Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

General Research Article

Characterization of AlInN/GaN based HEMT for Radio Frequency Applications

Author(s): Santashraya Prasad and Aminul Islam*

Volume 15, Issue 1, 2023

Published on: 15 June, 2022

Page: [55 - 64] Pages: 10

DOI: 10.2174/1876402914666220510112625

Price: $65

conference banner
Abstract

Background: The Si- and GaAs-based devices are not suitable for very high-speed and high-power applications. Therefore, GaN-based devices have emerged as a potential contender. Further improvement in the device characteristics using appropriate mole fractions of Al and InN in the barrier layer of AlInN has become inevitable.

Objective: To design AlInN/GaN HEMT and present its salient features.

Methods: The design method for the proposed AlInN/GaN HEMT includes a selection of materials, optimization of mole fraction in AlInN barrier layer, optimization of gate oxide thickness, optimization of device dimensions, and doping concentration. The fabrication steps necessary for the AlInN/GaN HEMT are also explained in the paper. Analysis of the structure has been carried out using the Silvaco TCAD tool.

Results: All the obtained results have revealed that the proposed device can operate up to the cut-off frequency of 102 GHz and a maximum oscillation frequency of 230 GHz, which are suitable for radiofrequency applications. The minimum noise figure and maximum transducer power gain (~18 dB) achieved by the proposed device is quite acceptable.

Conclusion: The use of the AlN spacer layer has improved the AlInN film quality and mitigates strain at the heterointerface. Moreover, it reduces the Coulomb attraction between ions in the supply layer and electrons in the channel layer thereby improving carrier mobility. Usage of a SiO2 layer between the gate and AlInN barrier layer has decreased the gate leakage current. This has reduced the subthreshold slope and increased ON/OFF current ratio (~1010). The proposed Si3N4 passivated HEMT offers a breakdown voltage of ~1395 V.

Keywords: Passivation, breakdown, subthreshold, gate leakage, stability, cut-off frequency (fT), fabrication, minimum noise figure (NFMIN).

[1]
Khan, M.A.; Chen, Q.; Yang, J.W.; Shur, M.S.; Dermott, B.T.; Higgins, J.A. Microwave operation of GaN/AlGaN-doped channel heterostructure field-effect transistors. IEEE Electron Device Lett., 1996, 17(7), 325-327.
[http://dx.doi.org/10.1109/55.506356]
[2]
Bhatnagar, M.; Baliga, B.J. Comparison of 6H-SiC, 3C-SiC, and Si for power devices. IEEE Trans. Electron Dev., 1993, 40(3), 645-655.
[http://dx.doi.org/10.1109/16.199372]
[3]
Prasad, S.; Dwivedi, A.K.; Islam, A. Characterization of Al-GaN/GaN and AlGaN/AlN/GaN HEMTs in terms of mobility and subthreshold slope. J. Comput. Electron., 2015, 15(1), 172-180.
[http://dx.doi.org/10.1007/s10825-015-0751-8]
[4]
Egawa, T.; Guang, Y.Z.; Ishikawa, H.; Umeno, H.; Jimbo, T. Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire. IEEE Trans. Electron Dev., 2001, 48(3), 603-608.
[http://dx.doi.org/10.1109/16.906458]
[5]
Dubey, S.K.; Sinha, K.; Sahu, P.K.; Ranjan, R.; Islam, A. Characterization of InP-based pseudomorphic HEMT with T-gate. Microsyst. Technol., 2020, 26(7), 2183-2191.
[http://dx.doi.org/10.1007/s00542-019-04491-3]
[6]
Dubey, S.K.; Mishra, M.; Islam, A. Characterization of Al-GaN/GaN based HEMT for low noise and high frequency application. International Journal of Numerical Modelling: Electronic Networks, Devices, and Fields, 2021, 1-12.
[http://dx.doi.org/10.1002/jnm.2932]
[7]
Zhang, Z.; Yu, G.; Zhang, X.; Deng, X.; Li, S.; Fan, Y.; Sun, S.; Song, L.; Tan, S.; Wu, D.; Li, W.; Huang, W.; Fu, K.; Cai, Y.; Sun, Q.; Zhang, B. Studies on high-voltage GaN-on-Si MIS-HEMTs using LPCVD Si3N4as gate dielectric and passivation layer. IEEE Trans. Electron Dev., 2016, 63(2), 731-738.
[http://dx.doi.org/10.1109/TED.2015.2510445]
[8]
Charfeddine, M.; Belmabrouk, H.; Zaidi, M.A.; Maaref, H. 2-D Theoretical model for current-voltage characteristics in Al-GaN/GaN HEMT’s. J. Modern Phys., 2012, 3(8), 881-886.
[http://dx.doi.org/10.4236/jmp.38115]
[9]
Fletcher, A.S.A.; Nirmal, D. A survey of Gallium Nitride HEMT for RF and high power applications. Superlattices Microstruct., 2017, 109, 519-537.
[http://dx.doi.org/10.1016/j.spmi.2017.05.042]
[10]
Micovic, M. High frequency GaN HEMTs for RF MMIC applications. 2016 IEEE International Electron Devices Meeting (IEDM), 2016.
[http://dx.doi.org/10.1109/IEDM.2016.7838337]
[11]
Mishra, U.K.; Parikh, P.; Yi-Feng, W. AlGaN/GaN HEMTs an overview of device operation and applications. Proc. IEEE, 2002, 90(6), 1022-1031.
[http://dx.doi.org/10.1109/JPROC.2002.1021567]
[12]
Goyal, N.; Fjeldly, T.A. Determination of surface donor states properties and modeling of InAlN/AlN/GaN heterostructures. IEEE Trans. Electron Dev., 2016, 63(2), 881-885.
[http://dx.doi.org/10.1109/TED.2015.2510427]
[13]
Amarnath, G.; Srinivas, G.; Lenka, T.R. Electrical characteristics and 2DEG properties of passivated InAlN/AlN/GaN HEMT. 2015 International Conference on Computer Communication and Informatics (ICCCI), 2015, pp. 1-4.
[http://dx.doi.org/10.1109/ICCCI.2015.7218142]
[14]
Sharbati, S.; Gharibshahian, I.; Ebel, T.; Orouji, A.A.; Franke, WT. Analytical model for two-dimensional electron gas charge density in recessed-gate GaN high-electron-mobility transistors. J. Electron. Mater., 2021, 50(7), 3923-3929.
[http://dx.doi.org/10.1007/s11664-021-08842-7]
[15]
Amarnath, G.; Srinivas, G.; Lenka, T.R. 374GHz cut-off frequency of ultra-thin InAlN/AlN/GaN MIS HEMT. 2015 International Conference on Computer Communication and Informatics (ICCCI), 2015, pp. 1-4.
[http://dx.doi.org/10.1109/ICCCI.2015.7218141]
[16]
Roy, P.; Jawanpuria, S. 2015 Fifth International Conference on Communication Systems and Network Technologies, 2015, pp. 786-788.
[http://dx.doi.org/10.1109/CSNT.2015.103]
[17]
Gonschorek, M.; Carlin, J-F.; Feltin, E.; Py, M.A.; Grandjean, N. High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures. Appl. Phys. Lett., 2006, 89(6), 062106.
[http://dx.doi.org/10.1063/1.2335390]
[18]
Chung, J.W.; Roberts, J.C.; Piner, E.L.; Palacios, T. Effect of gate leakage in the subthreshold characteristics of AlGaN/GaN HEMTs. IEEE Electron Device Lett., 2008, 29(11), 1196-1198.
[http://dx.doi.org/10.1109/LED.2008.2005257]
[19]
Chung, J.W.; Zhao, X.; Palacios, T. Estimation of trap density in AlGaN/GaN HEMTs from subthreshold slope study. 2007 65th Annual Device Research Conference, 2007, pp. 111-112.
[http://dx.doi.org/10.1109/DRC.2007.4373674]
[20]
Deguchi, T.; Kikuchi, T.; Arai, M.; Yamasaki, K.; Egawa, T. High on/off current ratio p-InGaN/AlGaN/GaN HEMTs. IEEE Electron Device Lett., 2012, 33(9), 1249-1251.
[http://dx.doi.org/10.1109/LED.2012.2204854]
[21]
Ohi, K.; Hashizume, T. Drain current stability and controllability of threshold voltage and subthreshold current in a multi-mesa-channel AlGaN/GaN high electron mobility transistor. Jpn. J. Appl. Phys., 2009, 48(8), 081002.
[http://dx.doi.org/10.1143/JJAP.48.081002]
[22]
Then, H.W. Experimental observation and physics of “negative” capacitance and steeper than 40mV/decade subthreshold swing in Al0.83In0.17N/AlN/GaN MOS-HEMT on SiC substrate. 2013 IEEE International Electron Devices Meeting, 2013.
[http://dx.doi.org/10.1109/IEDM.2013.6724709]
[23]
Ohi, S.; Kakegami, T.; Tokuda, H.; Kuzuhara, M. Effect of passivation films on DC characteristics of AlGaN/GaN HEMT 2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), 2014, pp. 1-2.
[http://dx.doi.org/10.1109/IMFEDK.2014.6867065]
[24]
Iucolano, F.; Miccoli, C. Influence of properties of Si3N4 passivation layer on the electrical characteristics of Normally-off Al-GaN/GaN HEMT. The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications, 2013, pp. 162-165.
[25]
Shrestha, N.M.; Li, Y.; Chang, E.Y. Optimal design of the multiple-apertures-GaN-based vertical HEMTs with SiO2 current blocking layer. J. Comput. Electron., 2016, 15(1), 154-162.
[http://dx.doi.org/10.1007/s10825-015-0738-5]
[26]
Palacios, T.; Rajan, S.; Chakraborty, A.; Heikman, S.; Keller, S.; DenBaars, S.P.; Mishra, U.K. Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs. IEEE Trans. Electron Dev., 2005, 52(10), 2117-2123.
[http://dx.doi.org/10.1109/TED.2005.856180]
[27]
Kuzmik, J. Power electronics on InAlN/(In)GaN: Prospect for a record performance. IEEE Electron Device Lett., 2001, 22(11), 510-512.
[http://dx.doi.org/10.1109/55.962646]
[28]
Jardel, O.; Callet, G.; Dufraisse, J.; Piazza, M.; Sarazin, N.; Chartier, E.; Oualli, M.; Aubry, R.; Reveyrand, T.; Jacquet, J-C.; Di Forte Poisson, M-A.; Morvan, E.; Piotrowicz, S.; Delage, S.L. Electrical performances of AlInN/GaN HEMTs A comparison with AlGaN/GaN HEMTs with similar technological process. Int. J. Microw. Wirel. Technol., 2011, 3(3), 301-309.
[http://dx.doi.org/10.1017/S1759078711000419]
[29]
Jin, D.; del Alamo, J.A. Methodology for the Study of Dynamic ON-Resistance in High-Voltage GaN Field-Effect Transistors. IEEE Trans. Electron Dev., 2013, 60(10), 3190-3196.
[http://dx.doi.org/10.1109/TED.2013.2274477]
[30]
Gaudenzio, M.; Matteo, M.; Enrico, Z. Breakdown mechanisms in AlGaN/GaN HEMTs: An overview. Japanese Journal of Applied Physics, 2014, 53(10), 100211.
[http://dx.doi.org/10.7567/JJAP.53.100211]
[31]
Dora, Y.; Chakraborty, A.; Mccarthy, L.; Keller, S.; Denbaars, S.P.; Mishra, U.K. High breakdown voltage achieved on Al-GaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Lett., 2006, 27(9), 713-715.
[http://dx.doi.org/10.1109/LED.2006.881020]
[32]
Ishida, M.; Ueda, T.; Tanaka, T.; Ueda, D. GaN on Si technologies for power switching devices. IEEE Trans. Electron Dev., 2013, 60(10), 3053-3059.
[http://dx.doi.org/10.1109/TED.2013.2268577]
[33]
Zhang, N. High voltage GaN HEMTs with low on-resistance for switching applications; University of California: Ph. D. dissertation. Santa Barbara, CA, 2002.
[34]
Binari, S.C.; Klein, P.B.; Kazior, T.E. Trapping effects in GaN and SiC microwave FETs. Proc. IEEE, 2002, 90(6), 1048-1058.
[http://dx.doi.org/10.1109/JPROC.2002.1021569]
[35]
Silvaco TCAD Software. Available from: http://www.silvaco. com
[36]
Ardaraviius, L.; Ramonas, M.; Liberis, J.; Kiprijanovi, O.; Matulionis, A.; Xie, J.; Wu, M.; Leach, J.H.; Morkoc, H. Electron drift velocity in lattice-matched AlInN/AlN/GaN channel at high electric fields. J. Appl. Phys., 2009, 106(7), 073708.
[http://dx.doi.org/10.1063/1.3236569]
[37]
Braslau, N. Alloyed ohmic contacts to GaAs. J. Vac. Sci. Technol., 1981, 19(3), 803-807.
[http://dx.doi.org/10.1116/1.571152]
[38]
Akis, R.; Ayubi-Moak, J.S.; Faralli, N.; Ferry, D.K.; Goodnick, S.M.; Saraniti, M. The upper limit of the cut-off frequency in ultrashort gate-length InGaAs/InAlAs HEMTs: A new definition of effective gate length. IEEE Electron Device Lett., 2008, 29(4), 306-308.
[http://dx.doi.org/10.1109/LED.2008.918391]
[39]
Nanjo, T.; Motoya, T.; Imai, A.; Suzuki, Y.; Shiozawa, K.; Suita, M.; Oishi, T.; Abe, Y.; Yagyu, E.; Yoshiara, K.; Tokuda, Y. Enhancement of Drain current by an AlN Spacer Layer Insertion in AlGaN/GaN high-electron-mobility transistors with Si-ion-implanted source/drain contacts. Jpn. J. Appl. Phys., 2011, 50(6R), 064101.
[http://dx.doi.org/10.7567/JJAP.50.064101]
[40]
Fobelets, K.; Borghs, G. Influence of the undoped spacer layer thickness on the DC characteristics of n-type GaAs/AlAs MESFETs. Semicond. Sci. Technol., 1998, 13(3), 318-321.
[http://dx.doi.org/10.1088/0268-1242/13/3/012]
[41]
Neamen, D.A. Semiconductor Physics and Devices: Basic Principles, 4th ed; McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc.: 1221 Avenue of the Americas, New York , NY 10020, 2012, pp. 602-609.
[42]
Zakariya, K.; Mohamed, K. Performance of 15nm Gate length In0.17Al0.83N/GaN HEMT used Simulation SILVACO software. Proceedings of the First International Conference on Nanoelectronics, Communications and Renewable Energy, 2013, pp. 385-389.
[43]
Yadav, Y.K.; Upadhyay, B.B.; Meer, M.; Ganguly, S.; Saha, D. Reduced contact resistance and improved transistor performance by surface plasma treatment on ohmic regions in AlGaN/GaN HEMT heterostructures. Physica Status Solidi (a). Phys. Status Solidi., A Appl. Mater. Sci., 2017, 215(9), 1700656.
[http://dx.doi.org/10.1002/pssa.201700656]
[44]
Sinha, K.; Dubey, K.S.; Islam, A. Study of high Al fraction in AlGaN barrier HEMT and GaN and InGaN channel HEMT with In0.17Al0.83N barrier. Microsyst. Technol., 2020, 26(7), 2145-2158.
[http://dx.doi.org/10.1007/s00542-019-04466-4]
[45]
Balmer, R.S.; Hilton, K.P.; Nash, K.J.; Uren, M.J.; Wallis, D.J.; Lee, D.; Martin, T. Analysis of thin AlN carrier exclusion layers in AlGaN/GaN microwave heterojunction field-effect transistors. Semicond. Sci. Technol., 2004, 19(6), L65-L67.
[http://dx.doi.org/10.1088/0268-1242/19/6/L02]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy