Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

A Brief Review on Proved Approaches for the Formation of Oxygen Containing Heterocyclic Compounds through a Tandem Prins Cyclization

Author(s): Kapilavayi Venkata Basava Ranjitha, BogguJagan Mohan Reddy*, Gonamanda Satya Sree, Ganteda Rama Rao and Daruvuri Nirmala Jyothi

Volume 20, Issue 6, 2023

Published on: 03 September, 2022

Page: [564 - 577] Pages: 14

DOI: 10.2174/1570193X19666220520143207

Price: $65

Abstract

Prins reaction is a very useful and important reaction in the field of synthetic organic chemistry. Prins cyclization is one of the greatest significant synthetic approaches in the total synthesis of various natural compounds especially pyran and furan units. The addition of aldehydes to olefinic compounds utilizing acid catalyst has become important for the industry.

Aldehydes and alkenes to give different products depending on the reaction conditions, yield an acidcatalyzed reaction. Formation of Carbon-Carbon bonds is useful to produce 1,3-diol, 1,3-dioxane, β- halohydrin and allylic alcohols and tetrahydropyrans by using this methodology. Now coming to the point of tandem Prins cyclization, this method is very useful for the synthesis of fused compounds and also for the construction of spirocyclic compounds such as tetrahydropyrans or furans. The present brief review mainly deals with the development of the synthesis of oxygen-containing heterocyclic compounds by using prins/tandem prins cyclization. This current review is focused mainly on tandem prins cyclization’s reactions for the particular recent applications and what methods are used for the construction of the oxygen contained heterocyclic compounds.

Keywords: Prins cyclization, pyran and furan units, 1, 3-diol, 3-dioxane, β-halohydrin, tetrahydropyrans.

[1]
a) Bunce, R.A. Recent advances in the use of tandem reactions for organic synthesis. Tetrahedron, 1995, 51(48), 13103-13159.
[http://dx.doi.org/10.1016/0040-4020(95)00649-S];
b) Tietze, L.F. Domino reactions in organic sythesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746];
c) Pellissier, H. Asymmetric domino reactions. Part A: Reactions 9 based on the use of chiral auxillaries.20 Tetrahedron, 2006, 62, 1619-1665.;
d) Pellissier, H. Asymmetric domino reactions. Part B: Reactions based on the use of chiral and biocatalysts. Tetrahedron, 2006, 62(10), 2143-2173.
[http://dx.doi.org/10.1016/j.tet.2005.10.041];
e) Nicolaou, K.C.; Edmonds, D.J.; Bulger, P.G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed., 2006, 45(43), 7134-7186.
[http://dx.doi.org/10.1002/anie.200601872] [PMID: 17075967];
f) Arns, S.; Barriault, L. Cascading pericyclic reactions: Building complex carbon frameworks for natural product synthesis. Chem. Commun. (Camb.), 2007, (22), 2211-2221.
[http://dx.doi.org/10.1039/b700054p] [PMID: 17534496];
g) Yu, X.; Wang, W. Organocatalysis: Asymmetric cascade reactions catalysed by chiral secondary amines. Org. Biomol. Chem., 2008, 6(12), 2037-2046.
[http://dx.doi.org/10.1039/b800245m] [PMID: 18528562]
[2]
a) Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349];
b) Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771];
c) Nicolaou, K.C.; Chen, J.S. The art of total synthesis through cascade reactions. Chem. Soc. Rev., 2009, 38(11), 2993-3009.
[http://dx.doi.org/10.1039/b903290h] [PMID: 19847336];
d) Fenster, E.; Fehl, C.; Aubé, J. Use of a tandem Prins/Friedel-Crafts reaction in the construction of the indeno-tetrahydropyridine core of the haouamine alkaloids: Formal synthesis of (-)-haouamine A. Org. Lett., 2011, 13(10), 2614-2617.
[http://dx.doi.org/10.1021/ol200725m] [PMID: 21517105]
[3]
a) Hanaki, N.; Link, J.T.; MacMillan, D.W.C.; Overman, L.E.; Trankle, W.G.; Wurster, J.A. Stereoselection in the prins-pinacol synthesis of 2,2-disubstituted 4-acyltetrahydrofurans. Enantioselective synthesis of (-)-citreoviral. Org. Lett., 2000, 2(2), 223-226.
[http://dx.doi.org/10.1021/ol991315q] [PMID: 10814287];
b) Overman, L.E.; Pennington, L.D. Strategic use of pinacol-terminated Prins cyclizations in target-oriented total synthesis. J. Org. Chem., 2003, 68(19), 7143-7157.
[http://dx.doi.org/10.1021/jo034982c] [PMID: 12968864];
c) Overman, L.E.; Velthuisen, E.J. Scope and facial selectivity of the Prins-pinacol synthesis of attached rings. J. Org. Chem., 2006, 71(4), 1581-1587.
[http://dx.doi.org/10.1021/jo0522862] [PMID: 16468809];
d) Armstrong, A.; Bhonoah, Y.; Shanahan, S.E. Aza-Prins-pinacol approach to 7-azabicyclo[2.2.1]heptanes: Syntheses of (+/-)-epibatidine and (+/-)-epiboxidine. J. Org. Chem., 2007, 72(21), 8019-8024.
[http://dx.doi.org/10.1021/jo701536a] [PMID: 17867705];
e) Chavre, S.N.; Ullapu, P.R.; Min, S.J.; Lee, J.K.; Pae, A.N.; Kim, Y.; Cho, Y.S. Stereocontrolled synthesis of oxaspirobicycles via Prins-pinacol annulation. Org. Lett., 2009, 11(17), 3834-3837.
[http://dx.doi.org/10.1021/ol9014078] [PMID: 19708698]
[4]
a) Prins, H.J. Over de condensatie van formaldehyd met onverzadigde verbindingen. Chem. Weekbl., 1919, 16, 1072-1073.;
b) Prins, H.J. The reciprocal condensation of unsaturated organic compounds. Chem. Weekbl., 1919, 16, 1510-1526.;
c) Oiler, C.; Kaafarani, M.; Gastaldi, S.S.; Bertrand, M.P. Synthesis of tetrahydropyrans and related heterocycles via prins cyclization extension to Aza-prins cyclization. Tetrahedron, 2010, 66(2), 413-445.
[http://dx.doi.org/10.1016/j.tet.2009.10.069];
d) Pastor, I.M.; Yus, M. Focused update on the prins reaction and the prins cyclization. Curr. Org. Chem., 2012, 16, 1277-1312.
[http://dx.doi.org/10.2174/138527212800564196];
e) Han, X.; Peh, G.R.; Floreacig, P.E. Prins-type cyclization reactions in natural product synthesis. Eur. J. Org. Chem., 2013, 2013(7), 1193-1208.
[http://dx.doi.org/10.1002/ejoc.201201557];
f) Doro, F.; Akeroyd, N.; Schiet, F.; Narula, A. The prins reaction in the fragrance industry: 100th anniversiry (1919-2019). Angew. Chem. Int. Ed. Engl., 2019, 58(22), 7174-7179.
[http://dx.doi.org/10.1002/anie.201814470] [PMID: 30730597]
[5]
a) Yang, X.F.; Mague, J.T.; Li, C.J. Diastereoselective synthesis of polysubstituted tetrahydropyrans and thiacyclohexanes via indium trichloride mediated cyclizations. J. Org. Chem., 2001, 66(3), 739-747.
[http://dx.doi.org/10.1021/jo001136i] [PMID: 11430091];
b) Alder, R.W.; Harvey, J.N.; Oakley, M.T.J. Aromatic 4-tetrahydropyranyl and 4-quinuclidinyl cations. Linking Prins with Cope and Grob. J. Am. Chem. Soc., 2002, 124(18), 4960-4961.
[http://dx.doi.org/10.1021/ja025902+] [PMID: 11982351];
c) Jasti, R.; Anderson, C.D.; Rychnovsky, S.D. Utilization of an oxonia-Cope rearrangement as a mechanistic probe for Prins cyclizations. J. Am. Chem. Soc., 2005, 127(27), 9939-9945.
[http://dx.doi.org/10.1021/ja0518326] [PMID: 15998101]
[6]
a) Miranda, L.S.M. Vasconcellos;Chemoselective RuO4 Oxidation of phenyl (or) P-methoxyphenyl groups to carboxylic acid functions in the presence of a tetrahydropyran ring. Synthesis, 2004, 1767-1770.;
b) Chan, K.P.; Ling, Y.H.; Loh, T.P. Formal synthesis of (+)-SCH 351448: The Prins cyclization approach. Chem. Commun. (Camb.), 2007, (9), 939-941.
[http://dx.doi.org/10.1039/b616558c] [PMID: 17311127]
[7]
a) Albizati, K.F.; Perron, F.J. Synthesis of 4-hetero-substituted pyranosides via dioxenium cation-olefin cyclization. J. Org. Chem., 1987, 52(18), 4128-4130.
[http://dx.doi.org/10.1021/jo00227a037];
b) Al-Mutairi, E.H.; Crosby, S.R.; Darzi, J.; Harding, J.R.; Hughes, R.; King, C.D.; Simpson, T.J.; Smith, R.W.; Willis, C.L. Stereocontrolled synthesis of 2,4,5- trisubstituted tetrahydropyrans. Chem. Commun. (Camb.), 2001, (9), 835-836.
[http://dx.doi.org/10.1039/b101414p];
c) Yadav, J.S.; Subba Reddy, B.V.; Narayama Kumar, G.G.K.S.; Reddy, G.M. Cecl3.7H2O/AcCl-catalyzed prins Ritter reaction sequence: A novel synthesis of 4-amido tetrahydropyran derivatives. Tetrahedron Lett., 2007, 48(28), 4903-4906.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.056]
[8]
a) Tian, X.; Jaber, J.J.; Rychnovsky, S.D. Synthesis and structure revision of calyxin natural products. J. Org. Chem., 2006, 71(8), 3176-3183.
[http://dx.doi.org/10.1021/jo060094g] [PMID: 16599616];
b) Reddy, U.C.; Bondalapati, S.; Saikia, A. Stereoslective synthesis of 2,6- Disubstituted-4-Aryltetrahydropyrans using sakurai-Hosomi-prins-Friedal-crafts reaction. Eur. J. Org. Chem., 2009, 2009(10), 1625-1629.
[http://dx.doi.org/10.1002/ejoc.200900006];
c) Reddy, U.C.; Bondalapati, S.; Saikia, A.K. Stereoselective one-pot, three-component synthesis of 4-aryltetrahydropyran via Prins-Friedel-Crafts reaction. J. Org. Chem., 2009, 74(6), 2605-2608.
[http://dx.doi.org/10.1021/jo802531h] [PMID: 19216514]
[9]
Yadav, J.S.; Reddy, B.V.S.; Bhaishya, G. InBr3–[BMIM]PF6: A novel and recyclable catalytic system for the synthesis of 1,3-dioxane derivatives. Green Chem., 2003, 5(2), 264-266.
[http://dx.doi.org/10.1039/b212044p]
[10]
Sreedhar, B.; Swapna, V.; Sridhar, C.; Saileela, D.; Sunitha, A. Facile and efficientmethod for the Prins reactions of styrenes and homoallyl alcohols to 1,3-dioxanesand 4-tetrahydropyranols using bismuth(III) triflate. Synth. Commun., 2005, 351177-351182.
[11]
Murty, M.S.R.; Rajasekhar, K.; Harikrishna, V.; Yadav, J.S. Bismuth triflate-catalyzedPrins-type cyclization in ionic liquid: Synthesis of 4-tetrahydropyranol derivatives. Heteroatom Chem., 2008, 19(1), 104-106.
[http://dx.doi.org/10.1002/hc.20403]
[12]
Salvador, J.A.R.; Pinto, R.M.A.; Silvestre, S.M. Recent advances of bismuth(III) saltsin organic chemistry: Application to the synthesis of heterocycles of pharmaceuticalinterest. Curr. Org. Synth., 2009, 6(4), 426-470.
[http://dx.doi.org/10.2174/157017909789108701]
[13]
a) Aubele, D.L.; Wan, S.; Floreancig, P.E. Total synthesis of (+)-dactylolide through an efficient sequential Peterson olefination and Prins cyclization reaction. Angew. Chem. Int. Ed., 2005, 44(22), 3485-3488.
[http://dx.doi.org/10.1002/anie.200500564] [PMID: 15844125];
b) Aubele, D.L.; Wan, S.; Floreancig, P.E. Total synthesis of (+)-dactylolide through an efficient sequential Peterson olefination and Prins cyclization reaction. Angewandte. Chemie, 2005, 117(22), 3551-3554.
[http://dx.doi.org/10.1002/ange.200500564]
[14]
a) Indukuri, K.; Unnava, R.; Deka, M.J.; Saikia, A.K. Stereoselective synthesis of amido and phenyl azabicyclic derivatives via a tandem aza Prins-Ritter/Friedel-Crafts type reaction of endocyclic N-acyliminium ions. J. Org. Chem., 2013, 78(21), 10629-10641.
[http://dx.doi.org/10.1021/jo401450j] [PMID: 24083489];
b) Reddy, B.V.S.; Ghanty, S. O-Benzenedisulfonimide as a recyclable homogeneous organocatalyst for an efficient and facile synthesis of 4-amidotetrahydropyran derivatives through prins-Ritter reaction. Synth. Commun., 2014, 44(17), 2545-2554.
[http://dx.doi.org/10.1080/00397911.2014.909488];
c) Lalli, C.; van de Weghe, P. Enantioselective Prins cyclization: BINOL-derived phosphoric acid and CuCl synergistic catalysis. Chem. Commun. (Camb.), 2014, 50(56), 7495-7498.
[http://dx.doi.org/10.1039/C4CC02826K] [PMID: 24882625]
[15]
a) Elsworth, J.D.; Willis, C.L. Intramolecular Prins cyclisations for the stereoselective synthesis of bicyclic tetrahydropyrans. Chem. Commun. (Camb.), 2008, (13), 1587-1589.
[http://dx.doi.org/10.1039/b717078e] [PMID: 18354808];
b) Barbero, A.; Diez-Varga, A.; Pulido, F.J. Multicomponent prins cyclization from allylsilyl alcohols leading to dioxaspirodecanes. Org. Lett., 2013, 15(20), 5234-5237.
[http://dx.doi.org/10.1021/ol402425u] [PMID: 24090371];
c) Li, B.; Lai, Y.C.; Zhao, Y.; Wong, Y.H.; Shen, Z.L.; Loh, T.P. Synthesis of 3-oxaterpenoids and its application in the total synthesis of (±)-moluccanic acid methyl ester. Angew. Chem. Int. Ed. Engl., 2012, 51(42), 10619-10623.
[http://dx.doi.org/10.1002/anie.201205981] [PMID: 22987395];
d) Cho, Y.S.; Kim, H.Y.; Cha, J.H.; Pae, A.N.; Koh, H.Y.; Choi, J.H.; Chang, M.H. Indium trichloride mediated intramolecular Prins-type cyclization. Org. Lett., 2002, 4(12), 2025-2028.
[http://dx.doi.org/10.1021/ol025856i] [PMID: 12049508];
e) Spivey, A.C.; Laraia, L.; Bayly, A.R.; Rzepa, H.S.; White, A.J.P. Stereoselective synthesis of cis- and trans-2,3-disubstituted tetrahydrofurans via oxonium-prins cyclization: Access to the cordigol ring system. Org. Lett., 2010, 12(5), 900-903.
[http://dx.doi.org/10.1021/ol9024259] [PMID: 20143863];
f) Chen, Z.H.; Tu, Y.Q.; Zhang, S.Y.; Zhang, F.M. Development of the intramolecular Prins cyclization/Schmidt reaction for the construction of the azaspiro[4,4]nonane: Application to the formal synthesis of (±)-stemonamine. Org. Lett., 2011, 13(4), 724-727.
[http://dx.doi.org/10.1021/ol102955e] [PMID: 21229997]
[16]
a) Herrinton, P.H.; Hopkins, M.H.; Mishra, P.; Brown, M.J.; Overman, L.E. Ring-enlarging furan annulations. J. Org. Chem., 1987, 52(16), 3711-3712.
[http://dx.doi.org/10.1021/jo00392a048];
b) Hirst, G.C.; Howard, P.N.; Overman, L.E. Stereocontrolled construction of carbocyclic rings by sequential cationic cyclization -pinacol rearrangements. J. Am. Chem. Soc., 1989, 111(4), 1514-1515.
[http://dx.doi.org/10.1021/ja00186a065];
c) Overman, L.E.; Wolfe, J.P. New cationic olefin cyclization-pinacol reactions. Ring-expanding cyclopentane annulations that directly install useful functionality in the cyclopentane ring. J. Org. Chem., 2002, 67(18), 6421-6429.
[http://dx.doi.org/10.1021/jo025927r] [PMID: 12201763];
d) Lebsack, A.D.; Overman, L.E.; Valentekovich, R.J. Enantioselective total synthesis of shahamin K. J. Am. Chem. Soc., 2001, 123(20), 4851-4852.
[http://dx.doi.org/10.1021/ja015802o] [PMID: 11457302];
e) Reddy, B.V.S.; Gopal Reddy, S.; Ramana Reddy, M.; Pal Bhadra, M.; Sarma, A.V.S. Tandem Prins/pinacol reaction for the synthesis of oxaspiro[4.5]decan-1-one scaffolds. Org. Biomol. Chem., 2014, 12(37), 7257-7260.
[http://dx.doi.org/10.1039/C4OB01188K] [PMID: 25103114];
f) Beaulieu, M.A.; Sabot, C.; Achache, N.; Guérard, K.C.; Canesi, S. An oxidative Prins-pinacol tandem process and its application to the synthesis of (-)-platensimycin. Chemistry, 2010, 16(37), 11224-11228.
[http://dx.doi.org/10.1002/chem.201001813] [PMID: 20740509];
g) Beaulieu, M.A.; Guérard, K.C.; Maertens, G.; Sabot, C.; Canesi, S. Oxidative Prins-pinacol tandem process mediated by a hypervalent iodine reagent: Scope, limitations, and applications. J. Org. Chem., 2011, 76(22), 9460-9471.
[http://dx.doi.org/10.1021/jo2019027] [PMID: 21988536];
h) Pan, Z.; Zheng, C.; Wang, H.; Chen, Y.; Li, Y.; Cheng, B.; Zhai, H. Total synthesis of (±)-sculponeatin N. Org. Lett., 2014, 16(1), 216-219.
[http://dx.doi.org/10.1021/ol403208g] [PMID: 24295285]
[17]
Rajasekaran, P.; Singh, G.P.; Hassam, M.; Vankar, Y.D. A cascade “prins-pinacol-type rearrangement and C4-OBn participation” on carbohydrate substrates: Synthesis of bridged tricyclic ketals, annulated sugars and C2-branched heptoses. Chemistry, 2016, 22(51), 18383-18387.
[http://dx.doi.org/10.1002/chem.201604902] [PMID: 27768237]
[18]
Sakata, Y.; Yasui, E.; Takatori, K.; Suzuki, Y.; Mizukami, M.; Nagumo, S. Synthesis of polycyclic tetrahydrofurans by cascade reactions consisting of five-membered ring selective prins cyclization and friedal-crafts cyclization. J. Org. Chem., 2018, 83(16), 9103-9118.
[http://dx.doi.org/10.1021/acs.joc.8b01195] [PMID: 29972019]
[19]
Rajasekaran, P.; Mallikharjunarao, Y.; Vankar, Y.D. Synthesis of 1C-Aryl/Alkyl 2C-Branched Sugar-Fused Isochroman Derivatives by sequential Prins and Friedal-crafts cyclizations on a perlin aldehyde Derived substrate. Synlett, 2017, 28, 1346.
[http://dx.doi.org/10.1055/s-0036-1588156]
[20]
Kotipalli, T.; Hou, D.R. Synthesis of indenes by a BF3·OEt2-mediated, one-pot reaction of aryl homopropargyl alcohols, aldehydes, and arenes. Org. Lett., 2018, 20(16), 4787-4790.
[http://dx.doi.org/10.1021/acs.orglett.8b01929] [PMID: 30074807]
[21]
Chandrashekhar, R.; Vemulapalli, S.P.B.; Sridhar, B.; Subba Reddy, B.V. Stereoselective construction of spiro-Indolenine Framewoks through a prins/Friedal-Crafts cyclization cascade reaction. Eur. J. Org. Chem., 2018, 2018(14), 1693-1698.
[http://dx.doi.org/10.1002/ejoc.201701812]
[22]
Ploog, J.; Pongs, J.; Weber, S.; Maison, W. A domino aza-prins/friedal-crafts reaction for the synthesis of benzomorphans. Synthesis, 2017, 49, 693-709.
[23]
Hazarika, N.; Sarmah, B.; Bordoloi, M.; Phukan, P.; Baishya, G. Diastereoselective synthesis of tetrahydropyrans via Prins-Ritter and Prins-arylthiolation cyclization reactions. Org. Biomol. Chem., 2017, 15(9), 2003-2012.
[http://dx.doi.org/10.1039/C6OB02692C] [PMID: 28186218]
[24]
Chiba, M.; Ishikawa, Y.; Sakai, R.; Oikawa, M. Three-component, diastereoselective prins-ritter reaction for cis-fused 4-amidotetrahydropyrans toward a precursor for possible neuronal receptor ligands. ACS Comb. Sci., 2016, 18(7), 399-404.
[http://dx.doi.org/10.1021/acscombsci.6b00046] [PMID: 27163384]
[25]
Li, L.; Sun, X.; He, Y.; Gao, L.; Song, Z. TMSBr/InBr3-promoted Prins cyclization/homobromination of dienyl alcohol with aldehyde to construct cis-THP containing an exocyclic E-alkene. Chem. Commun. (Camb.), 2015, 51(80), 14925-14928.
[http://dx.doi.org/10.1039/C5CC06270E] [PMID: 26303284]
[26]
Venkateswarlu, A.; Kanakaraju, M.; Kunwar, A.C.; Reddy, B.V.S. Stereoselective synthesis of octahydrocyclohepta[c]pyran-6(1H)-one scaffolds through a Prins/alkynylation/hydration sequence. Org. Biomol. Chem., 2015, 13(40), 10212-10215.
[http://dx.doi.org/10.1039/C5OB01408E] [PMID: 26308943]
[27]
Sun, H.R.; Zhao, Q.; Yang, H.; Yang, S.; Gou, B.B.; Chen, J.; Zhou, L. Chiral phosphoric-acid-catalyzed cascade prins cyclization. Org. Lett., 2019, 21(17), 7143-7148.
[http://dx.doi.org/10.1021/acs.orglett.9b02714] [PMID: 31414820]
[28]
Sultana, S.; Lee, Y.R. Construction of halofunctionalizedindenes via a cascade prins-nazarov cyclization promoted by dual roles of BX3. Adv. Synth. Catal., 2020, 362(4), 927-941.
[http://dx.doi.org/10.1002/adsc.201901266]
[29]
Ghosh, A.K.; Tomaine, A.J.; Cantwell, K.E. Stereoselective synthesis of substituted oxocene cores by lewis acid promoted cyclization. Org. Lett., 2016, 18(3), 396-399.
[http://dx.doi.org/10.1021/acs.orglett.5b03411] [PMID: 26829580]
[30]
Xu, Y.; Yin, Z.; Lin, X.; Gan, Z.; He, Y.; Gao, L.; Song, Z. 1,4-Hydroiodination of dienyl alcohols with TMSI to form homoallylic alcohols containing a multisubstituted Z-alkene and application to Prins cyclization. Org. Lett., 2015, 17(8), 1846-1849.
[http://dx.doi.org/10.1021/acs.orglett.5b00485] [PMID: 25825952]
[31]
Reddy, M.R.; Kumar, G.R.; Yarlagadda, S.; Reddy, C.R.; Yadav, J.S.; Sridhar, B.; Reddy, B.V.S. Sequentialhydroarylation/prins cyclization: An efficient strategy for the synthesis of angularly fused tetrahydr-2H-pyrano [3,4-C] Quinolines. RSC Advances, 2016, 6(114), 113390-113394.
[http://dx.doi.org/10.1039/C6RA21375H]
[32]
Kumar, P.; Dey, R.; Banerjee, P. Exploitation of cyclopropane carbaldehydes to prins cyclization: Quick Access to (E)- Hexahydrooxonine and octahydrocyclopenta [b] pyran. Org. Lett., 2018, 20(17), 5163-5166.
[http://dx.doi.org/10.1021/acs.orglett.8b02094] [PMID: 30110172]
[33]
Gharpure, S.J.; Vishwakarma, D.S.; Nanda, S.K. Lewis acid mediated “endo-dig” hydroalkylation-reduction on internal alkynols for the stereoselective synthesis of cyclic ethers and, 4-oxazepanes. Org. Lett., 2017, 19(24), 6534-6537.
[http://dx.doi.org/10.1021/acs.orglett.7b03241] [PMID: 29166034]
[34]
Barbero, A.; Varga, D.; Pulido, F.J.; Gonzalez-Ortega, A. Snthesis of azpene derivatives by silyl-aza-prins cyclization of aylsilyl amines: Influence of the catalyst in the outcome of the reaction. Org. Lett., 2016, 18, 1972-1975.
[http://dx.doi.org/10.1021/acs.orglett.6b00538] [PMID: 27074135]
[35]
Maheshwar Rao, B.; Yadav, J.S.; Sridhar, B.; Subba Reddy, B.V. Silver(i)-catalyzed sequential hydroamination and Prins type cyclization for the synthesis of fused benzo-δ-sultams. Org. Biomol. Chem., 2018, 16(28), 5163-5166.
[http://dx.doi.org/10.1039/C8OB00918J] [PMID: 29964283]
[36]
Reddy, L.M.; Reddy, V.V.; Satteyyanaidu, V.; Lakshmi, J.K.; Reddy, C.H.K.; Reddy, B.V.S. Tandemprins cyclization for the synthesis of 1,8-dioxa-3-azaspiro [4.5] dec-2-ene derivatives. Tetrahedron Lett., 2018, 59(12), 1084-1086.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.075]
[37]
Someswarrao, B.; Khan, P.R.; Reddy, B.J.M.; Sridhar, B.; Reddy, B.V.S. Tandem prins-type cyclization for the stereoselective construction of fused poycyclic ring systems. Org. Chem. Front., 2018, 5(8), 1320-1324.
[http://dx.doi.org/10.1039/C7QO01164D]
[38]
Du, G.; Wang, G.; Ma, W.; Yang, Q.; Bao, W.; Liang, X.; Zhu, L.; Lee, C. Syntheses of diverse natural products via dual-mode lewis acid induced cascade cyclization reactions. Synlett, 2017, 28(12), 1394-1406.
[http://dx.doi.org/10.1055/s-0036-1588777]
[39]
Tay, G.C.; Huang, C.Y.; Rychnovsky, S.D. Silyl enol ether prins cyclization: Diastereoselective formation of substituted tetrahydropyran-4-ones. J. Org. Chem., 2014, 79(18), 8733-8749.
[http://dx.doi.org/10.1021/jo501580p] [PMID: 25200563]
[40]
Rasvan Khan, P.; Charan, P.H.K.; Basaveshwara Rao, M. FeCl3 catalyzed prinscylization for the synthesis of angularly fused polycyclic scaffolds. Synth. Commun., 2019, 50, 432-437.
[41]
Li, J.; Li, C-J. Synthesis of tetrahydropyran derivatives via a novel indium trichloride mediated cross-cyclization between epoxides and homoallyl alcohols. Tetrahedron Lett., 2001, 42(5), 793-796.
[http://dx.doi.org/10.1016/S0040-4039(00)02114-6]
[42]
Nussbaumer, C.; Fra’ter, G. Stereoselective synthesis of (+-)-Cis-alpha-irone. J. Org. Chem., 1987, 52(10), 2096-2098.
[http://dx.doi.org/10.1021/jo00386a038]
[43]
Fra’ter, G.; Mu¨ller, U.; Kraft, P. On the scope of a prins-type cyclization of oxonium ions. Helv. Chim. Acta, 2004, 87(11), 2750-2763.
[http://dx.doi.org/10.1002/hlca.200490248]
[44]
Colin, O.; Greck, C.; Prim, D.; Thomassigny, C. Toward pyridine- heterocycle patterns through prins and azaprinscyclisations: Application to a short synthesis of (+-)- anabasine. Eur. J. Org. Chem., 2014, 2014(31), 7000-7005.
[http://dx.doi.org/10.1002/ejoc.201402971]
[45]
Chio, F.K.I.; Guesné, S.J.J.; Hassall, L.; McGuire, T.; Dobbs, A.P. Synthesis of azabicycles via casecadeaza-prins reactions: Accessing the indolizidine and quinolizidine cores. J. Org. Chem., 2015, 80(20), 9868-9880.
[http://dx.doi.org/10.1021/acs.joc.5b01301] [PMID: 26375043]
[46]
Lolkema, L.D.M.; Hiemstra, H.; Mooiweer, H.H.; Speckamp, W.N. Prograss in heterocyclic chemistry. Tetrahedron Lett., 1988, 29, 6365.
[http://dx.doi.org/10.1016/S0040-4039(00)82348-5]
[47]
Chen, C.; Mariano, P.S. An oxidative prins cyclization methodology. J. Org. Chem., 2000, 65(10), 3252-3254.
[http://dx.doi.org/10.1021/jo0000832] [PMID: 10814229]
[48]
Lu, J.; Song, Z.; Zhang, Y.; Gan, Z.; Li, H. Prins cyclization of bis(silyl) homoallylic alcohols to form 2,6-cis-tetrahydropyrans containing a geometrically defined exocyclic vinylsilane: Efficient synthesis of ring B of the bryostatins. Angew. Chem. Int. Ed. Engl., 2012, 51(22), 5367-5370.
[http://dx.doi.org/10.1002/anie.201201323] [PMID: 22504783]
[49]
Li, B.; Lai, Y-C.; Zhao, Y.; Wong, Y-H.; Shen, Z-L.; Loh, T-P. Synthesis of 3-oxaterpenoids and its application in the total synthesis of (±)-moluccanic acid methyl ester. Angewandte Chemie, 2012, 124(42), 10771-10775.
[http://dx.doi.org/10.1002/ange.201205981]
[50]
Subba Reddy, B.V.; Biradar, D.O.; Vikram Reddy, Y.; Yadav, J.S.; Singarapu, K.K.; Sridhar, B. Substitution dependent stereoselective construction of bicyclic lactones and its application to the total synthesis of pyranopyran, tetraketide and polyrhacitide A. Org. Biomol. Chem., 2016, 14(37), 8832-8837.
[http://dx.doi.org/10.1039/C6OB01686C] [PMID: 27714240]
[51]
Álvarez-Méndez, S.J.; Fariña-Ramos, M.; Villalba, M.L.; Perretti, M.D.; García, C.; Moujir, L.M.; Ramírez, M.A.; Martín, V.S. Stereoselective synthesis of highly substituted tetrahydropyrans through an Evans-aldol strategy. J. Org. Chem., 2018, 83(16), 9039-9066.
[http://dx.doi.org/10.1021/acs.joc.8b01182] [PMID: 30036470]
[52]
Iwasaki, M.; Kazao, Y.; Ishida, T.; Nishihara, Y. Synthesis of oxygen-containing heterocyclic compounds by iron-catalyzed alkylative cyclization of unsaturated carboxylic acids and alcohols. Org. Lett., 2020, 22(18), 7343-7347.
[http://dx.doi.org/10.1021/acs.orglett.0c02671] [PMID: 32870016]
[53]
Chio, F.K.; Warne, J.; Gough, D.; Penny, M.; Green, S.; Coles, S.J.; Hursthouse, M.B.; Jones, P.; Hassall, L.; McGuire, T.M.; Dobbs, A.P. On the choice of Lewis acids for the Prins reaction; two total syntheses of (+-)-. Civet. Tetrahedron, 2011, 67, 5107-5124.
[http://dx.doi.org/10.1016/j.tet.2011.05.019]
[54]
Aubele, D.L.; Lee, C.A.; Floreancig, P.E. The “aqueous” Prins reaction. Org. Lett., 2003, 5(23), 4521-4523.
[http://dx.doi.org/10.1021/ol0359259] [PMID: 14602040]
[55]
Wales, S.M.; Merisor, E.G.; Adcock, H.V.; Pearce, C.A.; Strutt, I.R.; Lewis, W.; Hamza, D.; Moody, C.J. Diastereoselective synthesis of highly substituted, amino- and pyrrolidino-tetrahydrofurans as lead-like molecular scaffolds. Chemistry, 2018, 24(32), 8233-8239.
[http://dx.doi.org/10.1002/chem.201801046] [PMID: 29656543]
[56]
Redon, S.; Wierzbicki, M.; Prunet, J. A new oxa-michael reaction and a gold-catalysed cyclisation en route to C-glycosides. Tetrahedron Lett., 2013, 54(16), 2089-2092.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.022]
[57]
Nising, C.F.; Bräse, S. Recent developments in the field of oxa-Michael reactions. Chem. Soc. Rev., 2012, 41(3), 988-999.
[http://dx.doi.org/10.1039/C1CS15167C] [PMID: 21796323]
[58]
Hu, J.; Bian, M.; Ding, H. Recent application of oxa- michael reaction in complex natural product synthesis. Tetrahedron Lett., 2016, 57(50), 5519-5539.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.007]
[59]
Bugarin, A.; Connell, B.T. Acceleration of the Morita-Baylis-Hillman reaction by a simple mixed catalyst system. J. Org. Chem., 2009, 74(12), 4638-4641.
[http://dx.doi.org/10.1021/jo900603w] [PMID: 19449847]
[60]
Kang, H.; Uyeda, C. Nickel catalyzed vinylidene insertions into OH bonds. ACS Catal., 2021, 11(1), 193-198.
[http://dx.doi.org/10.1021/acscatal.0c04713] [PMID: 33996195]
[61]
Venegas, E.R.; Willis, C.L. A bioinspired strategy for the enantioselective synthesis of bicyclic oxygen heterocycles. Organic Letters., 2020, 22(7), 2548-2552.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy