. Black widow spider bites experience from tertiary care center in Saudi Arabia. Avicenna J Med 2017; 7(2): 51-3.
[PMID: 28469986]
[89]
Khamtorn P, Rungsa P, Jangpromma N, et al. Partial proteomic analysis of brown widow spider (Latrodectus geometricus) venom to determine the biological activities. Toxicon X 2020; 8: 100062.
[http://dx.doi.org/10.1016/j.toxcx.2020.100062] [PMID: 33163957]
[90]
Yan S, Wang X. Recent advances in research on widow spider venoms and toxins. Toxins (Basel) 2015; 7(12): 5055-67.
[http://dx.doi.org/10.3390/toxins7124862] [PMID: 26633495]
[91]
Krasnoperov VG, Shamotienko OG, Grishin EV. Isolation and properties of insect-specific neurotoxins from venoms of the spider Lactodectus mactans tredecimguttatus Bioorg Khim 1990; 16(8): 1138-40.
[PMID: 2285428]
[92]
Fesce R, Segal JR, Ceccarelli B, Hurlbut WP. Effects of black widow spider venom and Ca2+ on quantal secretion at the frog neuromuscular junction. J Gen Physiol 1986; 88(1): 59-81.
[http://dx.doi.org/10.1085/jgp.88.1.59] [PMID: 3488369]
[93]
Shatursky OYa, Pashkov VN, Bulgacov OV, Grishin EV. Interaction of alpha-latroinsectotoxin from Latrodectus mactans venom with bilayer lipid membranes. Biochim Biophys Acta 1995; 1233(1): 14-20.
[http://dx.doi.org/10.1016/0005-2736(94)00226-F] [PMID: 7530491]
[94]
Grishin EV, Himmelreich NH, Pluzhnikov KA, et al. Modulation of functional activities of the neurotoxin from black widow spider venom. FEBS Lett 1993; 336(2): 205-7.
[http://dx.doi.org/10.1016/0014-5793(93)80803-3] [PMID: 8262230]
[95]
Rivera-de-Torre E, Palacios-Ortega J, Gavilanes JG, Martínez-Del-Pozo Á, García-Linares S. Pore-forming proteins from cnidarians and arachnids as potential biotechnological tools. Toxins (Basel) 2019; 11(6): E370.
[http://dx.doi.org/10.3390/toxins11060370] [PMID: 31242582]
[96]
Miranda A, Obrego EB, Mejia FR, Gutierrez RS. Peptídeo contraceptivo derivado de veneno de aranha. BR112012024138A2, 2017.
[97]
Romero F, Cunha MA, Sanchez R, Ferreira AT, Schor N, Oshiro MEM. Effects of arachnotoxin on intracellular pH and calcium in human spermatozoa. Fertil Steril 2007; 87(6): 1345-9.
[http://dx.doi.org/10.1016/j.fertnstert.2006.11.054] [PMID: 17207796]
[98]
Parodi J, Navarrete P, Marconi M, Gutiérrez RS, Martínez-Torres A, Mejías FR. Tetraethylammonium-sensitive K(+) current in the bovine spermatozoa and its blocking by the venom of the Chilean Latrodectus mactans. Syst Biol Reprod Med 2010; 56(1): 37-43.
[http://dx.doi.org/10.3109/19396360903497217] [PMID: 20170285]
[99]
Gómez PN, Alvarez JG, Risopatrón J, Romero F, Sánchez R. Effect of tubal explants and their secretions on bovine spermatozoa: Modulation of ROS production and DNA damage. Reprod Fertil Dev 2012; 24(6): 871-6.
[http://dx.doi.org/10.1071/RD11180] [PMID: 22781938]
[100]
Gómez PN, Alvarez JG, Parodi J, Romero F, Sánchez R. Effect of aracnotoxin from Latrodectus mactans on bovine sperm function: Modulatory action of bovine oviduct cells and their secretions. Andrologia 2012; 44 (Suppl. 1): 764-71.
[http://dx.doi.org/10.1111/j.1439-0272.2011.01263.x] [PMID: 22211875]
[101]
Mesngon M, McNutt P. Alpha-latrotoxin rescues SNAP-25 from BoNT/A-mediated proteolysis in embryonic stem cell-derived neurons. Toxins (Basel) 2011; 3(5): 489-503.
[http://dx.doi.org/10.3390/toxins3050489] [PMID: 22069721]
[102]
Duregotti E, Zanetti G, Scorzeto M, et al. Snake and spider toxins induce a rapid recovery of function of botulinum neurotoxin paralysed neuromuscular junction. Toxins (Basel) 2015; 7(12): 5322-36.
[http://dx.doi.org/10.3390/toxins7124887] [PMID: 26670253]
[103]
Holz GG, Leech CA, Habener JF. Insulinotropic toxins as molecular probes for analysis of glucagon-likepeptide-1 receptor-mediated signal transduction in pancreatic beta-cells. Biochimie 2000; 82(9-10): 915-26.
[http://dx.doi.org/10.1016/S0300-9084(00)01171-8] [PMID: 11086221]
[104]
Wang X, Tang X, Xu D, Yu D. Molecular basis and mechanism underlying the insecticidal activity of venoms and toxins from Latrodectus spiders. Pest Manag Sci 2019; 75(2): 318-23.
[http://dx.doi.org/10.1002/ps.5206] [PMID: 30204933]
[105]
Lei Q, Yu H, Peng X, et al. Isolation and preliminary characterization of proteinaceous toxins with insecticidal and antibacterial activities from black widow spider (L. tredecimguttatus) eggs. Toxins (Basel) 2015; 7(3): 886-99.
[http://dx.doi.org/10.3390/toxins7030886] [PMID: 25785465]
[106]
Peng X, Zhang Y, Liu J, et al. Physiological and biochemical analysis to reveal the molecular basis for black widow spiderling toxicity. J Biochem Mol Toxicol 2014; 28(5): 198-205.
[http://dx.doi.org/10.1002/jbt.21553] [PMID: 24616210]
[107]
Makover V, Ronen Z, Lubin Y, Khalaila I. Eggshell spheres protect brown widow spider (Latrodectus geometricus) eggs from bacterial infection. J R Soc Interface 2019; 16(150): 20180581.
[http://dx.doi.org/10.1098/rsif.2018.0581] [PMID: 30958158]
[108]
Xu D, Tang X, Wu X, Yu D, Tang P, Wang X. Anti-breast cancer activity of latroeggtoxin-v mined from the transcriptome of spider Latrodectus tredecimguttatus eggs. Toxins (Basel) 2018; 10(11): E451.
[http://dx.doi.org/10.3390/toxins10110451] [PMID: 30400202]
[109]
Peng X, Dai Z, Lei Q, Liang L, Yan S, Wang X. Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells. Exp Ther Med 2017; 13(6): 3267-74.
[http://dx.doi.org/10.3892/etm.2017.4391] [PMID: 28587399]
[110]
Ahmadi S, Knerr JM, Argemi L, et al. Scorpion venom: Detriments and benefits. Biomedicines 2020; 8(5): 118.
[http://dx.doi.org/10.3390/biomedicines8050118] [PMID: 32408604]
[111]
Cologna CT, Marcussi S, Giglio JR, Soares AM, Arantes EC. Tityus serrulatus scorpion venom and toxins: An overview. Protein Pept Lett 2009; 16(8): 920-32.
[http://dx.doi.org/10.2174/092986609788923329] [PMID: 19689419]
[112]
Alvarenga ER, Mendes TM, Magalhaes BF, et al. Transcriptome analysis of the Tityus serrulatus scorpion venom gland. Open J Genet 2012; 02(04): 210-20.
[http://dx.doi.org/10.4236/ojgen.2012.24027]
[113]
Fajloun Z, Mosbah A, Carlier E, et al. Maurotoxin versus Pi1/HsTx1 scorpion toxins. Toward new insights in the understanding of their distinct disulfide bridge patterns. J Biol Chem 2000; 275(50): 39394-402.
[http://dx.doi.org/10.1074/jbc.M006810200] [PMID: 10970898]
[114]
Oliveira-Mendes BBR, Miranda SEM, Sales-Medina DF, et al. Inhibition of Tityus serrulatus venom hyaluronidase affects venom biodistribution. PLoS Negl Trop Dis 2019; 13(4): e0007048.
[http://dx.doi.org/10.1371/journal.pntd.0007048] [PMID: 31002673]
[115]
Carmo AO, Oliveira-Mendes BBR, Horta CCR, et al. Molecular and functional characterization of metalloserrulases, new metalloproteases from the Tityus serrulatus venom gland. Toxicon 2014; 90: 45-55.
[http://dx.doi.org/10.1016/j.toxicon.2014.07.014] [PMID: 25091350]
[116]
Pimenta AMDC, Perez-Garcia ME de L, Diniz CR, Santos RAS, Bougis PE, Martin-Eauclaire M-F. Peptìdeo obtido de veneno escorpião para uso como agente hipotensivo. BR0202157A, 2005.
[117]
Braga TV, Pimenta AMC, Perez-Garcia MEDL, Santos RAS, Diniz CR, Martin-Eauclaire M-F, et al. Modificação, redução da estrutura primária e sìntese de peptìdeos hipotensivos presentes no veneno de escorpião para otimização na utilização dos mesmos como fármacos BRPI0801542A2, 2009.
[118]
Mendes LDG. Junior, Pedrosa MDFF, Araújo RJ, Braga VA. Síntese de peptídeo hipotensivo com estrutura primária reduzida presente no veneno do escorpião tityus stigmurus para otimização e utilização como fármaco. BR102014018478A2, 2017.
[119]
Carmo AO, Dantas AE, Oliveira-Mendes BBR, et al. Peptídeo carreador para entrega intracitoplasmática e intranuclear de moléculas e uso. BR102015008331A2, 2017.
[120]
Oliveira-Mendes BBR, Horta CCR, do Carmo AO, et al. CPP-Ts: A new intracellular calcium channel modulator and a promising tool for drug delivery in cancer cells. Sci Rep 2018; 8(1): 14739.
[http://dx.doi.org/10.1038/s41598-018-33133-3] [PMID: 30282983]
[121]
De Waard M. Small efficient cell penetrating peptides derived from the scorpion toxin maurocalcine. WO2012176138A2, 2012.
[122]
Fletcher MD, Fletcher PL, Martin BM. Fast acting snare-cleaving enzymes. WO2011022357A2, 2011.
[123]
Rigo FK, Bochi GV, Pereira AL, et al. TsNTxP, a non-toxic protein from Tityus serrulatus scorpion venom, induces antinociceptive effects by suppressing glutamate release in mice. Eur J Pharmacol 2019; 855: 65-74.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.002] [PMID: 31059709]
[124]
de Melo ET, Estrela AB, Santos ECG, et al. Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin. Peptides 2015; 68: 3-10.
[http://dx.doi.org/10.1016/j.peptides.2015.03.003] [PMID: 25805002]
[125]
Parente AMS, Daniele-Silva A, Furtado AA, et al. Analogs of the scorpion venom peptide stigmurin: Structural assessment, toxicity, and increased antimicrobial activity. Toxins (Basel) 2018; 10(4): E161.
[http://dx.doi.org/10.3390/toxins10040161] [PMID: 29670004]
[126]
de Jesus Oliveira T, Oliveira UC, da Silva Junior PI. Serrulin: A glycine-rich bioactive peptide from the hemolymph of the yellow Tityus serrulatus scorpion. Toxins (Basel) 2019; 11(9): 517.
[http://dx.doi.org/10.3390/toxins11090517] [PMID: 31489876]
[127]
Marques-Neto LM, Trentini MM, das Neves RC, et al. Antimicrobial and Chemotactic Activity of Scorpion-Derived Peptide, ToAP2, against Mycobacterium massiliensis. Toxins (Basel) 2018; 10(6): E219.
[http://dx.doi.org/10.3390/toxins10060219] [PMID: 29848960]
[128]
Freitas SM, Pereira IS, Mortari MR, Nicola PAA, Schwartz ENF, Costa FG, et al. Peptídeo antimicrobiano, seu processo de obtenção e uso. BR102017024728A2, 2020.
[129]
Guilhelmelli F, Vilela N, Smidt KS, et al. Activity of scorpion venom-derived antifungal peptides against planktonic cells of Candida spp. and Cryptococcus neoformans and Candida albicans biofilms. Front Microbiol 2016; 7: 1844.http://journal.frontiersin.org/article/10.3389/fmicb.2016.01844/full
[http://dx.doi.org/10.3389/fmicb.2016.01844] [PMID: 27917162]
[130]
Schwartz ENF, Mourão CBF, Joanitti GA, Brand GD, Barbosa JARG, Fernandes JPC, et al. Peptídeos inibidores de serinopeptidase modificados de peçonha de escorpião, seu processo de obtenção e uso. BR102017013362A2, 2020.
[131]
Bordon KCF, Wiezel GA, Amorim FG, Arantes EC. Arthropod venom Hyaluronidases: Biochemical properties and potential applications in medicine and biotechnology. J Venom Anim Toxins Incl Trop Dis 2015; 21(1): 43.
[http://dx.doi.org/10.1186/s40409-015-0042-7] [PMID: 26500679]
[132]
Guerra-Duarte C, Rebello Horta CC, Ribeiro Oliveira-Mendes BB, et al. Determination of hyaluronidase activity in Tityus spp. Scorpion venoms and its inhibition by Brazilian antivenoms. Toxicon 2019; 167: 134-43.
[http://dx.doi.org/10.1016/j.toxicon.2019.06.019] [PMID: 31207348]
[133]
Lee JA, Son MJ, Choi J, Yun K-J, Jun JH, Lee MS. Bee venom acupuncture for rheumatoid arthritis: A systematic review protocol. BMJ Open 2014; 4(4): e004602.
[http://dx.doi.org/10.1136/bmjopen-2013-004602] [PMID: 24760349]
[134]
Moreno M, Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins (Basel) 2015; 7(4): 1126-50.
[http://dx.doi.org/10.3390/toxins7041126] [PMID: 25835385]
[135]
Kunitz AG. Melitina proveniente do veneno de abelha: Processo de purificação, aplicação e avaliação econômica. Universidade Federal de Santa Catarina 2015.
[136]
Alves EM, Coelho MDM, Heneine LGD, Merlo LDA, Pesquero JL. Processo de produção de bioprodutos elaborados com componentes isolados de apitoxina de abelhas Apis mellifera, composição e uso. BRPI0904036A2, 2011.
[137]
Vick JA, Mehlman B, Brooks R, Phillips SJ, Shipman W. Effect of the bee venom and melittin on plasma cortisol in the unanesthetized monkey. Toxicon 1972; 10(6): 581-6.
[http://dx.doi.org/10.1016/0041-0101(72)90119-5] [PMID: 4198739]
[138]
Vick JA, Shipman WH. Effects of whole bee venom and its fractions (apamin and melittin) on plasma cortisol levels in the dog. Toxicon 1972; 10(4): 377-80.
[http://dx.doi.org/10.1016/0041-0101(72)90061-X] [PMID: 5070576]
[139]
Rekka E, Kourounakis L, Kourounakis P. Antioxidant activity of and interleukin production affected by honey bee venom. Arzneimittelforschung 1990; 40(8): 912-3.
[PMID: 2242083]
[140]
Nam K-W, Je K-H, Lee JH, et al. Inhibition of COX-2 activity and proinflammatory cytokines (TNF-alpha and IL-1beta) production by water-soluble sub-fractionated parts from bee (Apis mellifera) venom. Arch Pharm Res 2003; 26(5): 383-8.
[http://dx.doi.org/10.1007/BF02976695] [PMID: 12785734]
[141]
Jang H-S, Kim SK, Han J-B, Ahn H-J, Bae H, Min B-I. Effects of bee venom on the pro-inflammatory responses in RAW264.7 macrophage cell line. J Ethnopharmacol 2005; 99(1): 157-60.
[http://dx.doi.org/10.1016/j.jep.2005.02.026] [PMID: 15848037]
[142]
Kim H, Park S-Y, Lee G. Potential therapeutic applications of bee venom on skin disease and its mechanisms: A literature review. Toxins (Basel) 2019; 11(7): E374.
[http://dx.doi.org/10.3390/toxins11070374] [PMID: 31252651]
[143]
Han S, Lee K, Yeo J, Baek H, Park K. Antibacterial and anti-inflammatory effects of honeybee (Apis mellifera) venom against acne-inducing bacteria. J Med Plants Res 2010; 4(6): 459-64.
[144]
Kurek-Górecka A, Górecki M, Rzepecka-Stojko A, Balwierz R, Stojko J. Bee products in dermatology and skin care. Molecules 2020; 25(3): 556.
[http://dx.doi.org/10.3390/molecules25030556] [PMID: 32012913]
[145]
Tu W-C, Wu C-C, Hsieh H-L, Chen C-Y, Hsu S-L. Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon 2008; 52(2): 318-29.
[http://dx.doi.org/10.1016/j.toxicon.2008.06.007] [PMID: 18602939]
[146]
Han SM, Hong IP, Woo SO, et al. The beneficial effects of honeybee-venom serum on facial wrinkles in humans. Clin Interv Aging 2015; 10: 1587-92.
[http://dx.doi.org/10.2147/CIA.S84940] [PMID: 26491274]
[147]
Watala C. Gwoździński K. Melittin-induced alterations in dynamic properties of human red blood cell membranes. Chem Biol Interact 1992; 82(2): 135-49.
[http://dx.doi.org/10.1016/0009-2797(92)90106-U] [PMID: 1314707]
[148]
Ceremuga M, Stela M, Janik E, et al. Melittin-A natural peptide from bee venom which induces apoptosis in human leukaemia cells. Biomolecules 2020; 10(2): 247.
[http://dx.doi.org/10.3390/biom10020247] [PMID: 32041197]
[149]
Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett 2017; 402: 16-31.
[http://dx.doi.org/10.1016/j.canlet.2017.05.010] [PMID: 28536009]
[150]
Zhang S-F, Chen Z. Melittin exerts an antitumor effect on non small cell lung cancer cells. Mol Med Rep 2017; 16(3): 3581-6.
[http://dx.doi.org/10.3892/mmr.2017.6970] [PMID: 28713976]
[151]
Hong J, Lu X, Deng Z, Xiao S, Yuan B, Yang K. How Melittin Inserts into Cell Membrane: Conformational changes, inter-peptide cooperation, and disturbance on the membrane. Molecules 2019; 24(9): E1775.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539814/
[http://dx.doi.org/10.3390/molecules24091775] [PMID: 31067828]
[152]
Oller-Salvia B, Sánchez-Navarro M, Giralt E, Teixidó M. Blood-brain barrier shuttle peptides: An emerging paradigm for brain delivery. Chem Soc Rev 2016; 45(17): 4690-707.
[http://dx.doi.org/10.1039/C6CS00076B] [PMID: 27188322]
[153]
Willis M, Trieb M, Leitner I, Wietzorrek G, Marksteiner J, Knaus H-G. Small-conductance calcium-activated potassium type 2 channels (SK2, KCa2.2) in human brain. Brain Struct Funct 2017; 222(2): 973-9.
[http://dx.doi.org/10.1007/s00429-016-1258-1] [PMID: 27357310]
[154]
Patel D, Kuyucak S, Doupnik CA. Structural determinants mediating tertiapin block of neuronal kir3.2 channels. Biochemistry 2020; 59(7): 836-50.
[http://dx.doi.org/10.1021/acs.biochem.9b01098] [PMID: 31990535]
[155]
Gong J, Yuan H, Gao Z, Hu F. Wasp venom and acute kidney injury: The mechanisms and therapeutic role of renal replacement therapy. Toxicon 2019; 163: 1-7.
[http://dx.doi.org/10.1016/j.toxicon.2019.03.008] [PMID: 30880185]
[156]
Muller JAI, Moslaves ISB, Oliveira EJT, et al. Pro-inflammatory response induced by the venom of Parachartergus fraternus wasp. Toxicon Off J Int Soc Toxinol 2021; 190: 11-9.
[http://dx.doi.org/10.1016/j.toxicon.2020.11.176] [PMID: 33290790]
[157]
Muller JAI, Lencina JS, Souza MIL, Mortari MR, Toffoli-Kadri MC. Macrophage activation in vitro by Parachartergus fraternus venom. Toxicon 2021; 198: 48-53.
[http://dx.doi.org/10.1016/j.toxicon.2021.04.028]
[158]
Pfeiffer DR, Gudz TI, Novgorodov SA, Erdahl WL. The peptide mastoparan is a potent facilitator of the mitochondrial permeability transition. J Biol Chem 1995; 270(9): 4923-32.
[http://dx.doi.org/10.1074/jbc.270.9.4923] [PMID: 7876267]
[159]
Dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM, Palma MS. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018; 148: 172-96.
[http://dx.doi.org/10.1016/j.toxicon.2018.04.029] [PMID: 29715467]
[160]
Silva JC, Neto LM, Neves RC, et al. Evaluation of the antimicrobial activity of the mastoparan Polybia-MPII isolated from venom of the social wasp Pseudopolybia vespiceps testacea (Vespidae, Hymenoptera). Int J Antimicrob Agents 2017; 49(2): 167-75.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.11.013] [PMID: 28108242]
[161]
Biolchi AM, de Oliveira DGR, Amaral HO, et al. Fraternine, a novel wasp peptide, protects against motor impairments in 6-OHDA model of parkinsonism. Toxins (Basel) 2020; 12(9): E550.
[http://dx.doi.org/10.3390/toxins12090550] [PMID: 32867207]
[162]
Gomes FMM, Paniago CK, Freire DO, et al. Anxiolytic-like effect of a novel peptide isolated from the venom of the social wasp Synoeca surinama. Toxicon Off J Int Soc Toxinology 2016; 122: 39-42.
[http://dx.doi.org/10.1016/j.toxicon.2016.09.015] [PMID: 27664832]
[163]
do Couto LL, Dos Anjos LC, Araujo M de AF, et al. Anticonvulsant and anxiolytic activity of the peptide fraction isolated from the venom of the social wasp Polybia paulista. Pharmacogn Mag 2012; 8(32): 292-9.
[http://dx.doi.org/10.4103/0973-1296.103657] [PMID: 24082633]
[164]
Dourado LFN, Silva CN, Dos Anjos LC, Mortari MR, Silva-Cunha A, Fialho SL. Ischemia-induced retinal injury is attenuated by Neurovespina, a peptide from the venom of the social wasp Polybia occidentalis. Neuropeptides 2021; 85: 102113.
[http://dx.doi.org/10.1016/j.npep.2020.102113] [PMID: 33370615]
[165]
Mortari MR, Cunha AOS, de Oliveira L, et al. Anticonvulsant and behavioural effects of the denatured venom of the social wasp Polybia occidentalis (Polistinae, Vespidae). Basic Clin Pharmacol Toxicol 2005; 97(5): 289-95.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto_137.x] [PMID: 16236140]
[166]
Cunha AOS, Mortari MR, Oliveira L, Carolino ROG, Coutinho-Netto J, dos Santos WF. Anticonvulsant effects of the wasp Polybia ignobilis venom on chemically induced seizures and action on GABA and glutamate receptors. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141(1): 50-7.
[http://dx.doi.org/10.1016/j.cca.2005.05.004] [PMID: 15953769]
[167]
Lopes KS, Quintanilha MVT, de Souza ACB, Zamudio-Zuñiga F, Possani LD, Mortari MR. Antiseizure potential of peptides from the venom of social wasp Chartergellus communis against chemically-induced seizures. Toxicon Off J Int Soc Toxinology 2021; 194: 23-36.
[http://dx.doi.org/10.1016/j.toxicon.2021.02.009] [PMID: 33610635]
[168]
Mortari MR, Cunha AOS, Carolino ROG, et al. Inhibition of acute nociceptive responses in rats after i.c.v. injection of Thr6-bradykinin, isolated from the venom of the social wasp, Polybia occidentalis. Br J Pharmacol 2007; 151(6): 860-9.
[http://dx.doi.org/10.1038/sj.bjp.0707275] [PMID: 17533426]
[169]
Mortari MR, Carneiro LDA. Peptídeo modificado da peçonha de vespa social e seu uso como antiepiléptico e neuroprotetor. BR102014004728A2, 2016.
[170]
Mortari MR, Mayer AB, Souza ACB, Fernandes SCR, Amaral HO, Lima MR. Peptídeos modificados da peçonha da vespa social Parachartergus fraternus e seu uso no tratamento de doenças neurodegenerativas. BR102018008420A2, 2020.
[171]
Mortari MR, Schwartz ENF, Gonçalves JC, Ribeiro PG, Silva LP. Peptídeo modificado de peçonha de vespa social e seu uso como analgésico. BR102014020510A2, 2016.
[172]
Seldeslachts A, Peigneur S, Tytgat J. Caterpillar venom: A health hazard of the 21st century. Biomedicines 2020; 8(6): E143.
[http://dx.doi.org/10.3390/biomedicines8060143] [PMID: 32486237]
[173]
Chudzinski-Tavassi AM, Alvarez Flores MP. Exploring new molecules and activities from Lonomia obliqua caterpillars - abstract - pathophysiology of haemostasis and thrombosis Karger Publishers 2005; 34: 4-5.https://www.karger.com/Article/Abstract/92429
[174]
Reis CV, Farsky SH, Fernandes BL, et al. In vivo characterization of Lopap, a prothrombin activator serine protease from the Lonomia obliqua caterpillar venom. Thromb Res 2001; 102(5): 437-43.
[http://dx.doi.org/10.1016/S0049-3848(01)00268-7] [PMID: 11395129]
[175]
Chudzinski-Tavassi AM, Reis CV. Processo de purificação de proteìnas solúveis das cerdas da l. oblìqua com atividade ativadora de protrombina; processo para determinação parcial da sequência de aminoácidos do ativador de protrombina; processo de determinação da atividade ativadora de protrombina da fração ii, sequência n-terminal e sequência de fragmentos internos da fração ativadora de protrombina, ativador de protrombina e uso do ativador de protrombina. BR0200269A, 2004.
[176]
Chudzinski-Tavassi AM, Farsky S, Fritzen M, Ho PL, Ramos CR, Reis CV. Processo de obtenção de protease ativadora de protrombina recombinate (lopap) na forma monomérica; protease ativadora de protrombina recombinate (lopap), seqüência de aminoácidos da proteìna recombinante assim obtida e uso como agente desfibrinogenante e kit diagnóstico para desprotrombinemias. BRPI0403882A, 2006.
[177]
Chudzinski-Tavassi AM, Falci M, Maria DA, Reis CV. Composições farmacêuticas baseadas em lopap e usos das ditas composições. BRPI0504199A, 2007.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy