Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Editorial

Engineered Soluble ACE2 Protein and SARS-CoV-2 Variants of Concern (VOCs)

Author(s): Wattana Leowattana*

Volume 3, Issue 5, 2022

Published on: 18 July, 2022

Article ID: e200522205058 Pages: 3

DOI: 10.2174/2666796703666220520101225

conference banner
[1]
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020; 383(27): 2603-15.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[2]
Frenck RW Jr, Klein NP, Kitchin N, et al. Safety, immunogenicity, and efficacy of the BNT162b2 COVID-19 vaccine in adolescents. N Engl J Med 2021; 385(3): 239-50.
[http://dx.doi.org/10.1056/NEJMoa2107456] [PMID: 34043894]
[3]
Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397(10269): 99-111.
[http://dx.doi.org/10.1016/S0140-6736(20)32661-1] [PMID: 33306989]
[4]
Garcia-Beltran WF, Lam EC, St Denis K, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021; 184(9): 2372-2383.e9.
[http://dx.doi.org/10.1016/j.cell.2021.03.013] [PMID: 33743213]
[5]
Kuzmina A, Khalaila Y, Voloshin O, et al. SARS-CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera. Cell Host Microbe 2021; 29(4): 522-528.e2.
[http://dx.doi.org/10.1016/j.chom.2021.03.008] [PMID: 33789085]
[6]
Hoffmann M, Arora P, Groß R, et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 2021; 184(9): 2384-2393.e12.
[http://dx.doi.org/10.1016/j.cell.2021.03.036] [PMID: 33794143]
[7]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[8]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[9]
Scialo F, Daniele A, Amato F, et al. ACE2: The major cell entry receptor for SARS-CoV-2. Lung 2020; 198(6): 867-77.
[http://dx.doi.org/10.1007/s00408-020-00408-4] [PMID: 33170317]
[10]
Lew RA, Warner FJ, Hanchapola I, et al. Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor. Exp Physiol 2008; 93(5): 685-93.
[http://dx.doi.org/10.1113/expphysiol.2007.040352] [PMID: 18223027]
[11]
Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000; 87(5): E1-9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[12]
Zhong J, Basu R, Guo D, et al. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation 2010; 122(7): 717-728, 18, 728..
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.955369] [PMID: 20679547]
[13]
Benton DJ, Wrobel AG, Xu P, et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 2020; 588(7837): 327-30.
[http://dx.doi.org/10.1038/s41586-020-2772-0] [PMID: 32942285]
[14]
Cocozza F, Névo N, Piovesana E, et al. Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 Spike protein-containing virus. J Extracell Vesicles 2020; 10(2): e12050.
[http://dx.doi.org/10.1002/jev2.12050] [PMID: 33391636]
[15]
Zhang L, Dutta S, Xiong S, et al. Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants. Nat Chem Biol 2022; 18(3): 342-51.
[http://dx.doi.org/10.1038/s41589-021-00965-6] [PMID: 35046611]
[16]
Glasgow A, Glasgow J, Limonta D, et al. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc Natl Acad Sci 2020; 117(45): 28046-55.
[http://dx.doi.org/10.1073/pnas.2016093117] [PMID: 33093202]
[17]
Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020; 181(4): 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[18]
Guo L, Bi W, Wang X, et al. Engineered trimeric ACE2 binds viral spike protein and locks it in “Three-up” conformation to potently inhibit SARS-CoV-2 infection. Cell Res 2021; 31(1): 98-100.
[http://dx.doi.org/10.1038/s41422-020-00438-w] [PMID: 33177651]

© 2024 Bentham Science Publishers | Privacy Policy