Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Evolving Era of “Sponges”: Nanosponges as a Versatile Nanocarrier for the Effective Skin Delivery of Drugs

Author(s): Prashansha Mullick, Aswathi R. Hegde, Divya Gopalan, Abhijeet Pandey, Krishnadas Nandakumar, Sanyog Jain, Gowthamarajan Kuppusamy and Srinivas Mutalik*

Volume 28, Issue 23, 2022

Published on: 05 July, 2022

Page: [1885 - 1896] Pages: 12

DOI: 10.2174/1381612828666220518090431

Price: $65

Abstract

Background: Nanosponge, as a carrier for the skin delivery system for drugs, plays a vital role. It not only serves to administer the drug to the targeted layer of skin but also increases the drug retention and deposition on the skin.

Objective: In this review, we aim to highlight the effects of several processes and formulation variables prompting the characteristics of various nanosponges for the delivery of drugs into/ across the skin.

Methods: In the present review article, the overall introduction of nanosponges, their preparation, characteristic features, advantages, disadvantages, and factors affecting their preparation, are covered. Furthermore, an elaborative description of nanosponges for skin delivery and its toxicological perspective with some referential examples of nanosponge drugs has also been deliberated here.

Results: Factors associated with the formation of nanosponges can directly or indirectly affect its efficacy in the skin delivery of drugs. These nanoforms are efficient in delivering the drugs which possess lower aqueous solubility, therefore, the aqueous solubility of drugs possessing a narrow therapeutic window can easily be enhanced. It also helps in achieving targeted drug delivery, controlled release of drugs, increases bioavailability, reduces drug toxicity, decreases drug degradation, and many more.

Conclusion: Nanosponges have been identified as potential drug delivery carriers into as well as across skin. Delivery of biologics such as vaccines, enzymes, peptides, proteins, and antibodies, is also gaining attention in the recent past.

Keywords: Nanosponges, skin delivery, transdermal, targeted delivery, controlled release, sustained release.

[1]
Kapileshwari GR, Barve AR, Kumar L, Bhide PJ, Joshi M, Shirodkar RK. Novel drug delivery system of luliconazole - Formulation and characterisation. J Drug Deliv Sci Technol 2020; 55: 101302.
[http://dx.doi.org/10.1016/j.jddst.2019.101302]
[2]
Krishna AVM, Gowda VDP, Karki R. Formulation and evaluation of nanosponges loaded bifonazole for fungal infection. Antiinfect Agents 2021; 19(1): 64-75.
[http://dx.doi.org/10.2174/2211352518999200711164437]
[3]
Bhowmik H, Venkatesh DN, Kuila A, Kumar KH. Nanosponges: A review. Int J Appl Pharm 2018; pp. 1-5.
[http://dx.doi.org/10.22159/ijap.2018v10i4.25026]
[4]
Selvamuthukumar S, Anandam S, Krishnamoorthy K, Rajappan M. Nanosponges: A novel class of drug delivery system--review. J Pharm Pharm Sci 2012; 15(1): 103-11.
[http://dx.doi.org/10.18433/J3K308] [PMID: 22365092]
[5]
Kumar S, Prasad M, Rao R. Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: Formulation, physicochemical characterization, antipsoriatic potential and biochemical estimation. Mater Sci Eng C 2021; 119: 111605.
[http://dx.doi.org/10.1016/j.msec.2020.111605] [PMID: 33321649]
[6]
Patel EK, Oswal RJ. Nanosponge and micro sponges: A novel drug delivery system. Int J Res Pharm Chem 2012; 2(2): 2281-781.
[7]
Sujitha YS, Muzib YI. Formulation and optimization of quercetin loaded nanosponges topical gel: Ex vivo, pharmacodynamic and pharmacokinetic studies. Int J Appl Pharm 2019; 11(5): 156-65.
[http://dx.doi.org/10.22159/ijap.2019v11i5.32850]
[8]
Da Silva FLO, Marques MBF, Kato KC, Carneiro G. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin Drug Discov 2020; 15(7): 853-64.
[http://dx.doi.org/10.1080/17460441.2020.1750591] [PMID: 32290727]
[9]
Mutalik S, Udupa N. Effect of some penetration enhancers on the permeation of glibenclamide and glipizide through mouse skin. Pharmazie 2003; 58(12): 891-4.
[PMID: 14703968]
[10]
Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym 2017; 173: 37-49.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.086] [PMID: 28732878]
[11]
Khan A, Khan A, Bhargav E, Rajesh K, Sowmya C. Nanosponges: a new approach for drug targetting. Int J Adv Pharm Res 2016; 7: 381-96.
[12]
Hammer GD, McPhee SJ. Introduction. In: Hammer GD, McPhee SJ, Eds. Pathophysiology of disease: An Introduction to Clinical Medicine. 8th ed. New York, NY: McGraw-Hill Education New York 2019.
[13]
Hay R, Bendeck SE, Chen S, et al. Skin diseases. In: Disease Control Priorities in Developing Countries. 2nd ed. By Oxford University Press: New York 2006.
[14]
Webster GF. Common skin disorders in the elderly. Clin Cornerstone 2001; 4(1): 39-44.
[http://dx.doi.org/10.1016/S1098-3597(01)90006-7] [PMID: 12739321]
[15]
Argenziano M, Haimhoffer A, Bastiancich C, et al. In vitro enhanced skin permeation and retention of imiquimod loaded in β-cyclodextrin nanosponge hydrogel. Pharmaceutics 2019; 11(3): 138.
[http://dx.doi.org/10.3390/pharmaceutics11030138] [PMID: 30897794]
[16]
Hegde AR, Rewatkar PV, Manikkath J, Tupally K, Parekh HS, Mutalik S. Peptide dendrimer-conjugates of ketoprofen: Synthesis and ex vivo and in vivo evaluations of passive diffusion, sonophoresis and iontophoresis for skin delivery. Eur J Pharm Sci 2017; 102: 237-49.
[http://dx.doi.org/10.1016/j.ejps.2017.03.009] [PMID: 28285173]
[17]
Mutalik S, Parekh HS, Anissimov YG, Grice JE, Roberts MS. Iontophoresis-mediated transdermal permeation of peptide dendrimers across human epidermis. Skin Pharmacol Physiol 2013; 26(3): 127-38.
[http://dx.doi.org/10.1159/000348469] [PMID: 23549205]
[18]
Mulla K, Shabaraya A, Aithal PA. Formulation and evaluation of nanosponge based gel preparation of dapsone. National Conference On Synthetic, Spectroscopic and Structural Chemistry (SSSC-2019) 2019.
[19]
Flohr C, Hay R. Putting the burden of skin diseases on the global map. Br J Dermatol 2021; 184(2): 189-90.
[http://dx.doi.org/10.1111/bjd.19704] [PMID: 33544440]
[20]
Nutten S. Atopic dermatitis: Global epidemiology and risk factors. Ann Nutr Metab 2015; 66(Suppl. 1): 8-16.
[http://dx.doi.org/10.1159/000370220] [PMID: 25925336]
[21]
Parisi R, Symmons DP, Griffiths CE, Ashcroft DM. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J Invest Dermatol 2013; 133(2): 377-85.
[http://dx.doi.org/10.1038/jid.2012.339] [PMID: 23014338]
[22]
Zuberbier T, Balke M, Worm M, Edenharter G, Maurer M. Epidemiology of urticaria: A representative cross-sectional population survey. Clin Exp Dermatol 2010; 35(8): 869-73.
[http://dx.doi.org/10.1111/j.1365-2230.2010.03840.x] [PMID: 20456386]
[23]
Leader B, Carr CW, Chen SC. Pruritus epidemiology and quality of life. Pharmacology of Itch 2015; 15-38.
[http://dx.doi.org/10.1007/978-3-662-44605-8_2]
[24]
Tan JK, Bhate K. A global perspective on the epidemiology of acne. Br J Dermatol 2015; 172(Suppl. 1): 3-12.
[http://dx.doi.org/10.1111/bjd.13462] [PMID: 25597339]
[25]
Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm 2013; 63(3): 335-58.
[http://dx.doi.org/10.2478/acph-2013-0021] [PMID: 24152895]
[26]
Jagtap SR, Bhusnure OG, Mujewar IN, Gholve SB, Panchabai VB. Nanosponges: a novel trend for targeted drug delivery. J Drug Deliv Ther 2019; 9(3-s): 931-8.
[27]
Ghurghure S, Pathan M, Surwase P. Nanosponges: A novel approach for targeted drug delivery system. Int J Chem Stud 2018; 2581-348.
[28]
Bano N, Ray S, Shukla T, et al. Multifunctional nanosponges for the treatment of various diseases: A review. Asian J Pharm Pharmacol 2019; 5(2): 235-48.
[http://dx.doi.org/10.31024/ajpp.2019.5.2.4]
[29]
Jansook P, Ogawa N, Loftsson T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int J Pharm 2018; 535(1-2): 272-84.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.018] [PMID: 29138045]
[30]
Osmani RA, Kulkarni P, Manjunatha S, Vaghela R, Bhosale R. Cyclodextrin nanosponge-based systems in drug delivery and nanotherapeutics: Current progress and future prospects. Org Mater Smart Nanocarriers Drug Deliv 2018; 659-717.
[31]
Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N. Cyclodextrins, from molecules to applications. Environ Chem Lett 2018; 16(4): 1361-75.
[http://dx.doi.org/10.1007/s10311-018-0763-2]
[32]
Frank DW, Gray JE, Weaver RN. Cyclodextrin nephrosis in the rat. Am J Pathol 1976; 83(2): 367-82.
[PMID: 1266946]
[33]
Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: Past, present and future. Nat Rev Drug Discov 2004; 3(12): 1023-35.
[http://dx.doi.org/10.1038/nrd1576] [PMID: 15573101]
[34]
Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech 2005; 6(2): E329-57.
[http://dx.doi.org/10.1208/pt060243] [PMID: 16353992]
[35]
Darandale SS, Vavia PR. Cyclodextrin-based nanosponges of curcumin: Formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem 2013; 75(3–4): 315-22.
[http://dx.doi.org/10.1007/s10847-012-0186-9]
[36]
Singireddy A, Subramanian S. Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation. Particul Sci Technol 2016; 34(3): 341-6.
[http://dx.doi.org/10.1080/02726351.2015.1081658]
[37]
Dora CP, Trotta F, Kushwah V, et al. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr Polym 2016; 137: 339-49.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.080] [PMID: 26686138]
[38]
Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Roggero C, Vallero R. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. EP1632503A1 2006.
[39]
Ferro M, Castiglione F, Punta C, et al. Anomalous diffusion of Ibuprofen in cyclodextrin nanosponge hydrogels: An HRMAS NMR study. Beilstein J Org Chem 2014; 10(1): 2715-23.
[http://dx.doi.org/10.3762/bjoc.10.286] [PMID: 25550735]
[40]
Shende PK, Gaud RS, Bakal R, Patil D. Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf B Biointerfaces 2015; 136: 105-10.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.002] [PMID: 26364091]
[41]
Trotta F, Caldera F, Dianzani C, Argenziano M, Barrera G, Cavalli R. Glutathione bioresponsive cyclodextrin nanosponges. ChemPlusChem 2016; 81(5): 439-43.
[http://dx.doi.org/10.1002/cplu.201500531] [PMID: 31968779]
[42]
Kyzas GZ, Lazaridis NK, Bikiaris DN. Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohydr Polym 2013; 91(1): 198-208.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.016] [PMID: 23044123]
[43]
Swaminathan S, Vavia PR, Trotta F, Cavalli R. Nanosponges encapsulating dexamethasone for ocular delivery: Formulation design, physicochemical characterization, safety and corneal permeability assessment. J Biomed Nanotechnol 2013; 9(6): 998-1007.
[http://dx.doi.org/10.1166/jbn.2013.1594] [PMID: 23858964]
[44]
Olteanu AA, Aram C-C, Bleotu C, Lupuleasa D, Monciu CM. Investigation of cyclodextrin based nanosponges complexes with angiotensin I converting enzyme inhibitors (Enalapril, captopril, cilazapril). Farmacia 2015; 63: 12.
[45]
Rubin Pedrazzo A, Smarra A, Caldera F, et al. Eco-friendly β-cyclodextrin and linecaps polymers for the removal of heavy metals. Polymers (Basel) 2019; 11(10): 1658.
[http://dx.doi.org/10.3390/polym11101658] [PMID: 31614648]
[46]
Juluri A, Popescu C, Zhou L, et al. Taste masking of griseofulvin and caffeine anhydrous using kleptose linecaps DE17 by hot melt extrusion. AAPS PharmSciTech 2016; 17(1): 99-105.
[http://dx.doi.org/10.1208/s12249-015-0374-1] [PMID: 26288942]
[47]
Prochowicz D, Kornowicz A, Lewiński J. Interactions of native cyclodextrins with metal ions and inorganic nanoparticles: Fertile landscape for chemistry and materials science. Chem Rev 2017; 117(22): 13461-501.
[http://dx.doi.org/10.1021/acs.chemrev.7b00231] [PMID: 29048880]
[48]
Berto S, Bruzzoniti MC, Cavalli R, et al. Synthesis of new ionic β-cyclodextrin polymers and characterization of their heavy metals retention. J Incl Phenom Macrocycl Chem 2007; 57(1–4): 631-6.
[http://dx.doi.org/10.1007/s10847-006-9273-0]
[49]
Kumar S, Dalal P, Rao R. Cyclodextrin nanosponges: A promising approach for modulating drug delivery. Colloid Science in Pharmaceutical Nanotechnology 2019.
[50]
Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012; 8: 2091-9.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[51]
Anandam S, Selvamuthukumar S. Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology. J Porous Mater 2014; 21(6): 1015-23.
[http://dx.doi.org/10.1007/s10934-014-9851-2]
[52]
Swaminathan S, Pastero L, Serpe L, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 2010; 74(2): 193-201.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.003] [PMID: 19900544]
[53]
Ito F, Fujimori H, Makino K. Factors affecting the loading efficiency of water-soluble drugs in PLGA microspheres. Colloids Surf B Biointerfaces 2008; 61(1): 25-9.
[http://dx.doi.org/10.1016/j.colsurfb.2007.06.029] [PMID: 17719753]
[54]
Olbrich C, Müller RH. Enzymatic degradation of SLN-effect of surfactant and surfactant mixtures. Int J Pharm 1999; 180(1): 31-9.
[http://dx.doi.org/10.1016/S0378-5173(98)00404-9] [PMID: 10089289]
[55]
Phillips DJ, Patterson JP, O’Reilly RK, Gibson MI. Glutathione-triggered disassembly of isothermally responsive polymer nanoparticles obtained by nanoprecipitation of hydrophilic polymers. Polym Chem 2014; 5(1): 126-31.
[http://dx.doi.org/10.1039/C3PY00991B]
[56]
Liu G, Wang X, Hu J, Zhang G, Liu S. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J Am Chem Soc 2014; 136(20): 7492-7.
[http://dx.doi.org/10.1021/ja5030832] [PMID: 24786176]
[57]
Jiwpanich S, Ryu JH, Bickerton S, Thayumanavan S. Noncovalent encapsulation stabilities in supramolecular nanoassemblies. J Am Chem Soc 2010; 132(31): 10683-5.
[http://dx.doi.org/10.1021/ja105059g] [PMID: 20681699]
[58]
Kojima C, Tsumura S, Harada A, Kono K. A collagen-mimic dendrimer capable of controlled release. J Am Chem Soc 2009; 131(17): 6052-3.
[http://dx.doi.org/10.1021/ja809639c] [PMID: 19354246]
[59]
Huang X, Du F, Cheng J, et al. Acid-Sensitive polymeric micelles based on thermoresponsive block copolymers with pendent cyclic orthoester groups. Macromolecules 2009; 42(3): 783-90.
[http://dx.doi.org/10.1021/ma802138r]
[60]
Johnston AP, Lee L, Wang Y, Caruso F. Controlled degradation of DNA capsules with engineered restriction-enzyme cut sites. Small 2009; 5(12): 1418-21.
[http://dx.doi.org/10.1002/smll.200900075] [PMID: 19296555]
[61]
Thornton PD, McConnell G, Ulijn RV. Enzyme responsive polymer hydrogel beads. Chem Commun (Camb) 2005; (47): 5913-5.
[http://dx.doi.org/10.1039/b511005j] [PMID: 16317473]
[62]
Pyo SM, Maibach HI. Skin metabolism: Relevance of skin enzymes for rational drug design. Skin Pharmacol Physiol 2019; 32(5): 283-94.
[http://dx.doi.org/10.1159/000501732] [PMID: 31357203]
[63]
Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cyclodextrin nanosponge based hydrogel for the transdermal co-delivery of curcumin and resveratrol: Development, optimization, in vitro and ex vivo evaluation. J Drug Deliv Sci Technol 2019; 52: 55-64.
[http://dx.doi.org/10.1016/j.jddst.2019.04.025]
[64]
Kumar A, Rao R. Enhancing efficacy and safety of azelaic acid via encapsulation in cyclodextrin nanosponges: Development, characterization and evaluation. Polym Bull 2021; 78(9): 5275-302.
[http://dx.doi.org/10.1007/s00289-020-03366-2]
[65]
Abbas N, Parveen K, Hussain A, et al. uz Zaman S, Shah PA, Ahsan M. Nanosponge-based hydrogel preparation of fluconazole for improved topical delivery. Trop J Pharm Res 2019; 18(2): 215-22.
[http://dx.doi.org/10.4314/tjpr.v18i2.1]
[66]
John D, Charyulu RN, Ravi GS, Jose J. Nanosponge based hydrogels of etodolac for topical delivery. Res J Pharm Technol 2020; 13(8): 3887.
[http://dx.doi.org/10.5958/0974-360X.2020.00688.5]
[67]
Gusai T, Dhavalkumar M, Soniwala M, Dudhat K, Vasoya J, Chavda J. Formulation and optimization of microsponge-loaded emulgel to improve the transdermal application of acyclovir-a DOE based approach. Drug Deliv Transl Res 2021; 11(5): 2009-29.
[http://dx.doi.org/10.1007/s13346-020-00862-w] [PMID: 33159290]
[68]
Petitjean M, García-Zubiri IX, Isasi JR. History of cyclodextrin-based polymers in food and pharmacy: A review. Environ Chem Lett 2021; 19(4): 3465-76.
[http://dx.doi.org/10.1007/s10311-021-01244-5] [PMID: 33907537]
[69]
Kumari A, Jain A, Hurkat P, Verma A, Jain SK. Microsponges: A pioneering tool for biomedical applications. Crit Rev Ther Drug Carr Syst 2016; 33(1)
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v33.i1.40]
[70]
Jacob S, Nair AB. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev Res 2018; 79(5): 201-17.
[http://dx.doi.org/10.1002/ddr.21452] [PMID: 30188584]
[71]
Jyoti P, Tulsi B, Popin K, Chetna B. An Innovative Advancement for Targeted Drug Delivery: Nanosponges. Indo Glob J Pharm Sci 2016; 06(02): 59-64.
[http://dx.doi.org/10.35652/IGJPS.2016.02]
[72]
Castiglione F, Crupi V, Majolino D, et al. Vibrational dynamics and hydrogen bond properties of β-CD nanosponges: An FTIR-ATR, Raman and solid-state NMR spectroscopic study. J Incl Phenom Macrocycl Chem 2013; 75(3–4): 247-54.
[http://dx.doi.org/10.1007/s10847-012-0106-z]
[73]
Caldera F, Argenziano M, Trotta F, et al. Cyclic nigerosyl-1,6-nigerose-based nanosponges: An innovative pH and time-controlled nanocarrier for improving cancer treatment. Carbohydr Polym 2018; 194: 111-21.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.027] [PMID: 29801818]
[74]
Lembo D, Swaminathan S, Donalisio M, et al. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm 2013; 443(1-2): 262-72.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.031] [PMID: 23279938]
[75]
Arvapally S, Harini M, Harshitha G, Kumar AA. formulation and in-vitro evaluation of glipizide nanosponges. Am. J PharmTech Res 2017; 7(3): 341-61.
[76]
Shende P, Kulkarni YA, Gaud RS, et al. Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. J Pharm Sci 2015; 104(5): 1856-63.
[http://dx.doi.org/10.1002/jps.24416] [PMID: 25754724]
[77]
Gilardi G, Di Nardo G, Trotta F, et al. Cyclodextrin nanosponges as a carrier for biocatalysts, and in the delivery and release of enzymes, proteins, vaccines and antibodies.
[78]
Demasi S, Caser M, Caldera F, et al. Functionalized dextrin-based nanosponges as effective carriers for the herbicide ailanthone. Ind Crops Prod 2021; 164: 113346.
[http://dx.doi.org/10.1016/j.indcrop.2021.113346]
[79]
Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJ, Kadam VJ. Cyclodextrin-based nanosponges: A propitious platform for enhancing drug delivery. Expert Opin Drug Deliv 2014; 11(1): 111-20.
[http://dx.doi.org/10.1517/17425247.2014.865013] [PMID: 24298891]
[80]
Dhanalakshmi S, Harikrishnan N, Tanisha BA, et al. A perspective view on nanosponge drug delivery system. Drug Inv Today 2020; 14(3): 438-45.
[81]
Asraf Ali K, Roy P, Maity A, Chakraborty P. 6 - Tailor-made cyclodextrin-based nanomaterials as drug carriers. In: Tailor-Made and Functionalized Biopolymer Systems. Woodhead Publishing: Sawston 2021; pp. 155-200.
[82]
Pradeepa, Vidya SM, Mutalik S, Udaya Bhat K, Huilgol P, Avadhani K. Preparation of gold nanoparticles by novel bacterial exopolysaccharide for antibiotic delivery. Life Sci 2016; 153: 171-9.
[http://dx.doi.org/10.1016/j.lfs.2016.04.022] [PMID: 27101926]
[83]
Solunke R, Borge U, Murthy K, Deshmukh M, Shete R. shete r. Formulation and evaluation of gliclazide nanosponges. Int J Appl Pharm 2019; 11: 181-9.
[http://dx.doi.org/10.22159/ijap.2019v11i6.35006]
[84]
Development of risedronate sodium-loaded nanosponges by experimental design: optimization and in vitro characterization. Indian J Pharm Sci 2019; 81(2): 309-16.
[85]
Singireddy A, Pedireddi SR, Nimmagadda S, Subramanian S. Beneficial effects of microwave assisted heating versus conventional heating in synthesis of cyclodextrin based nanosponges. Mater Today Proc 2016; 3(10): 3951-9.
[http://dx.doi.org/10.1016/j.matpr.2016.11.055]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy