Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Synthesis of Transition Metal-sulfur Complexes by Si-S Bond Cleavage

Author(s): Andrea Renzetti*, Kozo Fukumoto and Aya Kina

Volume 20, Issue 6, 2023

Published on: 27 August, 2022

Page: [532 - 563] Pages: 32

DOI: 10.2174/1570193X19666220420135358

Price: $65

Abstract

This mini-review summarizes the methods available for the synthesis of transition metalsulfur complexes, which have been used as models of metalloprotein active sites, desulfurization catalysts, and organometallic functional materials. All the methods use silicon-sulfur compounds as starting materials, exploiting the selective cleavage of Si—S bond and the subsequent incorporation of sulfur fragments into the metal complex. Mechanistic considerations are also provided. Period covered: 1968 to date.

Keywords: Sulfur, chalcogen, silicon, bond cleavage, bond activation, transition metal, complex, cluster

Graphical Abstract

[1]
Bioinspired catalysis: Metal-sulfur complexes; Weigand, W.; Schollhammer, P., Eds.; Wiley-VCH: Weinheim, Germany, 2014.
[http://dx.doi.org/10.1002/9783527664160]
[2]
Pain, D.; Dancis, A. Roles of Fe-S proteins: From cofactor synthesis to iron homeostasis to protein synthesis. Curr. Opin. Genet. Dev., 2016, 38, 45-51.
[http://dx.doi.org/10.1016/j.gde.2016.03.006] [PMID: 27061491]
[3]
Transition Metal Sulfur Chemistry - Biological and Industrial Significance; Stiefel, E.I.; Matsumoto, K., Eds.; American Chemical Society: Washington, DC, 1996.
[http://dx.doi.org/10.1021/bk-1996-0653]
[4]
Greenacre, V.K.; Levason, W.; Reid, G.; Smith, D.E. Coordination complexes and applications of transition metal sulfide and selenide halides. Coord. Chem. Rev., 2020, 424, 213512.
[http://dx.doi.org/10.1016/j.ccr.2020.213512]
[5]
Zhang, J.; Xue, Y-S.; Liang, L-L.; Ren, S-B.; Li, Y-Z.; Du, H-B.; You, X.Z. Porous coordination polymers of transition metal sulfides with PtS topology built on a semirigid tetrahedral linker. Inorg. Chem., 2010, 49(17), 7685-7691.
[http://dx.doi.org/10.1021/ic100212q] [PMID: 20799735]
[6]
Tang, H.; Sacco, L.N.; Vollebregt, S.; Ye, H.; Fan, X.; Zhang, G. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: Mechanisms, applications, and perspectives. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(47), 24943-24976.
[http://dx.doi.org/10.1039/D0TA08190F]
[7]
Zhu, W.; Cheng, Y.; Wang, C.; Pinna, N.; Lu, X. Transition metal sulfides meet electrospinning: Versatile synthesis, distinct properties and prospective applications. Nanoscale, 2021, 13(20), 9112-9146.
[http://dx.doi.org/10.1039/D1NR01070K] [PMID: 34008677]
[8]
Lai, C-H.; Lu, M-Y.; Chen, L-J. Metal sulfide nanostructures: Synthesis, properties and applications in energy conversion and storage. J. Mater. Chem., 2012, 22(1), 19-30.
[http://dx.doi.org/10.1039/C1JM13879K]
[9]
Li, J.; Yang, S.; Wu, W.; Jiang, H. Recent developments in palladium-catalyzed C–S bond formation. Org. Chem. Front., 2020, 7(11), 1395-1417.
[http://dx.doi.org/10.1039/D0QO00377H]
[10]
A search on reaxys database carried out on 15 April 2021 using a combination of the words "transition metal", "sulfur", and "complex" gave 95 hits for year 2020.
[11]
Baldwin, J.C.; Lappert, M.F.; Pedley, J.B.; Treverton, J.A. Bonding studies of organometallic compounds of boron and the group IV elements. Part I. Heats of hydrolysis and bond energies for some trimethylsilyl derivatives. J. Chem. Soc. A, 1967, (0), 1980-1984.
[http://dx.doi.org/10.1039/j19670001980]
[12]
Common bond energies and bond lengths. Available from: http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html (Last accessed on: 14 December 2022).
[13]
Pearson, R.G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ., 1968, 45(9), 581-587.
[http://dx.doi.org/10.1021/ed045p581]
[14]
Pearson, R.G. Hard and soft acids and bases, HSAB, part II: Underlying theories. J. Chem. Educ., 1968, 45(10), 643-648.
[http://dx.doi.org/10.1021/ed045p643]
[15]
Haas, A. The chemistry of silicon-sulfur compounds. Angew. Chem. Int. Ed. Engl., 1965, 4(12), 1014-1023.
[http://dx.doi.org/10.1002/anie.196510141]
[16]
Degl’innocenti, A.; Capperucci, A. Organosilanes in sulfur chemistry: Silicon mediated synthesis and reactivity of sulfur-containing molecules. Sulfur Rep., 1998, 20(3), 279-395.
[http://dx.doi.org/10.1080/01961779808047923]
[17]
Wojnowski, W.; Herman, A. Beiträge zur Chemie der Silicium-Schwefel-Verbindungen. XX [1] Die Dissoziation der Silanthiole in wäßriger Lösung. Z. Anorg. Allg. Chem., 1976, 425(1), 91-96.
[http://dx.doi.org/10.1002/zaac.19764250111]
[18]
Thapa, B.; Schlegel, H.B. Density functional theory calculation of pKa’s of thiols in aqueous solution using explicit water molecules and the polarizable continuum model. J. Phys. Chem. A, 2016, 120(28), 5726-5735.
[http://dx.doi.org/10.1021/acs.jpca.6b05040] [PMID: 27327957]
[19]
Salinger, R.M.; West, R. Acidity of silanethiols. J. Organomet. Chem., 1968, 11, 631-633.
[http://dx.doi.org/10.1016/0022-328X(68)80096-8]
[20]
Herman, A.; Wojnowski, W. Contributions to the chemistry of silicon-sulfur compounds. Part 59. Struct. Chem., 1992, 3(4), 239-244.
[http://dx.doi.org/10.1007/BF00672791]
[21]
pKa data compiled by R. williams. Available from: https://organicchemistrydata.org/hansreich/resources/pka/pka_data/pka-compilation-williams.pdf (Last accessed on: 17 January 2022).
[22]
Dołęga, A.; Baranowska, K.; Gudat, D.; Herman, A.; Stangret, J.; Konitz, A.; Śmiechowski, M.; Godlewska, S. Modeling of the alcohol dehydrogenase active site: Two different modes of alcohol binding in crystals of zinc and cadmium tri-tert-butoxysilanethiolates evidenced by x-ray diffraction and solid-state vibrational spectroscopy. Eur. J. Inorg. Chem., 2009, 2009(24), 3644-3660.
[http://dx.doi.org/10.1002/ejic.200900106]
[23]
Pladzyk, A. Ponikiewski, Ł Lan, Y.; Powell, A.K. Synthesis, structure and magnetic properties of neutral Ni (II) tri-tert-butoxysilanethiolate cluster. Inorg. Chem. Commun., 2012, 20, 66-69.
[http://dx.doi.org/10.1016/j.inoche.2012.02.018]
[24]
Pladzyk, A.; Hnatejko, Z.; Baranowska, K. Binuclear Co(II), Zn(II) and Cd(II) tri-tert-butoxysilanethiolates. Synthesis, crystal structure and spectroscopic studies. Polyhedron, 2014, 79, 116-123.
[http://dx.doi.org/10.1016/j.poly.2014.04.049]
[25]
Pladzyk, A.; Ozarowski, A. Ponikiewski, Ł Crystal and electronic structures of Ni(II) silanethiolates containing flexible diamine ligands. Inorg. Chim. Acta, 2016, 440, 84-93.
[http://dx.doi.org/10.1016/j.ica.2015.10.034]
[26]
Piekos̀ R.; Wojnowski, W. Untersuchungen über die alkoholyse des SiS2. II. Darstellung von trialkoxysilanthiolen und tetraalkoxycyclodisilthianen aus den tertiären alkoholen. Z. Anorg. Allg. Chem., 1962, 318(3-4), 212-216.
[http://dx.doi.org/10.1002/zaac.19623180310]
[27]
Partyka, D.V.; Holm, R.H. Oxygen/sulfur substitution reactions of tetraoxometalates effected by electrophilic carbon and silicon reagents. Inorg. Chem., 2004, 43(26), 8609-8616.
[http://dx.doi.org/10.1021/ic040097g] [PMID: 15606212]
[28]
Pladzyk, A.; Daca, N.; Ponikiewski, L. The first dinuclear nickel(II) thiosulfate obtained from oxidation of tri-tert-butoxysilanethiol. Contributions to the chemistry of silicon-sulfur compounds No. 78. Z. Anorg. Allg. Chem., 2012, 638(10), 1497-1500.
[http://dx.doi.org/10.1002/zaac.201200203]
[29]
Kückmann, T.I.; Hermsen, M.; Bolte, M.; Wagner, M.; Lerner, H-W. Silylchalcogenolates MESiR(t)Bu(2) (M = Na, Cu, Zn, Fe; E = S, Se, Te; R = tBu, Ph) and disilyldichalcogenides tBu2RSiE-ESiRtBu2 (E = S, Se, Te; R = tBu, Ph): Synthesis, properties, and structures. Inorg. Chem., 2005, 44(10), 3449-3458.
[http://dx.doi.org/10.1021/ic048710j] [PMID: 15877425]
[30]
Wojnowski, W.; Wojnowska, M.; Becker, B.; Noltemeyer, M. Beiträge zur chemie der silicium-schwefel-verbindungen. 50 [1] Bis(triorganoxysilyl)polysulfide und die Struktur des Bis(tri-t-butoxysilyl)disulfide. Z. Anorg. Allg. Chem., 1988, 561(1), 167-173.
[http://dx.doi.org/10.1002/zaac.19885610118]
[31]
Wojnowski, W.; Wojnowska, M.; Grubba, R.; Konitz, A.; Pikies, J. The reactions of sodium silanethiolates with benzoyl chloride. the crystal structures of (o-silyl)thiobenzoates (tBuO)3SiOC(S)Ph, Ph3SiOC(S)Ph, (2,6-XyO)3SiOC(S)Ph, and of PhC(O)SSSC(O). Ph. Z. Anorg. Allg. Chem., 2008, 634(4), 730-734.
[http://dx.doi.org/10.1002/zaac.200700480]
[32]
Mirza, S.A.; Pressler, M.A.; Kumar, M.; Day, R.O.; Maroney, M.J. Oxidation of nickel thiolate ligands by dioxygen. Inorg. Chem., 1993, 32(6), 977-987.
[http://dx.doi.org/10.1021/ic00058a038]
[33]
Plaza, L.A. Silanethiolates of iron, Gdansk: Politechnika Gdanska, (PhD thesis). 2009. Available from: https://pbc.gda.pl/Content/2194/phd_plaza_luis_aparici.pdf (Last accessed: 8 September 2022).
[34]
Chojnacki, J. Relationship between electronic structure and geometry of silanethiols and their derivatives: Elucidation of copper group silanethiolates. J. Mol. Struct. Theochem., 2008, 862(1), 112-117.
[http://dx.doi.org/10.1016/j.theochem.2008.05.006]
[35]
Hall, H.K., Jr Correlation of the base strengths of amines1. J. Am. Chem. Soc., 1957, 79(20), 5441-5444.
[http://dx.doi.org/10.1021/ja01577a030]
[36]
Clarke, K.; Rothwell, K. 377. A kinetic study of the effect of substituents on the rate of formation of alkylpyridinium halides in nitromethane solution. J. Chem. Soc., 1960, (0), 1885-1895.
[http://dx.doi.org/10.1039/jr9600001885]
[37]
Meininger, D.J.; Kasrawi, Z.; Arman, H.D.; Tonzetich, Z.J. Synthesis of tetraphenylporphyrinate manganese(III) siloxides by silyl group transfer from silanethiols. J. Coord. Chem., 2016, 69(11-13), 1970-1978.
[http://dx.doi.org/10.1080/00958972.2016.1187727]
[38]
Cai, L.; Holm, R.H. Synthesis and electron delocalization of [Fe4S4]-S-Fe(III) bridged assemblies related to the exchange-coupled catalytic site of sulfite reductases. J. Am. Chem. Soc., 1994, 116(16), 7177-7188.
[http://dx.doi.org/10.1021/ja00095a021]
[39]
Crane, B.R.; Siegel, L.M.; Getzoff, E.D. Structures of the siroheme- and Fe4S4-containing active center of sulfite reductase in different states of oxidation: Heme activation via reduction-gated exogenous ligand exchange. Biochemistry, 1997, 36(40), 12101-12119.
[http://dx.doi.org/10.1021/bi971065q] [PMID: 9315848]
[40]
Dolphin, D.; Sams, J.R.; Tsin, T.B.; Wong, K.L. Synthesis and mossbauer spectra of octaethylporphyrin ferrous complexes. J. Am. Chem. Soc., 1976, 98(22), 6970-6975.
[http://dx.doi.org/10.1021/ja00438a037] [PMID: 965659]
[41]
Dolphin, D.H.; Sams, J.R.; Tsin, T.B.; Wong, K.L. Moessbauer-Zeeman spectra of some octaethylporphyrinato- and tetraphenylporphinatoiron(III) complexes. J. Am. Chem. Soc., 1978, 100(6), 1711-1718.
[http://dx.doi.org/10.1021/ja00474a011]
[42]
Lee, S.C.; Holm, R.H. Fluoride-bridged dimers: Binuclear copper(II) complexes and iron(III)-copper(II) assemblies. Inorg. Chem., 1993, 32(22), 4745-4753.
[http://dx.doi.org/10.1021/ic00074a016]
[43]
Shiao, M.J.; Lai, L.L.; Ku, W.S.; Lin, P.Y.; Hwu, J.R. Chlorotrimethylsilane in combination with sodium sulfide as the equivalent of sodium trimethylsilanethiolate in organic reactions. J. Org. Chem., 1993, 58(17), 4742-4744.
[http://dx.doi.org/10.1021/jo00069a046]
[44]
Kraus, G.A.; Andersh, B. A versatile synthesis of functionalized thiols. Tetrahedron Lett., 1991, 32(20), 2189-2192.
[http://dx.doi.org/10.1016/S0040-4039(00)79676-6]
[45]
Shapley, P.A.; Liang, H-C.; Dopke, N.C. Synthesis of (dppe)Pt(μ3-S)2{Ru(N)Me2}2, (dppe)Pt(μ3-S)2{Os(N)(CH2SiMe3)2}2, and Related Heterometallic Complexes. Organometallics, 2001, 20(22), 4700-4704.
[http://dx.doi.org/10.1021/om010477z]
[46]
Komuro, T.; Matsuo, T.; Kawaguchi, H.; Tatsumi, K. Synthesis and structural characterization of silanethiolato complexes having tert-butyldimethylsilyl and trimethylsilyl groups. Dalton Trans., 2004, 10, 1618-1625.
[http://dx.doi.org/10.1039/b316567a] [PMID: 15252612]
[47]
Komuro, T.; Kawaguchi, H.; Tatsumi, K. Synthesis and reactions of triphenylsilanethiolato complexes of manganese(II), iron(II), cobalt(II), and nickel(II). Inorg. Chem., 2002, 41(20), 5083-5090.
[http://dx.doi.org/10.1021/ic025715c] [PMID: 12354041]
[48]
Komuro, T.; Matsuo, T.; Kawaguchi, H.; Tatsumi, K. Palladium dimethylsilanedithiolato complex: A precursor for Ti-Pd and Ti-Pd2 heterometallic complexes. Chem. Commun. (Camb.), 2002, 9, 988-989.
[http://dx.doi.org/10.1039/b201702d] [PMID: 12123082]
[49]
Brandes, D. Methylalkoxy(alkylthio)silane. J. Organomet. Chem., 1976, 105(1), C1-C5.
[http://dx.doi.org/10.1016/S0022-328X(00)91980-6]
[50]
Brandes, D. Über silicium - schwefel-verbindungen: III. Neue organylthiosilane. J. Organomet. Chem., 1977, 136(1), 25-31.
[http://dx.doi.org/10.1016/S0022-328X(00)87963-2]
[51]
Maity, A.; Stanek, R.J.; Anderson, B.L.; Zeller, M.; Hunter, A.D.; Moore, C.E.; Rheingold, A.L.; Gray, T.G. Fluoride complexes of cyclometalated iridium(III). Organometallics, 2015, 34(1), 109-120.
[http://dx.doi.org/10.1021/om5009555]
[52]
McDaniel, N.D.; Coughlin, F.J.; Tinker, L.L.; Bernhard, S. Cyclometalated iridium(III) Aquo complexes: Efficient and tunable catalysts for the homogeneous oxidation of water. J. Am. Chem. Soc., 2008, 130(1), 210-217.
[http://dx.doi.org/10.1021/ja074478f] [PMID: 18062690]
[53]
Yuan, Y.J.; Yu, Z.T.; Chen, X.Y.; Zhang, J.Y.; Zou, Z.G. Visible-light-driven H2 generation from water and CO2 conversion by using a zwitterionic cyclometalated iridium(III) complex. Chemistry, 2011, 17(46), 12891-12895.
[http://dx.doi.org/10.1002/chem.201102147] [PMID: 21987379]
[54]
Yuan, Y.J.; Zhang, J.Y.; Yu, Z.T.; Feng, J.Y.; Luo, W.J.; Ye, J.H.; Zou, Z.G. Impact of ligand modification on hydrogen photogeneration and light-harvesting applications using cyclometalated iridium complexes. Inorg. Chem., 2012, 51(7), 4123-4133.
[http://dx.doi.org/10.1021/ic202423y] [PMID: 22436031]
[55]
Zuo, Z.; Ahneman, D.T.; Chu, L.; Terrett, J.A.; Doyle, A.G.; MacMillan, D.W. Dual catalysis. Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp3-carbons with aryl halides. Science, 2014, 345(6195), 437-440.
[http://dx.doi.org/10.1126/science.1255525] [PMID: 24903563]
[56]
Tellis, J.C.; Primer, D.N.; Molander, G.A. Dual catalysis. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science, 2014, 345(6195), 433-436.
[http://dx.doi.org/10.1126/science.1253647] [PMID: 24903560]
[57]
Narayanam, J.M.; Stephenson, C.R. Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev., 2011, 40(1), 102-113.
[http://dx.doi.org/10.1039/B913880N] [PMID: 20532341]
[58]
Schaub, T.; Backes, M.; Radius, U. Square-planar (pentafluorophenyl)nickel(II) complexes by derivatization of a C–F activation product. Eur. J. Inorg. Chem., 2008, 2008(17), 2680-2690.
[http://dx.doi.org/10.1002/ejic.200800213]
[59]
Somasundaram, V.; Gunawardene, P.N.; Polgar, A.M.; Workentin, M.S.; Corrigan, J.F. NHC ligated group 11 metal-arylthiolates containing an azide functionality amenable to “click” reaction chemistry. Inorg. Chem., 2018, 57(17), 11184-11192.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01750] [PMID: 30113838]
[60]
van der Schaaf, P.A.; Abbenhuis, R.A.T.M.; van der Noort, W.P.A.; de Graaf, R.; Grove, D.M.; Smeets, W.J.J.; Spek, A.L.; van Koten, G. Tungsten(VI) phenylimido alkylidene complexes containing a monoanionic O,N-chelating ligand and their isolated precursor complexes: X-ray structures of W(CH2SiMe3)3 (:NPh)[OCPh2(2-py)] and W(:CHSiMe3)(CH2SiMe3)(:NPh). Organometallics, 1994, 13(4), 1433-1444.
[http://dx.doi.org/10.1021/om00016a051]
[61]
Knotter, D.M.; Janssen, M.D.; Grove, D.M.; Smeets, W.J.J.; Horn, E.; Spek, A.L.; Van Koten, G. Synthesis and molecular structure of copper(I) and organozinc(II) arenethiolates with chelating amino and ether groups: X-ray structure of [CuSC6H4(CH2N(Me)CH2CH2OMe)-2]4 and [Zn(Me){SC6H4((R)-CH(Me)NMe2)-2}]2. Inorg. Chem., 1991, 30(23), 4361-4366.
[http://dx.doi.org/10.1021/ic00023a014]
[62]
van der Schaaf, P.A.; Grove, D.M.; Smeets, W.J.J.; Spek, A.L.; van Koten, G. Five-coordinate tungsten(VI) phenylimido alkylidene complexes and isolated precursors, containing a chelating arylamine ligand. Molecular structure of W(C6H4CH2NMe2-2)(:CHSiMe3)(CH3SiMe3)(:NPh). Organometallics, 1993, 12(10), 3955-3963.
[http://dx.doi.org/10.1021/om00034a030]
[63]
van der Schaaf, P.A.; Smeets, W.J.J.; Spek, A.L.; van Koten, G. New ring-opening metathesis polymerization catalyst based on a five-coordinate tungsten(VI) alkylidene complex containing an ortho-chelating arylamine ligand; X-ray structure of. J. Chem. Soc. Chem. Commun., 1992, (9), 717-719.
[http://dx.doi.org/10.1039/C39920000717]
[64]
Schrock, R.R.; DePue, R.T.; Feldman, J.; Yap, K.B.; Yang, D.C.; Davis, W.M.; Park, L.; DiMare, M.; Schofield, M. Further studies of imido alkylidene complexes of tungsten, well-characterized olefin metathesis catalysts with controllable activity. Organometallics, 1990, 9(8), 2262-2275.
[http://dx.doi.org/10.1021/om00158a025]
[65]
Cai, S.; Hoffman, D.M.; Wierda, D.A. Alkoxide and thiolate rhenium(VII) oxo-alkyl complexes and Re2O5(CH2CMe3)4, a compound with a [O2Re-O-ReO2]4+ core. Inorg. Chem., 1989, 28(20), 3784-3786.
[http://dx.doi.org/10.1021/ic00319a006]
[66]
Lucas, C.R. Thioether complexes of tungsten hexacarbonyl. Cancer. J. Chem., 1986, 64(9), 1758-1763.
[http://dx.doi.org/10.1139/v86-290]
[67]
Lucas, C.R. Tungsten carbonyl complexes of Main Group IV organometallic sulfides. Cancer. J. Chem., 1983, 61(6), 1096-1099.
[http://dx.doi.org/10.1139/v83-194]
[68]
Kiernicki, J.J.; Zeller, M.; Bart, S.C. Facile reductive silylation of uo22+ to uranium(iv) chloride. Angew. Chem. Int. Ed. Engl., 2017, 56(4), 1097-1100.
[http://dx.doi.org/10.1002/anie.201609838] [PMID: 27990733]
[69]
Wilkerson, M.P.; Burns, C.J.; Dewey, H.J.; Martin, J.M.; Morris, D.E.; Paine, R.T.; Scott, B.L. Basicity of uranyl oxo ligands upon coordination of alkoxides. Inorg. Chem., 2000, 39(23), 5277-5285.
[http://dx.doi.org/10.1021/ic000142u] [PMID: 11154586]
[70]
Kopping, B.; Chatgilialoglu, C.; Zehnder, M.; Giese, B. Tris(trimethylsilyl)silane: An efficient hydrosilylating agent of alkenes and alkynes. J. Org. Chem., 1992, 57(14), 3994-4000.
[http://dx.doi.org/10.1021/jo00040a048]
[71]
Kluge, O.; Grummt, K.; Biedermann, R.; Krautscheid, H. Trialkylphosphine-stabilized copper(I) phenylchalcogenolate complexes--crystal structures and copper-chalcogenolate bonding. Inorg. Chem., 2011, 50(11), 4742-4752.
[http://dx.doi.org/10.1021/ic102249g] [PMID: 21548561]
[72]
Azizpoor Fard, M.; Polgar, A.M.; Corrigan, J.F. Tethered polynuclear copper–chalcogenolate assemblies enabled via NHC ligation. Organometallics, 2020, 39(15), 2900-2906.
[http://dx.doi.org/10.1021/acs.organomet.0c00401]
[73]
Dev, S.; Imagawa, K.; Mizobe, Y.; Cheng, G.; Wakatsuki, Y.; Yamazaki, H.; Hidai, M. Preparation, properties, and some reactions of novel ruthenium thiolate complexes. Organometallics, 1989, 8(5), 1232-1237.
[http://dx.doi.org/10.1021/om00107a017]
[74]
Masanobu, H.; Kiyomi, I.; Guobao, C.; Yasushi, M.; Yasuo, W.; Hiroshi, Y. Preparation of thiolate-bridged diruthenium complexes with ru–ru single bond. Chem. Lett., 1986, 15(8), 1299-1302.
[http://dx.doi.org/10.1246/cl.1986.1299]
[75]
Dev, S.; Mizobe, Y.; Hidai, M. Preparation and reactions of diruthenium thiolate complexes [Cp*Ru(.mu.-SR)3RuCp*] (Cp* =. eta.5-pentamethylcyclopentadienyl; R = iso-Pr, Et, cyclohexyl, benzyl, Ph). Inorg. Chem., 1990, 29(23), 4797-4801.
[http://dx.doi.org/10.1021/ic00348a039]
[76]
Tanabe, Y.; Kanao, K.; Miyake, Y.; Nishibayashi, Y. Remarkable effect of halogens on catalytic activities of thiolato-bridged diruthenium complexes in propargylic substitution reactions. Organometallics, 2009, 28(4), 1138-1142.
[http://dx.doi.org/10.1021/om8011079]
[77]
Eisen, M.; Blum, J.; Schumann, H.; Gorella, B. Catalytic asymmetric hydrogenation by some homogeneous and silica-bound μ-thiolato-μ-chlorodicarbonylbis- (neomenthyldiphenylphosphine) dirhodium complexes. J. Mol. Catal., 1989, 56(1), 329-337.
[http://dx.doi.org/10.1016/0304-5102(89)80196-8]
[78]
Schumann, H. Cielusek, G.; Pickardt, J. μ-Alkylthio- und μ-arylthio-μ-chloro-dicarbonyl-bis(tri-tert-butylphosphan)dirhodium, zweikernige rhodiumkomplexe mit unterschiedlichen brückenliganden. Angew. Chem., 1980, 92(1), 60-61. https://zh.booksc.eu/book/430854/a34eba
[79]
Schumann, H.; Jurgis, S.; Hahn, E.; Pickardt, J.; Blum, J.; Eisen, M. Synthese, struktur und katalytische aktivität von μ-(alkylthio)-dicarbonyl-μ-chloro-bis(tri-tert-butylarsan)-dirhodium-komplexen. Chem. Ber., 1985, 118(7), 2738-2745.
[http://dx.doi.org/10.1002/cber.19851180716]
[80]
Sommer, H.; Eichhöfer, A.; Drebov, N.; Ahlrichs, R.; Fenske, D. Preparation, geometric and electronic structures of [Bi2Cu4(SPh)8(PPh3)4] with a Bi2 dumbbell, [Bi4Ag3(SePh)6Cl3 (PPh3)3]2 and [Bi4Ag3(SePh)6X3(PPhiPr2)3]2 (X = Cl, Br) with a Bi4 Unit. Eur. J. Inorg. Chem., 2008, 32, 5138-5145.
[http://dx.doi.org/10.1002/ejic.200800839]
[81]
Ahlrichs, R.; Eichhöfer, A.; Fenske, D.; May, K.; Sommer, H. Molecular structure and theoretical studies of (PPh4)2[Bi10Cu10(SPh)24 Angew. Chem. Int. Ed. Engl., 2007, 46(43), 8254-8257.
[http://dx.doi.org/10.1002/anie.200703325] [PMID: 17886824]
[82]
Kühn, M.; Lebedkin, S.; Weigend, F.; Eichhöfer, A. Optical properties of trinuclear metal chalcogenolate complexes - room temperature NIR fluorescence in [Cu2Ti(SPh)6(PPh3)2 Dalton Trans., 2017, 46(5), 1502-1509.
[http://dx.doi.org/10.1039/C6DT04287B] [PMID: 28091649]
[83]
Solomon, E.I.; Sundaram, U.M.; Machonkin, T.E. Multicopper oxidases and oxygenases. Chem. Rev., 1996, 96(7), 2563-2606.
[http://dx.doi.org/10.1021/cr950046o] [PMID: 11848837]
[84]
Granja-Travez, R.S.; Persinoti, G.F.; Squina, F.M.; Bugg, T.D.H. Functional genomic analysis of bacterial lignin degraders: Diversity in mechanisms of lignin oxidation and metabolism. Appl. Microbiol. Biotechnol., 2020, 104(8), 3305-3320.
[http://dx.doi.org/10.1007/s00253-019-10318-y] [PMID: 32088760]
[85]
Kjaergaard, C.H.; Jones, S.M.; Gounel, S.; Mano, N.; Solomon, E.I. Two-electron reduction versus one-electron oxidation of the type 3 pair in the multicopper oxidases. J. Am. Chem. Soc., 2015, 137(27), 8783-8794.
[http://dx.doi.org/10.1021/jacs.5b04136] [PMID: 26075678]
[86]
Solomon, E.I.; Augustine, A.J.; Yoon, J. O2 reduction to H2O by the multicopper oxidases. Dalton Trans., 2008, (30), 3921-3932.
[http://dx.doi.org/10.1039/b800799c] [PMID: 18648693]
[87]
Taylor, A.B.; Stoj, C.S.; Ziegler, L.; Kosman, D.J.; Hart, P.J. The copper-iron connection in biology: Structure of the metallo-oxidase Fet3p. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15459-15464.
[http://dx.doi.org/10.1073/pnas.0506227102] [PMID: 16230618]
[88]
Johnston, E.M.; Dell’Acqua, S.; Ramos, S.; Pauleta, S.R.; Moura, I.; Solomon, E.I. Determination of the active form of the tetranuclear copper sulfur cluster in nitrous oxide reductase. J. Am. Chem. Soc., 2014, 136(2), 614-617.
[http://dx.doi.org/10.1021/ja411500p] [PMID: 24364717]
[89]
Pomowski, A.; Zumft, W.G.; Kroneck, P.M.; Einsle, O. N2O binding at a [4Cu:2S] copper-sulphur cluster in nitrous oxide reductase. Nature, 2011, 477(7363), 234-237.
[http://dx.doi.org/10.1038/nature10332] [PMID: 21841804]
[90]
Igawa, S.; Hashimoto, M.; Kawata, I.; Yashima, M.; Hoshino, M.; Osawa, M. Highly efficient green organic light-emitting diodes containing luminescent tetrahedral copper(i) complexes. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(3), 542-551.
[http://dx.doi.org/10.1039/C2TC00263A]
[91]
Bergmann, L.; Friedrichs, J.; Mydlak, M.; Baumann, T.; Nieger, M.; Bräse, S. Outstanding luminescence from neutral copper(I) complexes with pyridyl-tetrazolate and phosphine ligands. Chem. Commun. (Camb.), 2013, 49(58), 6501-6503.
[http://dx.doi.org/10.1039/c3cc42280a] [PMID: 23660875]
[92]
Wang, Y-M.; Teng, F.; Hou, Y-B.; Xu, Z.; Wang, Y-S.; Fu, W-F. Copper(I) complex employed in organic light-emitting electrochemical cells: Device and spectra shift. Appl. Phys. Lett., 2005, 87(23), 233512.
[http://dx.doi.org/10.1063/1.2139987]
[93]
Cariati, E.; Lucenti, E.; Botta, C.; Giovanella, U.; Marinotto, D.; Righetto, S. Cu(I) hybrid inorganic–organic materials with intriguing stimuli responsive and optoelectronic properties. Coord. Chem. Rev., 2016, 306, 566-614.
[http://dx.doi.org/10.1016/j.ccr.2015.03.004]
[94]
Shinozaki, A.; Seino, H.; Hidai, M.; Mizobe, Y. Transformation of the incomplete cubane-type Ir3S(SH)3 cluster into single-cubane (Ir3SbS4), corner-shared double-cubane (Ir6BiS8), and cuboidal (Ir3PdS3(SH)) heterometallic clusters. Organometallics, 2003, 22(23), 4636-4638.
[http://dx.doi.org/10.1021/om0302802]
[95]
Hong-Xi, L.; Qing-Feng, X.; Qi, S.; Jian-Ping, L. Synthesis and structure of a novel tetranuclear tungsten–bismuth–sulfur complex. Chem. Lett., 2003, 32(7), 642-643.
[http://dx.doi.org/10.1246/cl.2003.642]
[96]
Han, L-B.; Tanaka, M. The first platinum(0)-catalyzed regio- and stereoselective thiosilylation of alkynes using disulfides and disilanes: A new strategy for introducing two different heteroatoms into carbon−carbon unsaturated bonds. J. Am. Chem. Soc., 1998, 120(32), 8249-8250.
[http://dx.doi.org/10.1021/ja981474p]
[97]
The ratio 4a/5a = 79/21 reported by authors in the Supporting Information for reaction (24) at equilibrium is actally the ratio 5a/4a. The equilibrium between 5a and 4a has been studied using a mixture of (SiCl3)2 and 5a, not 4a. On that assumption, the equilibrium constant calculated by authors for Eq. (24) is 0.03
[98]
Wolinski, L.; Tieckelmann, H.; Post, H.W. Studies in silico-organic compounds. XV. The preparation of alkylmercaptosilanes. J. Org. Chem., 1951, 16(3), 395-398.
[http://dx.doi.org/10.1021/jo01143a007]
[99]
Lambert, J.B.; Schulz, W.J.; McConnell, J.A.; Schilf, W. The first silylenium ions in solution. J. Am. Chem. Soc., 1988, 110(7), 2201-2210.
[http://dx.doi.org/10.1021/ja00215a033]
[100]
Goikhman, R.; Aizenberg, M.; Ben-David, Y.; Shimon, L.J.W.; Milstein, D. New tridentate phosphine rhodium and iridium complexes, including a stable rhodium(I) Silyl. Si−S activation and a strong effect of X in (PP2)M−X (X = H, Cl, Me) on Si−H activation. Organometallics, 2002, 21(23), 5060-5065.
[http://dx.doi.org/10.1021/om020120a]
[101]
Leroy, G.; Temsamani, D.R.; Wilante, C. Refinement and extension of the table of standard energies for bonds containing atoms of the fourth group of the Periodic Table. J. Mol. Struct. THEOCHEM, 1994, 306(1), 21-39.
[http://dx.doi.org/10.1016/0166-1280(94)80200-9]
[102]
Dithiolene chemistry: Synthesis, properties, and applications; Stiefel, E.I.; Karlin, D.K., Eds.; Wiley: New York, 2003.
[http://dx.doi.org/10.1002/0471471933]
[103]
Kappler, U.; Enemark, J.H. Sulfite-oxidizing enzymes. Eur. J. Biochem., 2015, 20(2), 253-264.
[http://dx.doi.org/10.1007/s00775-014-1197-3] [PMID: 25261289]
[104]
Brondino, C.D.; Romão, M.J.; Moura, I.; Moura, J.J.G. Molybdenum and tungsten enzymes: The xanthine oxidase family. Curr. Opin. Chem. Biol., 2006, 10(2), 109-114.
[http://dx.doi.org/10.1016/j.cbpa.2006.01.034] [PMID: 16480912]
[105]
Kletzin, A.; Adams, M.W.W. Tungsten in biological systems. FEMS Microbiol. Rev., 1996, 18(1), 5-63.
[http://dx.doi.org/10.1111/j.1574-6976.1996.tb00226.x] [PMID: 8672295]
[106]
Prasad, R. Synthesis, spectral and electrochemical aspects of maleonitriledithiolate and dibenzyldithiomaleonitrile complexes of cyclopentadienylruthenium(II). J. Organomet. Chem., 1995, 486(1), 31-36.
[http://dx.doi.org/10.1016/0022-328X(94)05034-9]
[107]
Tian, Z-Q.; Donahue, J.P.; Holm, R.H. Synthesis of new types of dithiolene ligands. Inorg. Chem., 1995, 34(22), 5567-5572.
[http://dx.doi.org/10.1021/ic00126a029]
[108]
King, R.B.; Eggers, C.A. Organosulfur derivatives of the metal carbonyls. X. Transition metal derivatives containing both. pi.-cyclopentadienyl and cis-1,2-ethylenedithiolate ligands. Inorg. Chem., 1968, 7(2), 340-345.
[http://dx.doi.org/10.1021/ic50060a036]
[109]
Herzog, U.; Böhme, U.; Rheinwald, G. 1,2-Dithiolate derivatives of monosilanes and disilanes. J. Organomet. Chem., 2000, 612(1), 133-140.
[http://dx.doi.org/10.1016/S0022-328X(00)00432-0]
[110]
Rauchfuss, T.B. Synthesis of Transition Metal Dithiolenes. Dithiolene Chemistry, Wiley: New York, 2003, pp. 1-54.
[http://dx.doi.org/10.1002/0471471933.ch1]
[111]
Lim, B.S.; Willer, M.W.; Miao, M.; Holm, R.H. Monodithiolene molybdenum(V, VI) complexes: A structural analogue of the oxidized active site of the sulfite oxidase enzyme family. J. Am. Chem. Soc., 2001, 123(34), 8343-8349.
[http://dx.doi.org/10.1021/ja010786g] [PMID: 11516283]
[112]
Gareau, Y.; Orellana, A. Palladium catalyzed reaction of bis(triisopropylsilyl)disulfide with acetylenes. Synlett, 1997, 1997(07), 803-804.
[http://dx.doi.org/10.1055/s-1997-5774]
[113]
Gareau, Y.; Tremblay, M.; Gauvreau, D.; Juteau, H. Preparation and reactivity studies of 1,2-bis-triisopropylsilanylsulfanyl-alkenes. Tetrahedron, 2001, 57(27), 5739-5750.
[http://dx.doi.org/10.1016/S0040-4020(01)00517-8]
[114]
Friedle, S.; Partyka, D.V.; Bennett, M.V.; Holm, R.H. Synthesis of metal dithiolene complexes by Si–S bond cleavage of a bis(silanylsulfanyl)alkene. Inorg. Chim. Acta, 2006, 359(5), 1427-1434.
[http://dx.doi.org/10.1016/j.ica.2005.09.067]
[115]
Greiwe, K.; Krebs, B.; Henkel, G. Preparation, structure, and properties of manganese toluene-3,4-dithiolate complexes in different oxidation states. Inorg. Chem., 1989, 28(19), 3713-3720.
[http://dx.doi.org/10.1021/ic00318a021]
[116]
Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Advanced Inorganic Chemistry; John Wiley & Sons: New York, 1999.
[117]
Kirk, M.L.; McNaughton, R.L.; Helton, M.E. The Electronic Structure and Spectroscopy of Metallo-Dithiolene Complexes. In: Dithiolene Chemistry; , 2003; pp. 111-212.
[http://dx.doi.org/10.1002/0471471933.ch3]
[118]
Lim, B.S.; Donahue, J.P.; Holm, R.H. Synthesis and structures of bis(dithiolene)molybdenum complexes related to the active sites of the DMSO reductase enzyme family. Inorg. Chem., 2000, 39(2), 263-273.
[http://dx.doi.org/10.1021/ic9908672] [PMID: 11272534]
[119]
Clegg, W.; Boyde, S.; Garner, C.D. Structures of tetraphenylphos-phonium bis(ethane-1,2-dithiolato)oxorhenium(V) and tetraphenyl-phosphonium bis(benzene-1,2-dithiolato)oxorhenium(V). Acta Crystallogr. C, 1988, 44(1), 172-174.
[http://dx.doi.org/10.1107/S0108270187008709]
[120]
Hübener, R.; Abram, U. Structure of tetrabutylammonium bis[benzene-1,2-dithiolato(2–)]oxorhenate(V). Acta Crystallogr. C, 1993, 49(6), 1068-1070.
[http://dx.doi.org/10.1107/S0108270193001568]
[121]
Baker-Hawkes, M.J.; Dori, Z.; Eisenberg, R.; Gray, H.B. The crystal and molecular structure of the tetra-n-butylammonium salt of the dianionic dimer of bis(1,2,3,4-tetrachlorobenzene-5,6-dithiolato)cobaltate. J. Am. Chem. Soc., 1968, 90(16), 4253-4259.
[http://dx.doi.org/10.1021/ja01018a012]
[122]
Rao, C.P.; Dorfman, J.R.; Holm, R.H. Synthesis and structural systematics of ethane-1,2-dithiolato complexes. Inorg. Chem., 1986, 25(4), 428-439.
[http://dx.doi.org/10.1021/ic00224a011]
[123]
Cowie, M.; Bennett, M.J. Trigonal-prismatic vs. octahedral coordination in a series of tris(benzene-1,2-dithiolato) complexes. 1. Crystal and molecular structure of tris(benzene-1,2-dithiolato)molybdenum(VI), Mo(S2C6H4)3. Inorg. Chem., 1976, 15(7), 1584-1589.
[http://dx.doi.org/10.1021/ic50161a023]
[124]
Fomitchev, D.V.; Lim, B.S.; Holm, R.H. Electron distribution in the nonclassical bis(dithiolene) electron transfer series [M(CO)2(S2C2Me2)2]0/1-/2- (M = Mo, W): Assessment by structural, spectroscopic, and density functional theory results. Inorg. Chem., 2001, 40(4), 645-654.
[http://dx.doi.org/10.1021/ic001046w] [PMID: 11225106]
[125]
Mukherjee, R.N.; Pulla Rao, C.; Holm, R.H. Solution chemistry of ethane-1,2-dithiolate complexes: Equilibria and electron-transfer reactions. Inorg. Chem., 1986, 25(17), 2979-2989.
[http://dx.doi.org/10.1021/ic00237a012]
[126]
Sellmann, D.; Geck, M.; Moll, M. Transition-metal complexes with sulfur ligands. 62. Hydrogen evolution upon reaction of protons with sulfur-coordinated iron(II) complexes. Investigation of the proton, hydrogen and hydride interactions with iron 1,2-benzenedithiolate complexes. J. Am. Chem. Soc., 1991, 113(14), 5259-5264.
[http://dx.doi.org/10.1021/ja00014a019]
[127]
Wang, K. Electrochemical and Chemical Reactivity of Dithiolene Complexes. In: Dithiolene Chemistry; , 2003; pp. 267-314.
[http://dx.doi.org/10.1002/0471471933.ch5]
[128]
Goddard, C.A.; Holm, R.H. Synthesis and reactivity aspects of the bis(dithiolene) chalcogenide series [W IV Q(S 2 C 2 R 2) 2] 2- (Q = O, S, Se). Inorg. Chem., 1999, 38(23), 5398.
[http://dx.doi.org/10.1021/ic9903329]
[129]
Jiang, J.; Holm, R.H. An expanded set of functional groups in bis(dithiolene)tungsten(IV,VI) complexes related to the active sites of tungstoenzymes, Including WIV-SR and WVI-O(SR). Inorg. Chem., 2004, 43(4), 1302-1310.
[http://dx.doi.org/10.1021/ic030301k] [PMID: 14966965]
[130]
So, J-H.; Boudjouk, P.; Hong, H.H.; Weber, W.P. Hexamethyldisilathiane. Inorg. Synth., 1992, 29, 30-32. https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470132609.ch11
[131]
Curphey, T.J. Methods for preparation of disilathianes. Phosphorus Sulfur Silicon Relat. Elem., 2001, 173(1), 123-142.
[http://dx.doi.org/10.1080/10426500108045265]
[132]
Jenkins, L.S.; Willey, G.R. Hexamethyldisiloxane and hexamethyldisilathiane: Reactions with co-valent metal halides. J. Chem. Soc., Dalton Trans., 1979, (11), 1697-1700.
[http://dx.doi.org/10.1039/dt9790001697]
[133]
Abel, E.W.; Jenkins, C.R. Interaction of thiosilanes and disilthianes with some transitional and post-transitional metal halides. J. Organomet. Chem., 1968, 14(2), 285-289.
[http://dx.doi.org/10.1016/S0022-328X(00)87668-8]
[134]
Lin, J.; Cates, E.; Bianconi, P.A. A synthetic analog of the biomineralization process: Controlled crystallization of an inorganic phase by a polymer matrix. J. Am. Chem. Soc., 1994, 116(11), 4738-4745.
[http://dx.doi.org/10.1021/ja00090a021]
[135]
Lee, S.C.; Holm, R.H. Entry to the solution chemistry of niobium and tantalum sulfides: Synthesis of soluble forms of the tetrathiometalates [MS4}3. J. Am. Chem. Soc., 1990, 112(26), 9654-9655.
[http://dx.doi.org/10.1021/ja00182a043]
[136]
Kovacs, J.A.; Holm, R.H. Assembly of vanadium-iron-sulfur cubane clusters from mononuclear and linear trinuclear reactants. J. Am. Chem. Soc., 1986, 108(2), 340-341.
[http://dx.doi.org/10.1021/ja00262a050]
[137]
Venturelli, A.; Rauchfuss, T.B. Mobile metal-metal bonds: Studies on mixed valence Ir3 and Ir4 clusters. J. Am. Chem. Soc., 1994, 116(11), 4824-4831.
[http://dx.doi.org/10.1021/ja00090a030]
[138]
Berry, J.F.; Lu, C.C. Metal-metal bonds: From fundamentals to applications. Inorg. Chem., 2017, 56(14), 7577-7581.
[http://dx.doi.org/10.1021/acs.inorgchem.7b01330] [PMID: 28715854]
[139]
Angermaier, K.; Schmidbaur, H. The supramolecular structures of complex tri[gold(I)]sulfonium cations. Chem. Ber., 1994, 127(12), 2387-2391.
[http://dx.doi.org/10.1002/cber.19941271208]
[140]
Schmidbaur, H. The aurophilicity phenomenon: A decade of experimental findings, theoretical concepts and emerging applications. Gold Bull., 2000, 33(1), 3-10.
[http://dx.doi.org/10.1007/BF03215477]
[141]
Seifert, T.P.; Naina, V.R.; Feuerstein, T.J.; Knöfel, N.D.; Roesky, P.W. Molecular gold strings: Aurophilicity, luminescence and structure-property correlations. Nanoscale, 2020, 12(39), 20065-20088.
[http://dx.doi.org/10.1039/D0NR04748A] [PMID: 33001101]
[142]
Schmidbaur, H.; Schier, A. Aurophilic interactions as a subject of current research: An up-date. Chem. Soc. Rev., 2012, 41(1), 370-412.
[http://dx.doi.org/10.1039/C1CS15182G] [PMID: 21863191]
[143]
Gallego, M.L.; Guijarro, A.; Castillo, O.; Parella, T.; Mas-Balleste, R.; Zamora, F. Nuclearity control in gold dithiocarboxylato compounds. CrystEngComm, 2010, 12(8), 2332-2334.
[http://dx.doi.org/10.1039/c001150a]
[144]
Canales, F.; Gimeno, M.C.; Jones, P.G.; Laguna, A. Aurophilicity at sulfur centers: Synthesis and structure of the tetragold(I) species [(Ph3PAu)4S](CF3SO3)2 · 2CH2Cl2. Angew. Chem. Int. Ed. Engl., 1994, 33(7), 769-770.
[http://dx.doi.org/10.1002/anie.199407691]
[145]
Dehnen, S.; Eichhöfer, A.; Fenske, D. Chalcogen-bridged copper clusters. Eur. J. Inorg. Chem., 2002, 2, 279-317.
[http://dx.doi.org/10.1002/1099-0682(20022)2002:2<279:AID-EJIC279>3.0.CO;2-H]
[146]
Drew, M.G.B. Hamid bin Othman, A.; Edwards, D.A.; Richards, R. Acetatobis(triphenylphosphine)copper(I). Acta Crystallogr. B, 1975, 31(11), 2695-2697.
[http://dx.doi.org/10.1107/S0567740875008527]
[147]
McMullin, C.L.; Rajabi, N.A.; Hammerton, J.S. A computational study on the identity of the active catalyst structure for Ru(ii) carboxylate assisted C-H activation in acetonitrile. Org. Biomol. Chem., 2019, 17(27), 6678-6686.
[http://dx.doi.org/10.1039/C9OB01092K] [PMID: 31237301]
[148]
Yang, X-X.; Issac, I.; Lebedkin, S.; Kühn, M.; Weigend, F.; Fenske, D.; Fuhr, O.; Eichhöfer, A. Red-luminescent biphosphine stabilized 'Cu12S6' cluster molecules. Chem. Commun. (Camb.), 2014, 50(75), 11043-11045.
[http://dx.doi.org/10.1039/C4CC04702H] [PMID: 25098944]
[149]
Dehnen, S.; Fenske, D. [Cu24S12(PMeiPr2)12], [Cu28S14(PtBu2Me)12], [Cu50S25(PtBu2 Me)16], [Cu70Se35(PtBu2Me)21], [Cu31Se15(SeSiMe3) (PtBu2Me)12] and [Cu48Se24(PMe2Ph)20]: New sulfur- and selenium-bridged copper clusters. Chemistry, 1996, 2(11), 1407-1416.
[http://dx.doi.org/10.1002/chem.19960021113]
[150]
Wang, X-J.; Langetepe, T.; Persau, C.; Kang, B-S.; Sheldrick, G.M.; Fenske, D. Syntheses and crystal structures of the new Ag-S clusters [Ag70S16(SPh)34(PhCO2)4(triphos)4] and [Ag188S94(PR3)30]. Angew. Chem. Int. Ed., 2002, 41(20), 3818-3822.
[http://dx.doi.org/10.1002/1521-3773(20021018)41:20<3818:AID-ANIE3818>3.0.CO;2-R] [PMID: 12386858]
[151]
MacDonald, DG; Corrigan, JF Metal chalcogenide nanoclusters with ’tailored’ surfaces via ’designer’ silylated chalcogen reagents. Philos. Trans. R Soc. A., 2010, 368, 1455.
[http://dx.doi.org/10.1098/rsta.2009.0276]
[152]
Eichhöfer, A.; Aharoni, A.; Banin, U. Synthesis, structure, and optical properties of new cadmium chalcogenide clusters of the type [Cd10E4(E’Ph)12(PR3)4], (E, E′ = Te, Se, S). Z. Anorg. Allg. Chem., 2002, 628(11), 2415-2421.
[http://dx.doi.org/10.1002/1521-3749(200211)628:11<2415:AID-ZAAC2415>3.0.CO;2-W]
[153]
Anson, C.E.; Eichhöfer, A.; Issac, I.; Fenske, D.; Fuhr, O.; Sevillano, P.; Persau, C.; Stalke, D.; Zhang, J. Synthesis and crystal structures of the ligand-stabilized silver chalcogenide clusters [Ag154Se77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128 (StC5H11)96], and [Ag490S188(StC5H11)114]. Angew. Chem. Int. Ed. Engl., 2008, 47(7), 1326-1331.
[http://dx.doi.org/10.1002/anie.200704249] [PMID: 18176923]
[154]
Vučić Z.; Milat, O.; Horvatić V.; Ogorelec, Z. Composition-induced phase-transition splitting in cuprous selenide. Phys. Rev. B Condens. Matter, 1981, 24(9), 5398-5401.
[http://dx.doi.org/10.1103/PhysRevB.24.5398]
[155]
Xie, J.; Wang, L.; Anderson, J.S. Heavy chalcogenide-transition metal clusters as coordination polymer nodes. Chem. Sci. (Camb.), 2020, 11(32), 8350-8372.
[http://dx.doi.org/10.1039/D0SC03429K] [PMID: 34123098]
[156]
Wulfsberg, G. Inorganic Chemistry; University Science Books, 2000.
[157]
Morse, M.D. Clusters of transition-metal atoms. Chem. Rev., 1986, 86(6), 1049-1109.
[http://dx.doi.org/10.1021/cr00076a005]
[158]
Dong, C.; Li, Y.; Cheng, D.; Zhang, M.; Liu, J.; Wang, Y-G.; Xiao, D.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal., 2020, 10(19), 11011-11045.
[http://dx.doi.org/10.1021/acscatal.0c02818]
[159]
Miron, C.; Patanen, M. Synchrotron-radiation-based soft X-ray electron spectroscopy applied to structural and chemical characterization of isolated species, from molecules to nanoparticles. Adv. Mater., 2014, 26(46), 7911-7916.
[http://dx.doi.org/10.1002/adma.201304837] [PMID: 24902675]
[160]
Tran, D.T.T.; Taylor, N.J.; Corrigan, J.F. Copper chalcogenolate complexes as precursors to ternary nanoclusters: Synthesis and characterization of. Angew. Chem. Int. Ed. Engl., 2000, 39(5), 935-937.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000303)39:5<935:AID-ANIE935>3.0.CO;2-I] [PMID: 10760898]
[161]
Eichhöfer, A.; Corrigan, J.F.; Fenske, D.; Tröster, E. Neue kupfertellurid-cluster – synthesen, kristallstrukturen und optische spektren. Z. Anorg. Allg. Chem., 2000, 626(2), 338-348.
[http://dx.doi.org/10.1002/(SICI)1521-3749(200002)626:2<338:AID-ZAAC338>3.0.CO;2-2]
[162]
Tran, D.T.T.; Beltran, L.M.C.; Kowalchuk, C.M.; Trefiak, N.R.; Taylor, N.J.; Corrigan, J.F. Ternary nanoclusters of CuHgS, CuHgSe, and CuInS. Inorg. Chem., 2002, 41(22), 5693-5698.
[http://dx.doi.org/10.1021/ic0110528] [PMID: 12401073]
[163]
David, L.; Keith, F. Overview of the mechanistic work on the concerted metallation–deprotonation pathway. Chem. Lett., 2010, 39(11), 1118-1126.
[http://dx.doi.org/10.1246/cl.2010.1118]
[164]
Ciborska, A.; Hnatejko, Z.; Kazimierczuk, K.; Mielcarek, A. Wiśniewska, A.; Dołęga, A. Silver complexes stabilized by large silanethiolate ligands - crystal structures and luminescence properties. Dalton Trans., 2017, 46(33), 11097-11107.
[http://dx.doi.org/10.1039/C7DT00740J] [PMID: 28795747]
[165]
Pladzyk, A.; Kowalkowska-Zedler, D.; Ciborska, A.; Schnepf, A. Dołęga, A. Complexes of silanethiolate ligands: Synthesis, structure, properties and application. Coord. Chem. Rev., 2021, 437, 213761.
[http://dx.doi.org/10.1016/j.ccr.2020.213761]
[166]
di Lena, F.; Matyjaszewski, K. Transition metal catalysts for controlled radical polymerization. Prog. Polym. Sci., 2010, 35(8), 959-1021.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.05.001]
[167]
Soundararajan, N.; Jackson, J.E.; Platz, M.S. Reaction of triethylsilyl radical with sulfides, a laser flash photolysis study. J. Phys. Org. Chem., 1988, 1(1), 39-46.
[http://dx.doi.org/10.1002/poc.610010107]
[168]
Buriak, J.M.; Sikder, M.D.H. From molecules to surfaces: Radical-based mechanisms of Si-S and Si-Se bond formation on silicon. J. Am. Chem. Soc., 2015, 137(30), 9730-9738.
[http://dx.doi.org/10.1021/jacs.5b05738] [PMID: 26161463]
[169]
Hu, M.; Hauger, T.C.; Olsen, B.C.; Luber, E.J.; Buriak, J.M. UV-initiated Si–S, Si–Se, and Si–Te bond formation on Si(111): Coverage, mechanism, and electronics. J. Phys. Chem. C, 2018, 122(25), 13803-13814.
[http://dx.doi.org/10.1021/acs.jpcc.8b00910]
[170]
Ballestri, M.; Chatgilialoglu, C.; Clark, K.B.; Griller, D.; Giese, B.; Kopping, B. Tris(trimethylsilyl)silane as a radical-based reducing agent in synthesis. J. Org. Chem., 1991, 56(2), 678-683.
[http://dx.doi.org/10.1021/jo00002a035]
[171]
Baban, J.A.; Cook, M.D.; Roberts, B.P. An electron spin resonance study of trialkylsilyl radical addition to alkyl isocyanates. J. Chem. Soc., Perkin Trans. 2, 1982, (10), 1247-1253.
[http://dx.doi.org/10.1039/p29820001247]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy