Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Review Article

Contemporary Approaches to Analyze Non-stationary Time-series: Some Solutions and Challenges

Author(s): Ankit Dixit* and Shikha Jain

Volume 16, Issue 2, 2023

Published on: 03 October, 2022

Article ID: e230522205121 Pages: 20

DOI: 10.2174/2666255815666220523125447

Price: $65

Abstract

Enhancement of technology yields more complex time-dependent outcomes for better understanding and analysis. These outcomes generate more complex, unstable, and highdimensional data from non-stationary environments. Hence, more challenges are arising day by day to fulfill the increasing demand for future estimation. Thus, in this paper, an extensive study has been presented to comprehend the statistical complexity and randomness of Non-Stationary Time Series (NS-TS) data at the atomic level. This survey briefly explains the basic principles and terms related to Non-Stationary Time Series (NS-TS). After understanding the fundamentals of NS-TS, this survey categorized non-stationary time series into groups and subgroups based on a change in statistical behavior. It also provides a comprehensive discussion on contemporary approaches proposed by researchers in each category of non-stationarity. These algorithms include clustering, classification, and regression techniques to deal with different types of domains. Every category of non-stationarity consists of a separate table to draw some advantages and disadvantages of existing approaches. At the end of each non-stationarity type, a short discussion and critical analysis have been done. In the conclusion section, it is observed that this research sphere still has many open challenges that need to be addressed and demand more exploration. Furthermore, it discusses the possible solution of improvisation in future research.

Keywords: Time series data, Stationarity, Dataset shift, Time series clustering, Non-stationary

Graphical Abstract

[1]
M.M. Najafabadi, F. Villanustre, T.M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic, "Deep learning applications and challenges in big data analytics", J. Big Data, vol. 2, no. 1, p. 1, 2015.
[http://dx.doi.org/10.1186/s40537-014-0007-7]
[2]
MP. Kumar, S. Santhoshkumar, and S.S. Shajahaan, "A survey on IoT performances in big data", Int. J. Computer Sci. Mobile Comput.,, 2012. Available from:www.ijcsmc.com.
[3]
R. Adhikari, and R.K. Agrawal, "An introductory study on time-series modeling and forecasting", arXiv:1302.6613.. Available from: http://arxiv.org/abs/1302.6613Accessed: Jan. 27, 2020
[4]
F.E. Grubbs, "Procedures for detecting outlying observations in samples", Technometrics, vol. 11, no. 1, pp. 1-21, 1969.
[http://dx.doi.org/10.1080/00401706.1969.10490657]
[5]
A. Dixit, and S. Jain, "Effect of stationarity on traditional machine learning models: Time series analysis", IC3 '21: 2021Thirteenth International Conference on Contemporary Computing (IC3-2021), Nov 04, 2021,, New York, NY, United States,, pp. 303-308.
[http://dx.doi.org/10.1145/3474124.3474167]
[6]
E. Keogh, and S. Kasetty, "On the need for time-series data mining benchmarks: A survey and empirical demonstration", Data Mining. Knowl. Discov., vol. 7, pp. 349-371, 2003.
[http://dx.doi.org/10.1145/775047.775062]
[7]
J. Antoni, "The spectral kurtosis: A useful tool for characterising non-stationary signals", Mech. Syst. Signal Process., vol. 20, no. 2, pp. 282-307, 2006.
[http://dx.doi.org/10.1016/j.ymssp.2004.09.001]
[8]
J.D. Hamilton, "A new approach to the economic analysis of nonstationary time series and the business cycle", Econometrica, vol. 57, no. 2, p. 357, 1989.
[http://dx.doi.org/10.2307/1912559]
[9]
J. Rotton, and J. Frey, "Air pollution, weather, and violent crimes: Concomitant time-series analysis of archival data", J. Pers. Soc. Psychol., vol. 49, no. 5, pp. 1207-1220, 1985.
[http://dx.doi.org/10.1037/0022-3514.49.5.1207] [PMID: 4078674]
[10]
E. Soares, P. Costa Jr, B. Costa, and D. Leite, "Ensemble of evolving data clouds and fuzzy models for weather time series prediction", Appl. Soft Comput., vol. 64, pp. 445-453, 2018.
[http://dx.doi.org/10.1016/j.asoc.2017.12.032]
[11]
M.P.C. Cherrie, G. Nichols, G.L. Iacono, C. Sarran, S. Hajat, and L.E. Fleming, "Pathogen seasonality and links with weather in England and Wales: A big data time series analysis", BMC Public Health, vol. 18, no. 1, p. 1067, 2018.
[http://dx.doi.org/10.1186/s12889-018-5931-6] [PMID: 30153803]
[12]
J. Verbesselt, R. Hyndman, A. Zeileis, and D. Culvenor, "Phenological change detection while accounting for abrupt and gradual trends in satellite image time series", Remote Sens. Environ,, vol. 114, no. 12, pp. 2970-2980, 2010.
[http://dx.doi.org/10.1016/j.rse.2010.08.003]
[13]
P. Fu, and Q. Weng, "A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery", Remote Sens. Environ., vol. 175, pp. 205-214, 2016.
[http://dx.doi.org/10.1016/j.rse.2015.12.040]
[14]
A. Alshejari, and V.S. Kodogiannis, "Electricity price forecasting using asymmetric fuzzy neural network systems", 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jul 09-12, 2017, Naples, Italy, 2017, pp. 1-6.
[http://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015436]
[15]
M. Peker, "Seismic hazard prediction using seismic bumps: A data mining approach", Am. J. Eng. Res., no. 5, pp. 106-111, 2016.
[16]
E. Kočenda, and Č. Karolinum,, "Elements of Time Series Econometrics: An Applied Approach", 3rd ed.,, 2017.Charles University, Karolinum Press, pp. 220, ,
[17]
Joaquin Quinonero-Candela, "Dataset shift in machine learning",, The MIT Press: Cambridge, Massachusetts, London, England, 2008, pp. 1-246.
[18]
H. Raza, G. Prasad, and Y. Li, "Adaptive learning with covariate shift-detection for non-stationary environments", 14th UK Workshop on Computational Intelligence (UKCI). IEEE, Sept 8-10, 2014,, Bradford, UK, 2014, pp. 1-8.
[http://dx.doi.org/10.1109/UKCI.2014.6930161]
[19]
S. Sankaranarayanan, Y. Balaji, A. Jain, S.N. Lim, and R. Chellappa, "Learning from synthetic data: Addressing domain shift for semantic segmentation", In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Jun 18-23, 2018, Salt Lake City, UT, USA,pp. 3752-3761
[http://dx.doi.org/10.1109/CVPR.2018.00395]
[20]
J. Zhang, Z. Ding, W. Li, and P. Ogunbona, "Importance weighted adversarial nets for partial domain adaptation", 2018 IEEE Conference on Computer Vision and Pattern Recognition Jun 18-23, 2018, Salt Lake City, UT, USA, 2018, pp. 8156-8164.
[http://dx.doi.org/10.1109/CVPR.2018.00851]
[21]
D. Levinthal, and J.G. March, "A model of adaptive organizational search", J. Econ. Behav. Organ., vol. 2, no. 4, pp. 307-333, 1981.
[http://dx.doi.org/10.1016/0167-2681(81)90012-3]
[22]
P. Angelov, and R. Buswell, "Evolving rule-based models: A tool for intelligent adaptation", Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS, Jul 25- 28, 2001,, Vancouver, BC, Canada, 2001, pp. 1062-1067.
[http://dx.doi.org/10.1109/NAFIPS.2001.944752]
[23]
P.P. Angelov, "Evolving Rule-Based Models", Physica-Verlag HD: Heidelberg, vol. 92, p. 214, 2002.
[http://dx.doi.org/10.1007/978-3-7908-1794-2]
[24]
N.K. Kasabov, and Qun. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction", IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144-154, 2002.
[http://dx.doi.org/10.1109/91.995117]
[25]
P. Angelov, D.P. Filev, and N.K. Kasabov, "Evolving intelligent systems: Methodology and applications"., John Wiley Online Library, 2010, pp. 1-444.
[http://dx.doi.org/10.1002/9780470569962]
[26]
M. Black, and R.J. Hickey, "Maintaining the performance of a learned classifier under concept drift", Intell. Data Anal., vol. 3, no. 6, pp. 453-474, 1999.
[http://dx.doi.org/10.3233/IDA-1999-3604]
[27]
R. Klinkenberg, and T. Joachims, "Detecting concept drift with support vector machines", 1998. Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.3147 &rep=rep1&type=pdf
[28]
G.J. Ross, N.M. Adams, D.K. Tasoulis, and D.J. Hand, "Exponentially weighted moving average charts for detecting concept drift", Pattern Recognit. Lett., vol. 33, no. 2, pp. 191-198, 2012.
[http://dx.doi.org/10.1016/j.patrec.2011.08.019]
[29]
L. Cohen, G. Avrahami, M. Last, A. Kandel, and O. Kipersztok, "Incremental classification of nonstationary data streams",, Research Gate, 2005, pp. 1-6.
[30]
N. Adams, "Dataset shift in machine learning", Statistics Soc., vol. 173, no. 1, p. 274, 2009.
[http://dx.doi.org/10.1111/j.1467-985X.2009.00624_10.x]
[31]
C. Park, A. Awadalla, T. Kohno, and S. Patel, "Reliable and trustworthy machine learning for health using dataset shift detection"", In: A. Beygelzimer, Y. Dauphin, P. Liang, J.W. Vaughan, Eds., Advances in Neural Information Processing Systems, 2000, pp. 487-494.
[32]
J.G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N.V. Chawla, and F. Herrera, "A unifying view on dataset shift in classification", Pattern Recognit., vol. 45, no. 1, pp. 521-530, 2012.
[http://dx.doi.org/10.1016/j.patcog.2011.06.019]
[33]
Y. Lucas, "Dataset shift quantification for credit card fraud detection", 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) Jun 3-5, 2019, Sardinia, Italy,, 2019, pp. 97-100.
[http://dx.doi.org/10.1109/AIKE.2019.00024]
[34]
M. Last, "Online classification of nonstationary data streams", Intell. Data Anal., vol. 6, no. 2, pp. 129-147, 2002.
[http://dx.doi.org/10.3233/IDA-2002-6203]
[35]
M.H. Pesaran, and Y. Shin, ""An Autoregressive Distributed-Lag Modelling Approach to Cointegration Analysis"", In: Econometrics and Economic Theory in the 20th Century, 2012.
[36]
E.R. Cook, "A time-series analysis approach to tree ring standardization", Tree-Ring Bull., vol. 47, pp. 1-24, 1985.
[37]
R. Calandra, T. Raiko, M.P. Deisenroth, and F.M. Pouzols, ""Learning deep belief networks from non-stationary streams"", In: A.E.P. Villa, W. Duch, P. Érdi, F. Masulli, G. Palm, Eds., Artificial Neural Networks and Machine Learning – ICANN 2012., Springer: Berlin, Heidelberg, 2012.
[http://dx.doi.org/10.1007/978-3-642-33266-1_47]
[38]
C.F. Juang, and Y.W. Tsao, "A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning", IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1411-1424, 2008.
[http://dx.doi.org/10.1109/TFUZZ.2008.925907]
[39]
E. Donato, “Evaluating classification algorithms applied to data streams”, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires., 2009. Available from: http://digitalold.bl.fcen.uba.ar/gsdl-282/cgi-bin/library.cgi?e=d-00000-00---off-0tesis--00-2----0-10-0---0---0direct-10---4-------0-1l--10-es-50---20-about---00-3-1-00-0-0-01-0-0utfZz-8-00&a=d&cl=CL4.9
[40]
G. Avrahami, "“Incremental info-fuzzy algorithm for real time data mining of non-stationary data streams mark last keywords”, Non-Stat", Data Streams Tdm Work., vol. 9, no. 3, pp. 344-353, 2003.
[41]
P. D’Urso, R. Massari, C. Cappelli, and L. De Giovanni, "Autoregressive metric-based trimmed fuzzy clustering with an application to PM10 time series", Chemom. Intell. Lab. Syst., vol. 161, pp. 15-26, 2017.
[http://dx.doi.org/10.1016/j.chemolab.2016.11.016]
[42]
L.F. Bringmann, E. Ferrer, E.L. Hamaker, D. Borsboom, and F. Tuerlinckx, "Modeling nonstationary emotion dynamics in dyads using a time-varying vector-autoregressive model", Multivariate Behav. Res., vol. 53, no. 3, pp. 293-314, 2018.
[http://dx.doi.org/10.1080/00273171.2018.1439722] [PMID: 29505311]
[43]
R.B. Panerai, "Nonstationarity of dynamic cerebral autoregulation", Med. Eng. Phys., vol. 36, no. 5, pp. 576-584, 2014.
[http://dx.doi.org/10.1016/j.medengphy.2013.09.004] [PMID: 24113077]
[44]
R.M. Hirsch, J.R. Slack, and R.A. Smith, "Techniques of trend analysis for monthly water quality data", Water Resour. Res., vol. 18, no. 1, pp. 107-121, 1982.
[http://dx.doi.org/10.1029/WR018i001p00107]
[45]
M. Kamruzzaman, S. Beecham, and A.V. Metcalfe, "Non-stationarity in rainfall and temperature in the murray darling basin", Hydrol. Process, vol. 25, no. 10, pp. 1659-1675, 2011.
[http://dx.doi.org/10.1002/hyp.7928]
[46]
C.C. Holt, "Forecasting seasonals and trends by exponentially weighted moving averages", Int. J. Forecast., vol. 20, no. 1, pp. 5-10, 2004.
[http://dx.doi.org/10.1016/j.ijforecast.2003.09.015]
[47]
A.P. Dempster, N.M. Laird, and D.B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm", J. R. Stat. Soc. B, vol. 39, no. 1, pp. 1-22, 1977.
[http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x]
[48]
A. Aravkin, J.V. Burke, L. Ljung, A. Lozano, and G. Pillonetto, "Generalized Kalman smoothing: Modeling and algorithms", Automatica, vol. 86, pp. 63-86, 2017.
[http://dx.doi.org/10.1016/j.automatica.2017.08.011]
[49]
M.P. Tarvainen, J.K. Hiltunen, P.O. Ranta-aho, and P.A. Karjalainen, "Estimation of nonstationary EEG with kalman smoother approach: An application to event-related synchronization (ERS)", IEEE Trans. Biomed. Eng., vol. 51, no. 3, pp. 516-524, 2004.
[http://dx.doi.org/10.1109/TBME.2003.821029] [PMID: 15000382]
[50]
R.H. Shumway, and D.S. Stoffer, "An approach to time series smoothing and forecasting using the em algorithm", J. Time Ser. Anal., vol. 3, no. 4, pp. 253-264, 1982.
[http://dx.doi.org/10.1111/j.1467-9892.1982.tb00349.x]
[51]
T. Schreiber, "Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions", Phys. Rev. Lett., vol. 78, no. 5, pp. 843-846, 1997.
[http://dx.doi.org/10.1103/PhysRevLett.78.843]
[52]
S. Borra, and A. Di Ciaccio, "Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods", Comput. Stat. Data Anal., vol. 54, no. 12, pp. 2976-2989, 2010.
[http://dx.doi.org/10.1016/j.csda.2010.03.004]
[53]
N.E. Huang, "The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time-series analysis", Proc. R. Soc. Lond. A.,, vol. 454, no. 1971, pp. 903-995, 1998.
[http://dx.doi.org/10.1098/rspa.1998.0193]
[54]
G. Wang, X.Y. Chen, F.L. Qiao, Z. Wu, and N. Huang, "On intrinsic mode function", Adv. Adapt. Data Anal., vol. 2, no. 3, pp. 277-293, 2010.
[http://dx.doi.org/10.1142/S1793536910000549]
[55]
W.G. Strupczewski, V.P. Singh, and W. Feluch, "Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation", J. Hydrol. , vol. 248, no. 1-4, pp. 123-142, 2001.
[http://dx.doi.org/10.1016/S0022-1694(01)00397-3]
[56]
H. Nosrati, M. Shamsi, S.M. Taheri, and M.H. Sedaaghi, "Adaptive networks under non-stationary conditions: Formulation, performance analysis, and application", IEEE Trans. Signal Proc., vol. 63, no. 16, pp. 4300-4314, 2015.
[http://dx.doi.org/10.1109/TSP.2015.2436363]
[57]
H. Mo, L. Xiong, and R.Y. Lu, "Material demand combination forecasting model based on EMD-PSO-LSSVR", Proceedings of the 2018 International Conference on Education Reform and Management Science (ERMS 2018). Apr 22-23, 2018,, vol. 117. Beijing, China, 2018, pp. 347-356.
[http://dx.doi.org/10.2991/erms-18.2018.62]
[58]
D. Bissing, and M. Klein, "A hybrid regression model for day-ahead energy price forecasting", IEEE Access, vol. 8, pp. 1-14, 2020. Available from:https://ieeexplore.ieee.org/abstract/document/8665889/Accessed: Jan. 30, 2020.
[59]
G. Lachtermacher, and J.D. Fuller, "Back propagation in time-series forecasting", J. Forecast., vol. 14, no. 4, pp. 381-393, 1995.
[http://dx.doi.org/10.1002/for.3980140405]
[60]
A. Stepchenko, L. Aleksejeva, J. Tolujew, and J. Chizhov, "Nonlinear, non-stationary and seasonal time-series forecasting using different methods coupled with data preprocessing", Procedia Comput. Sci., vol. 104, pp. 578-585, 2017.
[61]
N. Safari, C.Y. Chung, and G.C.D. Price, "Novel multi-step short-term wind power prediction framework based on chaotic time-series analysis and singular spectrum analysis", IEEE Trans. Power Syst., vol. 33, no. 1, pp. 590-601, 2017.
[http://dx.doi.org/10.1109/TPWRS.2017.2694705]
[62]
F.S. Chapin, ""Global change and the boreal forest: Thresholds, shifting states or gradual change?", A J", Human Environ., vol. 33, no. 6, pp. 361-365, 2004.
[http://dx.doi.org/10.1579/0044-7447-33.6.361]
[63]
C. Rougé, Y. Ge, and X. Cai, "Detecting gradual and abrupt changes in hydrological records", Adv. Water Resour., vol. 53, pp. 33-44, 2013.
[http://dx.doi.org/10.1016/j.advwatres.2012.09.008]
[64]
R. de Jong, J. Verbesselt, M.E. Schaepman, and S. de Bruin, "Trend changes in global greening and browning: Contribution of short-term trends to longer-term change", Glob. Chang. Biol., vol. 18, no. 2, pp. 642-655, 2012.
[http://dx.doi.org/10.1111/j.1365-2486.2011.02578.x]
[65]
G. Kitagawa, "Non-gaussian state-space modeling of nonstationary time-series", J. Am. Stat. Assoc., vol. 82, no. 400, pp. 1032-1041, 1987.
[http://dx.doi.org/10.1080/01621459.1987.10478534]
[66]
L. Mahrt, S. Richardson, N. Seaman, and D. Stauffer, ""Non-stationary drainage flows and motions in the cold pool", Tellus, Ser. A Dyn", Meteorol. Oceanogr, vol. 62, no. 5, pp. 698-705, 2010.
[http://dx.doi.org/10.1111/j.1600-0870.2010.00473.x]
[67]
M. Vogt, and H. Dette, "Detecting gradual changes in locally stationary processes", Ann. Stat., vol. 43, no. 2, p. 28, 2015.
[http://dx.doi.org/10.1214/14-AOS1297]
[68]
D.V. Pandit, "Seasonal rainfall trend analysis", J. Eng. Res. Appl., vol. 17, no. 2, p. 1695, 2016.
[69]
A. Kolovos, G. Christakos, D.T. Hristopulos, and M.L. Serre, "Methods for generating non-separable spatiotemporal covariance models with potential environmental applications", Adv. Water Resour., vol. 27, no. 8, pp. 815-830, 2004.
[http://dx.doi.org/10.1016/j.advwatres.2004.04.002]
[70]
E. Meng, S. Huang, Q. Huang, W. Fang, L. Wu, and L. Wang, "A robust method for non-stationary streamflow prediction based on improved EMD-SVM model", J. Hydrol. , vol. 568, pp. 462-478, 2019.
[http://dx.doi.org/10.1016/j.jhydrol.2018.11.015]
[71]
E.L. Hamaker, R.P.P.P. Grasman, and E.L. Kamphuis, "Regime-switching models to study psychological processes", In: P.C.M. Molenaar, K.M. Newell, Eds., Individual pathways of change: Statistical models for analyzing learning and development., American Psychological Association, 2010, pp. 155-168.
[http://dx.doi.org/10.1037/12140-009]
[72]
A.W. Gregory, and B.E. Hansen, "Residual-based tests for cointegration in models with regime shifts", J. Econom., vol. 70, no. 1, pp. 99-126, 1996.
[http://dx.doi.org/10.1016/0304-4076(69)41685-7]
[73]
G. Beaugrand, "The North Sea regime shift: evidence, causes, mechanisms and consequences", Prog. Oceanography., vol. 60, no. 2-4, pp. 245-262, 2004.
[74]
I. Keppo, and S. Rao, "International climate regimes: Effects of delayed participation", Technol. Forecast. Soc. Change, vol. 74, no. 7, pp. 962-979, 2007.
[http://dx.doi.org/10.1016/j.techfore.2006.05.025]
[75]
A. Paradiso, P. Casadio, and B.B. Rao, "US inflation and consumption: A long-term perspective with a level shift", Econ. Model., vol. 29, no. 5, pp. 1837-1849, 2012.
[http://dx.doi.org/10.1016/j.econmod.2012.05.037]
[76]
C.J. Kim, "Dynamic linear models with Markov-switching", J. Econom., vol. 60, no. 1-2, pp. 1-22, 1994.
[http://dx.doi.org/10.1016/0304-4076(94)90036-1]
[77]
C.J. Kim, J. Piger, and R. Startz, "Estimation of Markov regime-switching regression models with endogenous switching", J. Econom., vol. 143, no. 2, pp. 263-273, 2008.
[http://dx.doi.org/10.1016/j.jeconom.2007.10.002]
[78]
S.R. Carpenter, "Early warnings of regime shifts: A whole-ecosystem experiment", Science, vol. 332, no. 6033, pp. 1079-108, 2011.
[http://dx.doi.org/10.1126/science.1203672]
[79]
R. Biggs, S.R. Carpenter, and W.A. Brock, "Turning back from the brink: Detecting an impending regime shift in time to avert it", Proc. Natl. Acad. Sci., vol. 106, no. 3, pp. 826-831, 2009.
[http://dx.doi.org/10.1073/pnas.0811729106] [PMID: 19124774]
[80]
R. Contamin, and A.M. Ellison, "Indicators of regime shifts in ecological systems: What do we need to know and when do we need to know it", Ecol. Appl., vol. 19, no. 3, pp. 799-816, 2009.
[http://dx.doi.org/10.1890/08-0109.1] [PMID: 19425440]
[81]
Q. Wang, S. Li, and R. Li, "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques", Energy, vol. 161, pp. 821-831, 2018.
[http://dx.doi.org/10.1016/j.energy.2018.07.168]
[82]
S. Liu, S. Huang, Y. Xie, H. Wang, G. Leng, Q. Huang, X. Wei, and L. Wang, "Identification of the non-stationarity of floods: Changing patterns, causes, and implications", Water Resour. Manage., vol. 33, no. 3, pp. 939-953, 2019.
[http://dx.doi.org/10.1007/s11269-018-2150-y]
[83]
F. Fathian, A. Fakheri Fard, T.B.M.J. Ouarda, Y. Dinpashoh, and S.S. Mousavi Nadoushani, "Modeling streamflow time series using nonlinear SETAR-GARCH models", J. Hydrol. , vol. 573, pp. 82-97, 2019.
[http://dx.doi.org/10.1016/j.jhydrol.2019.03.072]
[84]
Y. Kolokolov, and A. Monovskaya, "A Practice-Oriented bifurcation analysis for pulse energy converters. Part 5: A view towards the future", Inter. J. Bifurc. Chaos, vol. 31, no. 7, p. 2150106, 2021.
[http://dx.doi.org/10.1142/S0218127421501066]
[85]
H. Raza, and G. Prasad, "Dataset shift detection in non-stationary environments using EWMA charts", 2013 IEEE International Conference on Systems, Man, and Cybernetics Oct 13-16, 2013, Manchester, UK, 2013, pp. 3151-3156.
[86]
M.A. Carnero, D. Peña, and E. Ruiz, "Effects of outliers on the identification and estimation of GARCH models", J. Time Ser. Anal., vol. 28, no. 4, pp. 471-497, 2007.
[http://dx.doi.org/10.1111/j.1467-9892.2006.00519.x]
[87]
Y. He, A. Bárdossy, and J. Brommundt, "Non-stationary flood frequency analysis in Soutern Germany", J. Hydrol. , 2016.
[88]
I. Žliobaitė,, "Learning under Concept Drift: an Overview", arXiv:1010.4784,, 2009. Available from:http://arxiv.org/abs/1010.4784Oct. 2010, Accessed: Feb. 03, 2020.
[89]
P. Chujai, N. Kerdprasop, and K. Kerdprasop, "Time-series analysis of household electric consumption with ARIMA and ARMA models", Proceedings of the International Multi Conference of Engineers and Computer Scientists 2013 Vol I, IMECS 2013, Mar 13 - 15, 2013, Hong Kong, 2013, pp. 1-6.
[90]
M. Qin, Z. Li, and Z. Du, "Red tide time-series forecasting by combining ARIMA and deep belief network", Knowl. Based Syst., vol. 125, pp. 39-52, 2017.
[91]
H. Raza, G. Prasad, and Y. Li, "IFIP AICT 412 - EWMA Based Two-Stage Dataset Shift-Detection in Non-stationary Environments", 9th Artificial Intelligence Applications and Innovations (AIAI), Sep 30, 2013,, Paphos, Cyprus, 2013, pp. 625-635.
[92]
H. Raza, G. Prasad, and Y. Li, "EWMA model based shift-detection methods for detecting covariate shifts in non-stationary environments", Pattern Recognit., vol. 48, no. 3, pp. 659-669, 2015.
[http://dx.doi.org/10.1016/j.patcog.2014.07.028]
[93]
R.T. Varneskov, and P. Perron, "Combining long memory and level shifts in modeling and forecasting the volatility of asset returns"., Department of Economics, Boston University., 2011.
[94]
B.R. Laxmi Sree, and M.S. Vijaya, "Temperature controlled PSO on optimizing the DBN parameters for phoneme classification", Int. J. Speech Technol., vol. 22, no. 1, pp. 143-156, 2019.
[http://dx.doi.org/10.1007/s10772-018-09586-2]
[95]
D. Tasche, "Fisher consistency for prior probability shift", J. Mach. Learn. Res., vol. 18, no. 95, pp. 1-32, 2017.
[96]
M.M. Hasib, T. Nayak, and Y. Huang, "A hierarchical LSTM model with attention for modeling EEG non-stationarity for human decision prediction", 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). Mar 4-7, 2018, Las Vegas, NV, USA,, 2018, pp. 104-107.
[http://dx.doi.org/10.1109/BHI.2018.8333380]
[97]
A. Mert, and A. Akan, "Emotion recognition from EEG signals by using multivariate empirical mode decomposition", Pattern Anal. Appl., vol. 21, no. 1, pp. 81-89, 2018.
[http://dx.doi.org/10.1007/s10044-016-0567-6]
[98]
S. Aghabozorgi, A.S. Shirkhorshidi, and Y. Wah, "Time-series clustering-A decade review", Inf. Syst., vol. 53, pp. 16-38, 2015.
[http://dx.doi.org/10.1016/j.is.2015.04.007]
[99]
S. Zolhavarieh, S. Aghabozorgi, and Y.W. Teh, "A review of subsequence time-series clustering", Sci. World J., vol. 2014, p. 312521, 2014.
[http://dx.doi.org/10.1155/2014/312521]
[100]
A. Gionis, and H. Mannila, "Finding recurrent sources in sequences", Proceedings of the 7th Annual International Conference on Research in Computational Molecular Biology, Dec 7, 2005,, Marburg/Lahn,, 2005, pp. 123-130.
[101]
L. Chen, and M. Chen, "An intuitionistic fuzzy time-series model based on new data transformation method", Int. J. Comput. Intell. Sys., vol. 14, no. 1, pp. 550-559, 2021.
[102]
J. Caiado, N. Crato, and P. Poncela, "A fragmented-periodogram approach for clustering big data time-series", Adv. Data Anal. Classification., vol. 14, pp. 1-30, 2019.
[http://dx.doi.org/10.1007/s11634-019-00365-8]
[103]
K. Bandara, C. Bergmeir, and S. Smyl, "Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach", Expert Syst. Appl., vol. 140, p. 112896, 2020.
[http://dx.doi.org/10.1016/j.eswa.2019.112896]
[104]
D. Rahmani, D. Fay, and J. Brodzki, "A self-organisingeigenspace map for time-series clustering", arXiv:1905.05540.. Available from: http://arxiv.org/abs/1905.05540
[105]
X. Wang, F. Yu, W. Pedrycz, and L. Yu, "Clustering of interval-valued time-series of unequal length based on improved dynamic time warping", Expert Syst. Appl., vol. 125, pp. 293-304, 2019.
[http://dx.doi.org/10.1016/j.eswa.2019.01.005]
[106]
T.M. Dantas, and F.L. Cyrino Oliveira, "Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing", Int. J. Forecast., vol. 34, no. 4, pp. 748-761, 2018.
[http://dx.doi.org/10.1016/j.ijforecast.2018.05.006]
[107]
M.A.A. Riyadi, D.S. Pratiwi, A.R. Irawan, and K. Fithriasari, "Clustering stationary and non-stationary time series based on autocorrelation distance of hierarchical and k-means algorithms", Inter. J. Adv. Intell. Inform., vol. 3, no. 3, pp. 154-160, 2017.
[http://dx.doi.org/10.26555/ijain.v3i3.98]
[108]
N. Güler Dincer, and Ö. Akkuş, ""A new fuzzy time series model based on robust clustering for forecasting of air pollution",", Ecol. Inform., vol. 43, pp. 157-164, 2018.
[http://dx.doi.org/10.1016/j.ecoinf.2017.12.001]
[109]
Y. Chen, L. Wang, F. Li, B. Du, K.K.R. Choo, H. Hassan, and W. Qin, "Air quality data clustering using EPLS method", Inf. Fusion, vol. 36, pp. 225-232, 2017.
[http://dx.doi.org/10.1016/j.inffus.2016.11.015]
[110]
D. Ye, K. Liao, and H. Song, "A clustering method of non-stationary time-series and its application in CSI 300 analysis", Inter. J. Simul., vol. 17, no. 26, pp. 5-11, 2016.
[http://dx.doi.org/10.5013/IJSSST.a.17.26.05]
[111]
S. Askari, and N. Montazerin, "A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering", Expert Syst. Appl., vol. 42, no. 4, pp. 2121-2135, 2015.
[http://dx.doi.org/10.1016/j.eswa.2014.09.036]
[112]
M. Müller, ""Information retrieval for music and motion" In: Dynamic Time Warping. Information Retrieval for Music and Motion, Berlin, Germany, 2007. ",
[113]
Kolokolov, Yury, "and Anna Monovskaya. "Guess-work and reasonings on centennial evolution of surface air temperature in Russia. Part V: Stability margin towards emergency",", Int. J. Bifurcation Chaos,, vol. 29, no. 05, p. 1930013, 2019.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy