Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

General Research Article

Design and Performance Analysis of Low Sub-threshold Swing p-Channel Cylindrical Thin-film Transistors

Author(s): Viswanath G. Akkili* and Viranjay M. Srivastava

Volume 15, Issue 1, 2023

Published on: 09 June, 2022

Page: [65 - 74] Pages: 10

DOI: 10.2174/1876402914666220518141705

Price: $65

Abstract

Background: Tin monoxide (SnO) attracts considerable interest for p-channel Cylindrical Thin Film Transistors (CTFTs) applications due to their merits, including low hole effective mass, Sn s and O p orbital hybridization at the valance band maxima, and ambipolar nature, among other p-type oxide semiconductors.

Objective: This article analyses the influence of channel radius and the impact of dielectric materials on the performance of SnO-based CTFT devices through 3D numerical simulations.

Methods: The radius of the active layer in the CTFT was varied in the range from 10 nm to 30 nm, and it has been observed that an increase in channel radius reduces the switching behavior of the devices.

Results: The 10 nm thick CTFT exhibited superior results with a lower threshold voltage of 1.5 V and higher field-effect mobility of 13.12 cm2/V-s over other simulated CTFTs.

Conclusion: The obtained mobility values are superior to the existing planar TFTs reports. To improve the device performance further, the CTFTs with various dielectric materials have been simulated and optimized with high field-effect mobility and low sub-threshold swing values.

Keywords: Tin Monoxide (SnO), p-type semiconductor, cylindrical transistor, dielectrics, the density of states, nanotechnology, VLSI.

« Previous
[1]
Hemts, G.; Allaei, M.; Shalchian, M.; Jazaeri, F. Modeling of short-channel effects. IEEE Trans. Electron Dev., 2020, 67(8), 3088-3094.
[http://dx.doi.org/10.1109/TED.2020.3005122]
[2]
Madadi, D.; Orouji, A.A. Investigation of short channel effects in SOI MOSFET with 20 nm channel length by a β -Ga2O3 Layer. ECS J. Solid State Sci. Technol., 2020, 9(4), 045002.
[http://dx.doi.org/10.1149/2162-8777/ab878b]
[3]
Locci, S.; Maccioni, M.; Orgiu, E.; Bonfiglio, A. An analytical model for cylindrical thin-film transistors. IEEE Trans. Electron Dev., 2007, 54(9), 2362-2368.
[http://dx.doi.org/10.1109/TED.2007.902056]
[4]
Srivastava, V.M.; Singh, G. MOSFET Technologies For Double-Pole Four Throw Radio Frequency Switch; Springer International Publishing: Switzerland, 2013.
[5]
Srivastava, V.M.; Yadav, K.S.; Singh, G. Design and performance analysis of cylindrical surrounding double-gate MOSFET for RF switch. Microelectronics J., 2011, 42(10), 1124-1135.
[http://dx.doi.org/10.1016/j.mejo.2011.07.003]
[6]
Wang, W. High-mobility pentacene thin-film transistors with copolymer-gate dielectric. Microelectronics J., 2007, 38(1), 27-30.
[http://dx.doi.org/10.1016/j.mejo.2006.10.010]
[7]
Karim, K.S.; Servati, P.; Nathan, A. High voltage amorphous silicon TFT for use in large area applications. Microelectronics J., 2004, 35(3), 311-315.
[http://dx.doi.org/10.1016/S0026-2692(03)00196-4]
[8]
Maduagwu, U.A.; Srivastava, V.M. Assessment of quantum scaling length model for cylindrical surrounding double-gate (CSDG) MOSFET. J. of Micro and Nano Systems, 2021, 13(4), 467-472.
[http://dx.doi.org/10.2174/1876402913666210222141301]
[9]
Dargar, A.; Srivastava, V.M. Thickness modeling of short-channel cylindrical surrounding double-gate MOSFET at strong inversion using depletion depth analysis. J. of Micro and Nano Systems, 2021, 13(3), 319-325.
[http://dx.doi.org/10.2174/1876402912666200831175936]
[10]
Shih, C.W.; Chin, A.; Lu, C.F.; Su, W.F. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals. Sci. Rep., 2016, 6, 19023.
[http://dx.doi.org/10.1038/srep19023] [PMID: 26744240]
[11]
Dargar, S.K.; Srivastava, V.M. Design of double-gate tri-active layer channel based IGZO thin-film transistor for improved performance of ultra-low-power RFID rectifier. IEEE Access, 2020, 8, 194652-194662.
[http://dx.doi.org/10.1109/ACCESS.2020.3034031]
[12]
Yabuta, H. Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits. Appl. Phys. Lett., 2010, 97(7), 30-33.
[http://dx.doi.org/10.1063/1.3478213]
[13]
Yao, R.H.; Zhang, L.R.; Zhou, L.; Wu, W.J. A new compensation pixel circuit with all-p-type TFTs for AMOLED displays. Displays, 2013, 34(3), 187-191.
[http://dx.doi.org/10.1016/j.displa.2013.03.002]
[14]
Shih, C.W.; Chin, A.; Lu, C.F.; Su, W.F. Remarkably high hole mobility metal-oxide thin-film transistors. Sci. Rep., 2018, 8(1), 889.
[http://dx.doi.org/10.1038/s41598-017-17066-x] [PMID: 29343726]
[15]
Gowd, A.V.; Thangavel, R. Hydrothermal growth of undoped and Zn-doped SnO nanocrystals: A frequency dependence of AC conductivity and dielectric response studies. Semiconductors, 2020, 54(1), 73-76.
[http://dx.doi.org/10.1134/S1063782620010261]
[16]
Pattanasattayavong, P.; Thomas, S.; Adamopoulos, G.; McLachlan, M.A.; Anthopoulos, T.D. P-channel thin-film transistors based on spray-coated Cu2O films. Appl. Phys. Lett., 2013, 102, 163505.
[http://dx.doi.org/10.1063/1.4803085]
[17]
Matsuzaki, K.; Nomura, K.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H. Epitaxial growth of high mobility Cu2O thin films and application to p -channel thin film transistor. Appl. Phys. Lett., 2008, 93(20), 3-6.
[http://dx.doi.org/10.1063/1.3026539]
[18]
Jiang, J.; Wang, X.; Zhang, Q.; Li, J.; Zhang, X.X. Thermal oxidation of Ni films for p-type thin-film transistors. Phys. Chem. Chem. Phys., 2013, 15(18), 6875-6878.
[http://dx.doi.org/10.1039/c3cp50197c] [PMID: 23549484]
[19]
Lin, T.; Li, X.; Jang, J. High performance p-type NiOx thin-film transistor by Sn doping. Appl. Phys. Lett., 2016, 108, 233503.
[http://dx.doi.org/10.1063/1.4953222]
[20]
Xiao, C.; Wang, F.; Wang, Y.; Yang, S.A.; Jiang, J.; Yang, M.; Lu, Y.; Wang, S.; Feng, Y. Layer-dependent semiconductor-metal transition of SnO/Si(001) heterostructure and device application. Sci. Rep., 2017, 7(1), 2570.
[http://dx.doi.org/10.1038/s41598-017-02832-8] [PMID: 28566756]
[21]
Liang, L.Y. Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities. Appl. Phys. Lett., 2012, 100, 263502.
[http://dx.doi.org/10.1063/1.4731271]
[22]
Luo, H.; Liang, L.; Cao, H.; Dai, M.; Lu, Y.; Wang, M. Control of ambipolar transport in SnO thin-film transistors by back-channel surface passivation for high performance complementary-like inverters. ACS Appl. Mater. Interfaces, 2015, 7(31), 17023-17031.
[http://dx.doi.org/10.1021/acsami.5b02964] [PMID: 26189702]
[23]
Ogo, Y. P-channel thin-film transistor using p -type oxide semiconductor, SnO. Appl. Phys. Lett., 2008, 93(3), 1-4.
[http://dx.doi.org/10.1063/1.2964197]
[24]
Caraveo-Frescas, J.A.; Nayak, P.K.; Al-Jawhari, H.A.; Granato, D.B.; Schwingenschlögl, U.; Alshareef, H.N. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano, 2013, 7(6), 5160-5167.
[http://dx.doi.org/10.1021/nn400852r] [PMID: 23668750]
[25]
Chao, I.T.; Myeonghun, U.; Song, S.H.; Lee, J.H.; Kwon, H.I. Effects of air-annealing on the electrical properties of p-type tin monoxide thin-film transistors. Semicond. Sci. Technol., 2014, 29, 045001.
[http://dx.doi.org/10.1088/0268-1242/29/4/045001]
[26]
Hsu, P.C. Preparation of p-type SnO thin films and transistors by sputtering with robust Sn/SnO2 mixed target in hydrogen-containing atmosphere. Thin Solid Films, 2015, 585(1), 50-56.
[http://dx.doi.org/10.1016/j.tsf.2015.04.034]
[27]
Akkili, V.G.; Thangavel, R.; Srivastava, V.M. Improvement of CuO thin film properties for high mobility p-channel TFT applications. 44th Int. Spring Seminar on Electronics Technology, 2021, pp. 1-5.
[28]
Akkili, V.G.; Thangavel, R.; Srivastava, V.M. Analysis on the influence of dielectrics and channel defects on the electrical performance of p-channel TFTs for CMOS applications. 3rd IEEE Latin American Electron Devices Conference, Mexico 2021, pp. 1-4.
[29]
Uchechukwu, M.A.; Srivastava, V.M. Channel length scaling pattern for cylindrical surrounding double-gate (CSDG) MOSFET. IEEE Access, 2020, 8, 121204-121210.
[http://dx.doi.org/10.1109/ACCESS.2020.3006705]
[30]
Zhong, C.W.; Lin, H.C.; Tsai, J.R.; Liu, K.C.; Huang, T.Y. Impact of gate dielectrics and oxygen annealing on tin-oxide thin-film transistors. Jpn. J. Appl. Phys., 2016, 55(4S), 04EG02.
[http://dx.doi.org/10.7567/JJAP.55.04EG02]
[31]
Rajshekar, K. Effect of plasma fluorination in p-type SnO TFTs: Experiments, modeling, and simulation. IEEE Trans. Electron Dev., 2019, 66(3), 1314-1321.
[http://dx.doi.org/10.1109/TED.2019.2895042]
[32]
Li, X.; Liang, L.; Cao, H.; Qin, R.; Zhang, H.; Gao, J.; Zhuge, F. Determination of some basic physical parameters of SnO based on SnO/Si pn heterojunctions. Appl. Phys. Lett., 2015, 106, 132102.
[http://dx.doi.org/10.1063/1.4916664]
[33]
Guo, W. Microstructure, optical, and electrical properties of p -type SnO thin films. Appl. Phys. Lett., 2010, 96(4), 12-15.
[http://dx.doi.org/10.1063/1.3277153]
[34]
Saji, K.J.; Subbaiah, Y.P.V.; Tian, K.; Tiwari, A. P-type SnO thin films and SnO/ZnO heterostructures for all-oxide electronic and optoelectronic device applications. Thin Solid Films, 2016, 605, 193-201.
[http://dx.doi.org/10.1016/j.tsf.2015.09.026]
[35]
Lee, H. Fabrication of p-type SnO thin-film transistors by sputtering with practical metal electrodes fabrication of p-type SnO thinfilm transistors by sputtering with practical metal electrodes Jpn. J. Appl. Phys., 2013, 52(5S1), 05DC07.
[36]
Chiu, I.C.; Cheng, I.C. Gate-bias stress stability of p-Type SnO thin-film transistors fabricated by RF-sputtering. IEEE Electron Device Lett., 2014, 35(1), 90-92.
[http://dx.doi.org/10.1109/LED.2013.2291896]
[37]
Shih, C.W.; Chin, A. New material transistor with record-high field-effect mobility among wide-band-gap semiconductors. ACS Appl. Mater. Interfaces, 2016, 8(30), 19187-19191.
[http://dx.doi.org/10.1021/acsami.6b04332] [PMID: 27454211]
[38]
Chen, Z.; Lan, L.; Peng, J. Approaching subthreshold-swing limit for thin-film transistors by using a giant-dielectric-constant gate dielectric. RSC Advances, 2019, 9(46), 27117-27124.
[http://dx.doi.org/10.1039/C9RA03574E]
[39]
Avis, C.; Hwang, H.R.; Jang, J. Effect of channel layer thickness on the performance of indium-zinc-tin oxide thin film transistors manufactured by inkjet printing. ACS Appl. Mater. Interfaces, 2014, 6(14), 10941-10945.
[http://dx.doi.org/10.1021/am501153w] [PMID: 24877653]
[40]
Ding, X. Influence of the InGaZnO channel layer thickness on the performance of thin film transistors. Superlattices Microstruct., 2013, 63, 70-78.
[http://dx.doi.org/10.1016/j.spmi.2013.08.017]
[41]
Qiang, L.; Liu, W.; Pei, Y.; Wang, G.; Yao, R. Trap states extraction of p-channel SnO thin-film transistors based on percolation and multiple trapping carrier conductions. Solid-State Electron., 2017, 129, 163-167.
[http://dx.doi.org/10.1016/j.sse.2016.11.010]
[42]
Li, C.S.; Li, L.N.; Wu, Y.L.; Ong, B.S.; Loutfy, R.O. Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors. J. Mater. Chem., 2009, 19(11), 1626-1634.
[http://dx.doi.org/10.1039/b812047a]
[43]
Rajshekar, K.; Hsu, H.H.; Kumar, K.U.M.; Sathyanarayanan, P.; Velmurugan, V.; Cheng, C.H.; Kannadassan, D. Physical modeling of p-type fluorinated al-doped tin-oxide thin film transistors. IEEE J. Electron Devices Soc., 2020, 8, 948-958.
[http://dx.doi.org/10.1109/JEDS.2020.3018463]
[44]
Chen, P.C.; Chiu, Y.C.; Zheng, Z.W.; Lin, M.H.; Cheng, C.H.; Liou, G.L.; Hsu, H.H.; Kao, H.L. Fast low-temperature plasma process for the application of flexible tin-oxide-channel thin film transistors. IEEE Trans. NanoTechnol., 2017, 16(5), 876-879.
[http://dx.doi.org/10.1109/TNANO.2017.2719946]
[45]
Maeng, W.; Lee, S.H.; Kwon, J.D.; Park, J.; Park, J.S. Atomic layer deposited p-type copper oxide thin films and the associated thin film transistor properties. Ceram. Int., 2016, 42(4), 5517-5522.
[http://dx.doi.org/10.1016/j.ceramint.2015.12.109]
[46]
Jiang, J.; Wang, X.; Zhang, Q.; Li, J.; Zhang, X.X. Thermal oxidation of Ni films for p-type thin-film transistors. Phys. Chem. Chem. Phys., 2013, 15(18), 6875-6878.
[http://dx.doi.org/10.1039/c3cp50197c] [PMID: 23549484]
[47]
Powell, M.J. The physics of amorphous-silicon thin-film transistors. IEEE Trans. Electron Dev., 1989, 36(12), 2753-2763.
[http://dx.doi.org/10.1109/16.40933]
[48]
Nathan, A.; Lee, S.; Jeon, S.; Robertson, J. Amorphous oxide semiconductor TFTs for displays and imaging. IEEE/OSA. J. Disp. Technol., 2014, 10(11), 917-927.
[http://dx.doi.org/10.1109/JDT.2013.2292580]
[49]
Yu, E.K.H.; Jun, S.; Kim, D.H.; Kanicki, J. Density of states of amorphous In-Ga-Zn-O from electrical and optical characterization. J. Appl. Phys., 2014, 116, 154505.
[http://dx.doi.org/10.1063/1.4898567]
[50]
Dominguez, M.A.; Alcantara, S.; Soto, S. Physically-based simulation of zinc oxide thin-film transistors: Contact resistance contribution on density of states. Solid-State Electron., 2016, 120, 41-46.
[http://dx.doi.org/10.1016/j.sse.2016.03.006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy