Abstract
Prins reaction is a very useful and important reaction in the field of synthetic organic chemistry. Prins cyclization is one of the greatest significant synthetic approaches in the total synthesis of various natural compounds especially pyran and furan units. The addition of aldehydes to olefinic compounds utilizing acid catalyst has become important for the industry.
Aldehydes and alkenes to give different products depending on the reaction conditions, yield an acidcatalyzed reaction. Formation of Carbon-Carbon bonds is useful to produce 1,3-diol, 1,3-dioxane, β- halohydrin and allylic alcohols and tetrahydropyrans by using this methodology. Now coming to the point of tandem Prins cyclization, this method is very useful for the synthesis of fused compounds and also for the construction of spirocyclic compounds such as tetrahydropyrans or furans. The present brief review mainly deals with the development of the synthesis of oxygen-containing heterocyclic compounds by using prins/tandem prins cyclization. This current review is focused mainly on tandem prins cyclization’s reactions for the particular recent applications and what methods are used for the construction of the oxygen contained heterocyclic compounds.
Keywords: Prins cyclization, pyran and furan units, 1, 3-diol, 3-dioxane, β-halohydrin, tetrahydropyrans.
[http://dx.doi.org/10.1016/0040-4020(95)00649-S];
b) Tietze, L.F. Domino reactions in organic sythesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746];
c) Pellissier, H. Asymmetric domino reactions. Part A: Reactions 9 based on the use of chiral auxillaries.20 Tetrahedron, 2006, 62, 1619-1665.;
d) Pellissier, H. Asymmetric domino reactions. Part B: Reactions based on the use of chiral and biocatalysts. Tetrahedron, 2006, 62(10), 2143-2173.
[http://dx.doi.org/10.1016/j.tet.2005.10.041];
e) Nicolaou, K.C.; Edmonds, D.J.; Bulger, P.G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed., 2006, 45(43), 7134-7186.
[http://dx.doi.org/10.1002/anie.200601872] [PMID: 17075967];
f) Arns, S.; Barriault, L. Cascading pericyclic reactions: Building complex carbon frameworks for natural product synthesis. Chem. Commun. (Camb.), 2007, (22), 2211-2221.
[http://dx.doi.org/10.1039/b700054p] [PMID: 17534496];
g) Yu, X.; Wang, W. Organocatalysis: Asymmetric cascade reactions catalysed by chiral secondary amines. Org. Biomol. Chem., 2008, 6(12), 2037-2046.
[http://dx.doi.org/10.1039/b800245m] [PMID: 18528562]
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349];
b) Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771];
c) Nicolaou, K.C.; Chen, J.S. The art of total synthesis through cascade reactions. Chem. Soc. Rev., 2009, 38(11), 2993-3009.
[http://dx.doi.org/10.1039/b903290h] [PMID: 19847336];
d) Fenster, E.; Fehl, C.; Aubé, J. Use of a tandem Prins/Friedel-Crafts reaction in the construction of the indeno-tetrahydropyridine core of the haouamine alkaloids: Formal synthesis of (-)-haouamine A. Org. Lett., 2011, 13(10), 2614-2617.
[http://dx.doi.org/10.1021/ol200725m] [PMID: 21517105]
[http://dx.doi.org/10.1021/ol991315q] [PMID: 10814287];
b) Overman, L.E.; Pennington, L.D. Strategic use of pinacol-terminated Prins cyclizations in target-oriented total synthesis. J. Org. Chem., 2003, 68(19), 7143-7157.
[http://dx.doi.org/10.1021/jo034982c] [PMID: 12968864];
c) Overman, L.E.; Velthuisen, E.J. Scope and facial selectivity of the Prins-pinacol synthesis of attached rings. J. Org. Chem., 2006, 71(4), 1581-1587.
[http://dx.doi.org/10.1021/jo0522862] [PMID: 16468809];
d) Armstrong, A.; Bhonoah, Y.; Shanahan, S.E. Aza-Prins-pinacol approach to 7-azabicyclo[2.2.1]heptanes: Syntheses of (+/-)-epibatidine and (+/-)-epiboxidine. J. Org. Chem., 2007, 72(21), 8019-8024.
[http://dx.doi.org/10.1021/jo701536a] [PMID: 17867705];
e) Chavre, S.N.; Ullapu, P.R.; Min, S.J.; Lee, J.K.; Pae, A.N.; Kim, Y.; Cho, Y.S. Stereocontrolled synthesis of oxaspirobicycles via Prins-pinacol annulation. Org. Lett., 2009, 11(17), 3834-3837.
[http://dx.doi.org/10.1021/ol9014078] [PMID: 19708698]
b) Prins, H.J. The reciprocal condensation of unsaturated organic compounds. Chem. Weekbl., 1919, 16, 1510-1526.;
c) Oiler, C.; Kaafarani, M.; Gastaldi, S.S.; Bertrand, M.P. Synthesis of tetrahydropyrans and related heterocycles via prins cyclization extension to Aza-prins cyclization. Tetrahedron, 2010, 66(2), 413-445.
[http://dx.doi.org/10.1016/j.tet.2009.10.069];
d) Pastor, I.M.; Yus, M. Focused update on the prins reaction and the prins cyclization. Curr. Org. Chem., 2012, 16, 1277-1312.
[http://dx.doi.org/10.2174/138527212800564196];
e) Han, X.; Peh, G.R.; Floreacig, P.E. Prins-type cyclization reactions in natural product synthesis. Eur. J. Org. Chem., 2013, 2013(7), 1193-1208.
[http://dx.doi.org/10.1002/ejoc.201201557];
f) Doro, F.; Akeroyd, N.; Schiet, F.; Narula, A. The prins reaction in the fragrance industry: 100th anniversiry (1919-2019). Angew. Chem. Int. Ed. Engl., 2019, 58(22), 7174-7179.
[http://dx.doi.org/10.1002/anie.201814470] [PMID: 30730597]
[http://dx.doi.org/10.1021/jo001136i] [PMID: 11430091];
b) Alder, R.W.; Harvey, J.N.; Oakley, M.T.J. Aromatic 4-tetrahydropyranyl and 4-quinuclidinyl cations. Linking Prins with Cope and Grob. J. Am. Chem. Soc., 2002, 124(18), 4960-4961.
[http://dx.doi.org/10.1021/ja025902+] [PMID: 11982351];
c) Jasti, R.; Anderson, C.D.; Rychnovsky, S.D. Utilization of an oxonia-Cope rearrangement as a mechanistic probe for Prins cyclizations. J. Am. Chem. Soc., 2005, 127(27), 9939-9945.
[http://dx.doi.org/10.1021/ja0518326] [PMID: 15998101]
b) Chan, K.P.; Ling, Y.H.; Loh, T.P. Formal synthesis of (+)-SCH 351448: The Prins cyclization approach. Chem. Commun. (Camb.), 2007, (9), 939-941.
[http://dx.doi.org/10.1039/b616558c] [PMID: 17311127]
[http://dx.doi.org/10.1021/jo00227a037];
b) Al-Mutairi, E.H.; Crosby, S.R.; Darzi, J.; Harding, J.R.; Hughes, R.; King, C.D.; Simpson, T.J.; Smith, R.W.; Willis, C.L. Stereocontrolled synthesis of 2,4,5- trisubstituted tetrahydropyrans. Chem. Commun. (Camb.), 2001, (9), 835-836.
[http://dx.doi.org/10.1039/b101414p];
c) Yadav, J.S.; Subba Reddy, B.V.; Narayama Kumar, G.G.K.S.; Reddy, G.M. Cecl3.7H2O/AcCl-catalyzed prins Ritter reaction sequence: A novel synthesis of 4-amido tetrahydropyran derivatives. Tetrahedron Lett., 2007, 48(28), 4903-4906.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.056]
[http://dx.doi.org/10.1021/jo060094g] [PMID: 16599616];
b) Reddy, U.C.; Bondalapati, S.; Saikia, A. Stereoslective synthesis of 2,6- Disubstituted-4-Aryltetrahydropyrans using sakurai-Hosomi-prins-Friedal-crafts reaction. Eur. J. Org. Chem., 2009, 2009(10), 1625-1629.
[http://dx.doi.org/10.1002/ejoc.200900006];
c) Reddy, U.C.; Bondalapati, S.; Saikia, A.K. Stereoselective one-pot, three-component synthesis of 4-aryltetrahydropyran via Prins-Friedel-Crafts reaction. J. Org. Chem., 2009, 74(6), 2605-2608.
[http://dx.doi.org/10.1021/jo802531h] [PMID: 19216514]
[http://dx.doi.org/10.1039/b212044p]
[http://dx.doi.org/10.1002/hc.20403]
[http://dx.doi.org/10.2174/157017909789108701]
[http://dx.doi.org/10.1002/anie.200500564] [PMID: 15844125];
b) Aubele, D.L.; Wan, S.; Floreancig, P.E. Total synthesis of (+)-dactylolide through an efficient sequential Peterson olefination and Prins cyclization reaction. Angewandte. Chemie, 2005, 117(22), 3551-3554.
[http://dx.doi.org/10.1002/ange.200500564]
[http://dx.doi.org/10.1021/jo401450j] [PMID: 24083489];
b) Reddy, B.V.S.; Ghanty, S. O-Benzenedisulfonimide as a recyclable homogeneous organocatalyst for an efficient and facile synthesis of 4-amidotetrahydropyran derivatives through prins-Ritter reaction. Synth. Commun., 2014, 44(17), 2545-2554.
[http://dx.doi.org/10.1080/00397911.2014.909488];
c) Lalli, C.; van de Weghe, P. Enantioselective Prins cyclization: BINOL-derived phosphoric acid and CuCl synergistic catalysis. Chem. Commun. (Camb.), 2014, 50(56), 7495-7498.
[http://dx.doi.org/10.1039/C4CC02826K] [PMID: 24882625]
[http://dx.doi.org/10.1039/b717078e] [PMID: 18354808];
b) Barbero, A.; Diez-Varga, A.; Pulido, F.J. Multicomponent prins cyclization from allylsilyl alcohols leading to dioxaspirodecanes. Org. Lett., 2013, 15(20), 5234-5237.
[http://dx.doi.org/10.1021/ol402425u] [PMID: 24090371];
c) Li, B.; Lai, Y.C.; Zhao, Y.; Wong, Y.H.; Shen, Z.L.; Loh, T.P. Synthesis of 3-oxaterpenoids and its application in the total synthesis of (±)-moluccanic acid methyl ester. Angew. Chem. Int. Ed. Engl., 2012, 51(42), 10619-10623.
[http://dx.doi.org/10.1002/anie.201205981] [PMID: 22987395];
d) Cho, Y.S.; Kim, H.Y.; Cha, J.H.; Pae, A.N.; Koh, H.Y.; Choi, J.H.; Chang, M.H. Indium trichloride mediated intramolecular Prins-type cyclization. Org. Lett., 2002, 4(12), 2025-2028.
[http://dx.doi.org/10.1021/ol025856i] [PMID: 12049508];
e) Spivey, A.C.; Laraia, L.; Bayly, A.R.; Rzepa, H.S.; White, A.J.P. Stereoselective synthesis of cis- and trans-2,3-disubstituted tetrahydrofurans via oxonium-prins cyclization: Access to the cordigol ring system. Org. Lett., 2010, 12(5), 900-903.
[http://dx.doi.org/10.1021/ol9024259] [PMID: 20143863];
f) Chen, Z.H.; Tu, Y.Q.; Zhang, S.Y.; Zhang, F.M. Development of the intramolecular Prins cyclization/Schmidt reaction for the construction of the azaspiro[4,4]nonane: Application to the formal synthesis of (±)-stemonamine. Org. Lett., 2011, 13(4), 724-727.
[http://dx.doi.org/10.1021/ol102955e] [PMID: 21229997]
[http://dx.doi.org/10.1021/jo00392a048];
b) Hirst, G.C.; Howard, P.N.; Overman, L.E. Stereocontrolled construction of carbocyclic rings by sequential cationic cyclization -pinacol rearrangements. J. Am. Chem. Soc., 1989, 111(4), 1514-1515.
[http://dx.doi.org/10.1021/ja00186a065];
c) Overman, L.E.; Wolfe, J.P. New cationic olefin cyclization-pinacol reactions. Ring-expanding cyclopentane annulations that directly install useful functionality in the cyclopentane ring. J. Org. Chem., 2002, 67(18), 6421-6429.
[http://dx.doi.org/10.1021/jo025927r] [PMID: 12201763];
d) Lebsack, A.D.; Overman, L.E.; Valentekovich, R.J. Enantioselective total synthesis of shahamin K. J. Am. Chem. Soc., 2001, 123(20), 4851-4852.
[http://dx.doi.org/10.1021/ja015802o] [PMID: 11457302];
e) Reddy, B.V.S.; Gopal Reddy, S.; Ramana Reddy, M.; Pal Bhadra, M.; Sarma, A.V.S. Tandem Prins/pinacol reaction for the synthesis of oxaspiro[4.5]decan-1-one scaffolds. Org. Biomol. Chem., 2014, 12(37), 7257-7260.
[http://dx.doi.org/10.1039/C4OB01188K] [PMID: 25103114];
f) Beaulieu, M.A.; Sabot, C.; Achache, N.; Guérard, K.C.; Canesi, S. An oxidative Prins-pinacol tandem process and its application to the synthesis of (-)-platensimycin. Chemistry, 2010, 16(37), 11224-11228.
[http://dx.doi.org/10.1002/chem.201001813] [PMID: 20740509];
g) Beaulieu, M.A.; Guérard, K.C.; Maertens, G.; Sabot, C.; Canesi, S. Oxidative Prins-pinacol tandem process mediated by a hypervalent iodine reagent: Scope, limitations, and applications. J. Org. Chem., 2011, 76(22), 9460-9471.
[http://dx.doi.org/10.1021/jo2019027] [PMID: 21988536];
h) Pan, Z.; Zheng, C.; Wang, H.; Chen, Y.; Li, Y.; Cheng, B.; Zhai, H. Total synthesis of (±)-sculponeatin N. Org. Lett., 2014, 16(1), 216-219.
[http://dx.doi.org/10.1021/ol403208g] [PMID: 24295285]
[http://dx.doi.org/10.1002/chem.201604902] [PMID: 27768237]
[http://dx.doi.org/10.1021/acs.joc.8b01195] [PMID: 29972019]
[http://dx.doi.org/10.1055/s-0036-1588156]
[http://dx.doi.org/10.1021/acs.orglett.8b01929] [PMID: 30074807]
[http://dx.doi.org/10.1002/ejoc.201701812]
[http://dx.doi.org/10.1039/C6OB02692C] [PMID: 28186218]
[http://dx.doi.org/10.1021/acscombsci.6b00046] [PMID: 27163384]
[http://dx.doi.org/10.1039/C5CC06270E] [PMID: 26303284]
[http://dx.doi.org/10.1039/C5OB01408E] [PMID: 26308943]
[http://dx.doi.org/10.1021/acs.orglett.9b02714] [PMID: 31414820]
[http://dx.doi.org/10.1002/adsc.201901266]
[http://dx.doi.org/10.1021/acs.orglett.5b03411] [PMID: 26829580]
[http://dx.doi.org/10.1021/acs.orglett.5b00485] [PMID: 25825952]
[http://dx.doi.org/10.1039/C6RA21375H]
[http://dx.doi.org/10.1021/acs.orglett.8b02094] [PMID: 30110172]
[http://dx.doi.org/10.1021/acs.orglett.7b03241] [PMID: 29166034]
[http://dx.doi.org/10.1021/acs.orglett.6b00538] [PMID: 27074135]
[http://dx.doi.org/10.1039/C8OB00918J] [PMID: 29964283]
[http://dx.doi.org/10.1016/j.tetlet.2018.01.075]
[http://dx.doi.org/10.1039/C7QO01164D]
[http://dx.doi.org/10.1055/s-0036-1588777]
[http://dx.doi.org/10.1021/jo501580p] [PMID: 25200563]
[http://dx.doi.org/10.1016/S0040-4039(00)02114-6]
[http://dx.doi.org/10.1021/jo00386a038]
[http://dx.doi.org/10.1002/hlca.200490248]
[http://dx.doi.org/10.1002/ejoc.201402971]
[http://dx.doi.org/10.1021/acs.joc.5b01301] [PMID: 26375043]
[http://dx.doi.org/10.1016/S0040-4039(00)82348-5]
[http://dx.doi.org/10.1021/jo0000832] [PMID: 10814229]
[http://dx.doi.org/10.1002/anie.201201323] [PMID: 22504783]
[http://dx.doi.org/10.1002/ange.201205981]
[http://dx.doi.org/10.1039/C6OB01686C] [PMID: 27714240]
[http://dx.doi.org/10.1021/acs.joc.8b01182] [PMID: 30036470]
[http://dx.doi.org/10.1021/acs.orglett.0c02671] [PMID: 32870016]
[http://dx.doi.org/10.1016/j.tet.2011.05.019]
[http://dx.doi.org/10.1021/ol0359259] [PMID: 14602040]
[http://dx.doi.org/10.1002/chem.201801046] [PMID: 29656543]
[http://dx.doi.org/10.1016/j.tetlet.2013.02.022]
[http://dx.doi.org/10.1039/C1CS15167C] [PMID: 21796323]
[http://dx.doi.org/10.1016/j.tetlet.2016.11.007]
[http://dx.doi.org/10.1021/jo900603w] [PMID: 19449847]
[http://dx.doi.org/10.1021/acscatal.0c04713] [PMID: 33996195]