[1]
Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; Mak, R.H.; Tamimi, R.M.; Tempany, C.M.; Swanton, C.; Hoffmann, U.; Schwartz, L.H.; Gillies, R.J.; Huang, R.Y.; Aerts, H.J.W.L. Artificial in-telligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin., 2019, 69(2), 127-157.
[http://dx.doi.org/10.3322/caac.21552] [PMID: 30720861]
[http://dx.doi.org/10.3322/caac.21552] [PMID: 30720861]
[2]
Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. (Maywood), 2018, 243(3), 213-221.
[http://dx.doi.org/10.1177/1535370217750088] [PMID: 29405771]
[http://dx.doi.org/10.1177/1535370217750088] [PMID: 29405771]
[3]
Huang, L.; Tian, S.; Zhao, W.; Liu, K.; Ma, X.; Guo, J. Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst (Lond.), 2020, 145(8), 2828-2840.
[http://dx.doi.org/10.1039/C9AN02485A] [PMID: 32219225]
[http://dx.doi.org/10.1039/C9AN02485A] [PMID: 32219225]
[4]
Hoffman, A.; Atreya, R.; Rath, T.; Neurath, M.F. Use of fluorescent dyes in endoscopy and diagnostic investigation. Visc. Med., 2020, 36(2), 95-103.
[http://dx.doi.org/10.1159/000506241] [PMID: 32355666]
[http://dx.doi.org/10.1159/000506241] [PMID: 32355666]
[5]
Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin., 2021, 71(4), 333-358.
[http://dx.doi.org/10.3322/caac.21670] [PMID: 33982817]
[http://dx.doi.org/10.3322/caac.21670] [PMID: 33982817]
[6]
Elmore, L.W.; Greer, S.F.; Daniels, E.C.; Saxe, C.C.; Melner, M.H.; Krawiec, G.M.; Cance, W.G.; Phelps, W.C. Blueprint for cancer re-search: Critical gaps and opportunities. CA Cancer J. Clin., 2021, 71(2), 107-139.
[http://dx.doi.org/10.3322/caac.21652] [PMID: 33326126]
[http://dx.doi.org/10.3322/caac.21652] [PMID: 33326126]
[7]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[8]
Yazdian-Robati, R.; Arab, A.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Application of aptamers in treatment and diagnosis of leukemia. Int. J. Pharm., 2017, 529(1-2), 44-54.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.058] [PMID: 28648578]
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.058] [PMID: 28648578]
[9]
Campos-Fernández, E.; Oliveira Alqualo, N.; Moura Garcia, L.C.; Coutinho Horácio Alves, C.; Ferreira Arantes Vieira, T.D.; Caixeta Moreira, D.; Alonso-Goulart, V. The use of aptamers in prostate cancer: A systematic review of theranostic applications. Clin. Biochem., 2021, 93, 9-25.
[http://dx.doi.org/10.1016/j.clinbiochem.2021.03.014] [PMID: 33794195]
[http://dx.doi.org/10.1016/j.clinbiochem.2021.03.014] [PMID: 33794195]
[10]
Zhao, X.; Dai, X.; Zhao, S.; Cui, X.; Gong, T.; Song, Z.; Meng, H.; Zhang, X.; Yu, B. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 247, 119038.
[http://dx.doi.org/10.1016/j.saa.2020.119038] [PMID: 33120124]
[http://dx.doi.org/10.1016/j.saa.2020.119038] [PMID: 33120124]
[11]
Zhu, L.; Zhao, J.; Guo, Z.; Liu, Y.; Chen, H.; Chen, Z.; He, N. Applications of aptamer-bound nanomaterials in cancer therapy. Biosensors (Basel), 2021, 11(9), 344.
[http://dx.doi.org/10.3390/bios11090344] [PMID: 34562934]
[http://dx.doi.org/10.3390/bios11090344] [PMID: 34562934]
[12]
Zhong, Y.; Wu, P.; He, J.; Zhong, L.; Zhao, Y. Advances of aptamer-based clinical applications for the diagnosis and therapy of cancer. Discov. Med., 2020, 29(158), 169-180.
[PMID: 33007192]
[PMID: 33007192]
[13]
Iannazzo, D.; Espro, C.; Celesti, C.; Ferlazzo, A.; Neri, G. Smart biosensors for cancer diagnosis based on graphene quantum dots. Cancers (Basel), 2021, 13(13), 3194.
[http://dx.doi.org/10.3390/cancers13133194] [PMID: 34206792]
[http://dx.doi.org/10.3390/cancers13133194] [PMID: 34206792]
[14]
Mansuriya, B.D.; Altintas, Z. Applications of graphene quantum dots in biomedical sensors. Sensors (Basel), 2020, 20(4), E1072.
[http://dx.doi.org/10.3390/s20041072] [PMID: 32079119]
[http://dx.doi.org/10.3390/s20041072] [PMID: 32079119]
[15]
Wang, Y.; Zhu, Y.; Yu, S.; Jiang, C. Fluorescent carbon dots: Rational synthesis, tunable optical properties and analytical applications. RSC Advances, 2017, 7(65), 40973-40989.
[http://dx.doi.org/10.1039/C7RA07573A]
[http://dx.doi.org/10.1039/C7RA07573A]
[16]
Zhang, H.; Ba, S.; Yang, Z.; Wang, T.; Lee, J.Y.; Li, T.; Shao, F. Graphene quantum dot-based nanocomposites for diagnosing cancer bi-omarker APE1 in living cells. ACS Appl. Mater. Interfaces, 2020, 12(12), 13634-13643.
[http://dx.doi.org/10.1021/acsami.9b21385] [PMID: 32129072]
[http://dx.doi.org/10.1021/acsami.9b21385] [PMID: 32129072]
[17]
Ganganboina, A.B.; Doong, R.A. Graphene quantum dots decorated gold-polyaniline nanowire for impedimetric detection of carcinoem-bryonic antigen. Sci. Rep., 2019, 9(1), 7214.
[http://dx.doi.org/10.1038/s41598-019-43740-3] [PMID: 31076624]
[http://dx.doi.org/10.1038/s41598-019-43740-3] [PMID: 31076624]
[18]
Wu, Y.; Su, H.; Yang, J.; Wang, Z.; Li, D.; Sun, H.; Guo, X.; Yin, S. Photoelectrochemical immunosensor for sensitive detection of alpha-fetoprotein based on a graphene honeycomb film. J. Colloid Interface Sci., 2020, 580, 583-591.
[http://dx.doi.org/10.1016/j.jcis.2020.07.064] [PMID: 32711207]
[http://dx.doi.org/10.1016/j.jcis.2020.07.064] [PMID: 32711207]
[19]
Li, Q.; Wang, Y.; Yu, G.; Liu, Y.; Tang, K.; Ding, C.; Chen, H.; Yu, S. Fluorescent polymer dots and graphene oxide based nanocomplexes for “off-on” detection of metalloproteinase-9. Nanoscale, 2019, 11(43), 20903-20909.
[http://dx.doi.org/10.1039/C9NR06557A] [PMID: 31660560]
[http://dx.doi.org/10.1039/C9NR06557A] [PMID: 31660560]
[20]
Campbell, E.; Hasan, M.T.; Gonzalez Rodriguez, R.; Akkaraju, G.R.; Naumov, A.V. Doped graphene quantum dots for intracellular multi-color imaging and cancer detection. ACS Biomater. Sci. Eng., 2019, 5(9), 4671-4682.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00603] [PMID: 33448839]
[http://dx.doi.org/10.1021/acsbiomaterials.9b00603] [PMID: 33448839]
[21]
Esfandyari, J.; Shojaedin-Givi, B.; Hashemzadeh, H.; Mozafari-Nia, M.; Vaezi, Z.; Naderi-Manesh, H. Capture and detection of rare cancer cells in blood by intrinsic fluorescence of a novel functionalized diatom. Photodiagn. Photodyn. Ther., 2020, 30, 101753.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101753] [PMID: 32305652]
[http://dx.doi.org/10.1016/j.pdpdt.2020.101753] [PMID: 32305652]
[22]
Kim, D.H.; Kim, S.W.; Hwang, S.H. Autofluorescence imaging to identify oral malignant or premalignant lesions: Systematic review and meta-analysis. Head Neck, 2020, 42(12), 3735-3743.
[http://dx.doi.org/10.1002/hed.26430] [PMID: 32866310]
[http://dx.doi.org/10.1002/hed.26430] [PMID: 32866310]
[23]
He, S.; Song, J.; Qu, J.; Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: Design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev., 2018, 47(12), 4258-4278.
[http://dx.doi.org/10.1039/C8CS00234G] [PMID: 29725670]
[http://dx.doi.org/10.1039/C8CS00234G] [PMID: 29725670]
[24]
van Keulen, S.; Nishio, N.; Fakurnejad, S.; Birkeland, A.; Martin, B.A.; Lu, G.; Zhou, Q.; Chirita, S.U.; Forouzanfar, T.; Colevas, A.D.; van den Berg, N.S.; Rosenthal, E.L. The clinical application of fluorescence-guided surgery in head and neck cancer. J. Nucl. Med., 2019, 60(6), 758-763.
[http://dx.doi.org/10.2967/jnumed.118.222810] [PMID: 30733319]
[http://dx.doi.org/10.2967/jnumed.118.222810] [PMID: 30733319]
[25]
Hu, Z.; Fang, C.; Li, B.; Zhang, Z.; Cao, C.; Cai, M.; Su, S.; Sun, X.; Shi, X.; Li, C.; Zhou, T.; Zhang, Y.; Chi, C.; He, P.; Xia, X.; Chen, Y.; Gambhir, S.S.; Cheng, Z.; Tian, J. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng., 2020, 4(3), 259-271.
[http://dx.doi.org/10.1038/s41551-019-0494-0] [PMID: 31873212]
[http://dx.doi.org/10.1038/s41551-019-0494-0] [PMID: 31873212]
[26]
Wang, X.; Teh, C.S.C.; Ishizawa, T.; Aoki, T.; Cavallucci, D.; Lee, S.Y.; Panganiban, K.M.; Perini, M.V.; Shah, S.R.; Wang, H.; Xu, Y.; Suh, K.S.; Kokudo, N. Consensus guidelines for the use of fluorescence imaging in hepatobiliary surgery. Ann. Surg., 2021, 274(1), 97-106.
[http://dx.doi.org/10.1097/SLA.0000000000004718] [PMID: 33351457]
[http://dx.doi.org/10.1097/SLA.0000000000004718] [PMID: 33351457]
[27]
Zhu, L.; Zhang, L.; Zhou, M.; Alifu, N. Application of organic fluorescent probe-assisted near infrared fluorescence imaging in cervical cancer diagnosis. Chin. J. Biotechnol., 2021, 37(8), 2678-2687.
[PMID: 34472288]
[PMID: 34472288]
[28]
Cao, J.; Shen, Z.L.; Ye, Y.J.; Wang, S. Application of indocyanine green fluorescence imaging in colorectal cancer surgery. Zhonghua Wei Chang Wai Ke Za Zhi, 2019, 22(10), 997-1000.
[PMID: 31630499]
[PMID: 31630499]
[29]
Grosenick, D.; Bremer, C. Fluorescence imaging of breast tumors and gastrointestinal cancer. Recent Results Cancer Res., 2020, 216, 591-624.
[http://dx.doi.org/10.1007/978-3-030-42618-7_18] [PMID: 32594400]
[http://dx.doi.org/10.1007/978-3-030-42618-7_18] [PMID: 32594400]
[30]
Kaçmaz, E.; Slooter, M.D.; Nieveen van Dijkum, E.J.M.; Tanis, P.J.; Engelsman, A.F. Fluorescence angiography guided resection of small bowel neuroendocrine neoplasms with mesenteric lymph node metastases. Eur. J. Surg. Oncol., 2021, 47(7), 1611-1615.
[http://dx.doi.org/10.1016/j.ejso.2020.12.008] [PMID: 33353827]
[http://dx.doi.org/10.1016/j.ejso.2020.12.008] [PMID: 33353827]
[31]
Luby, B.M.; Walsh, C.D.; Zheng, G. Advanced photosensitizer activation strategies for smarter photodynamic therapy beacons. Angew. Chem. Int. Ed. Engl., 2019, 58(9), 2558-2569.
[http://dx.doi.org/10.1002/anie.201805246] [PMID: 29890024]
[http://dx.doi.org/10.1002/anie.201805246] [PMID: 29890024]
[32]
Wang, C.; Zhao, X.; Jiang, H.; Wang, J.; Zhong, W.; Xue, K.; Zhu, C. Transporting mitochondrion-targeting photosensitizers into cancer cells by low-density lipoproteins for fluorescence-feedback photodynamic therapy. Nanoscale, 2021, 13(2), 1195-1205.
[http://dx.doi.org/10.1039/D0NR07342C] [PMID: 33404030]
[http://dx.doi.org/10.1039/D0NR07342C] [PMID: 33404030]
[33]
Cheng, P.; Pu, K. Activatable phototheranostic materials for imaging-guided cancer therapy. ACS Appl. Mater. Interfaces, 2020, 12(5), 5286-5299.
[http://dx.doi.org/10.1021/acsami.9b15064] [PMID: 31730329]
[http://dx.doi.org/10.1021/acsami.9b15064] [PMID: 31730329]