Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Diversified Applications of Self-assembled Nanocluster Delivery Systems- A State-ofthe- art Review

Author(s): Pravin Shende*, Bernice Rodrigues and Sharayu Govardhane

Volume 28, Issue 23, 2022

Published on: 06 July, 2022

Page: [1870 - 1884] Pages: 15

DOI: 10.2174/1381612828666220301125944

Price: $65

Abstract

Background: For the nanoparticulate system and the transportation of cellular elements for the fabrication of microelectronic devices, self-assembled nanoclusters arrange the components into an organized structure. Nanoclusters reduce transcytosis and increase endocytosis in intestinal mucin to strengthen the retrograde pathway that helps for delivery of actives to the Golgi apparatus.

Objectives: This review article focuses on the self-assembled nanoclusters for cellular transportation, applications of self-assembled structures in the delivery of essential elements like using a peptide in targeted and stimuli-responsive drug delivery systems, and self-assembly of tocopherol nanoclusters that promote vitamin E delivery across the endothelial barrier.

Methods: Current innovation in the self-assembly of peptides includes the formation of nanostructures like vesicles, fibers, and rod-coil in various applications of wound healing, tissue engineering, atherosclerosis treatment, sensing heavy metals from biological and environmental samples, and advanced drug delivery.

Results: Self-assembled biodegradable nanoclusters are used as biomimetic structures for a synergistic effect. For temperature-triggered drug release nanoclusters, modifications in preparation methods, such as the inclusion of a copolymer, are made.

Conclusion: Green synthesis of nanoclusters, nanocluster-based biosensors, and artificial intelligence are future concepts in the manufacturing and prevention of toxicity in humans.

Keywords: Self-assembly, nanoclusters, copolymer, vesicles, green synthesis, synergistic effect, biometric structures.

[1]
Abdullaeva Z. Classification of Nanomaterials 2. 1 Dispersive Systems and Their Classifications 2017.
[2]
Kankala RK, Wang SB, Chen AZ, Zhang YS. Self-Assembled Nanogels: From Particles to Scaffolds and Membranes. In: Handbook of nanomaterials for cancer theranostics. Elsevier 2018; pp. 33-62.
[3]
Kunwar P, Hassinen J, Bautista G, Ras RHA, Toivonen J. Direct laser writing of photostable fluorescent silver nanoclusters in polymer films. ACS Nano 2014; 8(11): 11165-71.
[http://dx.doi.org/10.1021/nn5059503] [PMID: 25347726]
[4]
Kunwar P, Hassinen J, Bautista G, Ras RHA, Toivonen J. Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser. Sci Rep 2016; 6(1): 23998.
[http://dx.doi.org/10.1038/srep23998] [PMID: 27045598]
[5]
Zheng J, Nicovich PR, Dickson RM. Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 2007; 58(1): 409-31.
[http://dx.doi.org/10.1146/annurev.physchem.58.032806.104546] [PMID: 17105412]
[6]
Chandler M, Shevchenko O, Vivero-Escoto JL, Striplin CD, Afonin KA. DNA-templated synthesis of fluorescent silver nanoclusters. J Chem Educ 2020; 97(7): 1992-6.
[http://dx.doi.org/10.1021/acs.jchemed.0c00158]
[7]
Adam K. Introduction to magnetic materials Sth. Valladolid, Spain 2007; p. 550.
[8]
Alonso JA. Introduction to Clusters. Struct Prop at Nanoclusters 2011; 2: 1-6.
[9]
Echt O, Kandler O, Leisner T, Miehle W, Recknagel E. Magic numbers in mass spectra of large van der Waals clusters. J Chem Soc, Faraday Trans 1990; 86(13): 2411-5.
[http://dx.doi.org/10.1039/ft9908602411]
[10]
Martin TP. Shells of atoms. Phys Rep 1996; 273(4): 199-241.
[http://dx.doi.org/10.1016/0370-1573(95)00083-6]
[11]
Lu YZ, Wei WT, Chen W. Copper nanoclusters: Synthesis, characterization and properties. Chin Sci Bull 2012; 57(1): 41-7.
[http://dx.doi.org/10.1007/s11434-011-4896-y]
[12]
Li C, Fu X, Zhong W, Liu J. Dissipative particle dynamics simulations of a protein-directed self-assembly of nanoparticles. ACS Omega 2019; 4(6): 10216-24.
[http://dx.doi.org/10.1021/acsomega.9b01078] [PMID: 31460113]
[13]
Böker A, He J, Emrick T, Russell TP. Self-assembly of nanoparticles at interfaces. Soft Matter 2007; 3(10): 1231-48.
[http://dx.doi.org/10.1039/b706609k] [PMID: 32900090]
[14]
Seeman NC, Niemeyer CM, Mirkin C. DNA nanostructures for mechanics and computing: Nonlinear thinking with life’s central molecule. Weinheim: Wiley-VCH 2004; pp. 308-18.
[15]
Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of two-dimensional DNA crystals. Nature 1998; 394(6693): 539-44.
[http://dx.doi.org/10.1038/28998] [PMID: 9707114]
[16]
Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJA. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996; 382(6592): 607-9.
[http://dx.doi.org/10.1038/382607a0] [PMID: 8757129]
[17]
Jin-Woo K, Jeong-Hwan K. Programmable construction of nanostructures: Assembly of nanostructures with various nanocomponents. IEEE Nanotechnol Mag 2012; 6(1): 19-23.
[http://dx.doi.org/10.1109/MNANO.2011.2181736]
[18]
Kim JW, Kim JH, Deaton R. DNA-linked nanoparticle building blocks for programmable matter. Angew Chem Int Ed Engl 2011; 50(39): 9185-90.
[http://dx.doi.org/10.1002/anie.201102342] [PMID: 21887825]
[19]
Schmid G. Clusters and colloids: from theory to applications Wiley-VCHm. Yew York 1994.
[http://dx.doi.org/10.1002/9783527616077]
[20]
Kellenberger ED, Hayat MA. Some basic concepts for the choice of methods. Colloidal gold: Principles, methods, and applications. 1991; 3: 1-30.
[http://dx.doi.org/10.1016/B978-0-12-333929-4.50006-0]
[21]
Bassell GJ, Powers CM, Taneja KL, Singer RH. Single mRNAs visualized by ultrastructural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J Cell Biol 1994; 126(4): 863-76.
[http://dx.doi.org/10.1083/jcb.126.4.863] [PMID: 7914201]
[22]
Dubois LH, Nuzzo RG. Synthesis, structure, and properties of model organic surfaces. Annu Rev Phys Chem 1992; 43(1): 437-63.
[http://dx.doi.org/10.1146/annurev.pc.43.100192.002253]
[23]
Grabar KC, Freeman RG, Natan MJ. Preparation and Characterization Monolayers. Anal Chem Anal Chem J A Adv Spectrosc 1995; 67: 1217-25.
[24]
Mucic RC, Herrlein MK, Mirkin CA, Letsinger RL. Synthesis and characterization of DNA with ferrocenyl groups attached to their 5′-termini: Electrochemical characterization of a redox-active nucleotide monolayer. Chem Commun (Camb) 1996; (4): 555-7.
[http://dx.doi.org/10.1039/CC9960000555]
[25]
Liu L, Li Z, Li Y, Mao C. Rational design and self-assembly of two-dimensional, dodecagonal DNA quasicrystals. J Am Chem Soc 2019; 141(10): 4248-51.
[http://dx.doi.org/10.1021/jacs.9b00843] [PMID: 30827097]
[26]
Mereuta L, Asandei A, Dragomir IS, et al. Sequence-specific detection of single-stranded DNA with a gold nanoparticle-protein nanopore approach. Sci Rep 2020; 10(1): 1-1.
[27]
Rogers WB, Shih WM, Manoharan VN. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat Rev Mater 2016; 1(3): 16008.
[http://dx.doi.org/10.1038/natrevmats.2016.8]
[28]
Biancaniello PL, Kim AJ, Crocker JC. Colloidal interactions and self-assembly using DNA hybridization. Phys Rev Lett 2005; 94(5): 058302.
[http://dx.doi.org/10.1103/PhysRevLett.94.058302] [PMID: 15783705]
[29]
Nykypanchuk D, Maye MM, van der Lelie D, Gang O. DNA-guided crystallization of colloidal nanoparticles. Nature 2008; 451(7178): 549-52.
[http://dx.doi.org/10.1038/nature06560] [PMID: 18235496]
[30]
Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA. DNA-programmable nanoparticle crystallization. Nature 2008; 451(7178): 553-6.
[http://dx.doi.org/10.1038/nature06508] [PMID: 18235497]
[31]
Auyeung E, Li TING, Senesi AJ, et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 2014; 505(7481): 73-7.
[http://dx.doi.org/10.1038/nature12739] [PMID: 24284632]
[32]
Brown LR. Commercial challenges of protein drug delivery. Expert Opin Drug Deliv 2005; 2(1): 29-42.
[http://dx.doi.org/10.1517/17425247.2.1.29] [PMID: 16296733]
[33]
Wang Y, Yan L, He S, et al. A versatile method to prepare protein nanoclusters for drug delivery. Macromol Biosci 2018; 18(2): 1-9.
[http://dx.doi.org/10.1002/mabi.201700282] [PMID: 29271592]
[34]
Coleman P. Heavy fermions: Dimensions are critical. Nat Mater 2012; 11(3): 185-7.
[http://dx.doi.org/10.1038/nmat3258] [PMID: 22349857]
[35]
Rogers K. What is the difference between a peptide and a protein? 2018. Available from: In: https://www.britannica.com/story/what-is-the-difference-between-a-peptide-and-a-protein
[36]
Beloor J, Zeller S, Choi CS, Lee SK, Kumar P. Cationic cell-penetrating peptides as vehicles for siRNA delivery. Ther Deliv 2015; 6(4): 491-507.
[http://dx.doi.org/10.4155/tde.15.2] [PMID: 25996046]
[37]
Mandal D, Nasrolahi Shirazi A, Parang K. Self-assembly of peptides to nanostructures. Org Biomol Chem 2014; 12(22): 3544-61.
[http://dx.doi.org/10.1039/C4OB00447G] [PMID: 24756480]
[38]
Habibi N, Kamaly N, Memic A, Shafiee H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today 2016; 11(1): 41-60.
[http://dx.doi.org/10.1016/j.nantod.2016.02.004] [PMID: 27103939]
[39]
Singh P, Gonzalez MJ, Manchester M. Viruses and their uses in nanotechnology. Drug Dev Res 2006; 67(1): 23-41.
[http://dx.doi.org/10.1002/ddr.20064]
[40]
Chasteen ND, Harrison PM. Mineralization in ferritin: An efficient means of iron storage. J Struct Biol 1999; 126(3): 182-94.
[http://dx.doi.org/10.1006/jsbi.1999.4118] [PMID: 10441528]
[41]
Lawson DM, Artymiuk PJ, Yewdall SJ, et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 1991; 349(6309): 541-4.
[http://dx.doi.org/10.1038/349541a0] [PMID: 1992356]
[42]
Theil EC. Ferritin protein nanocages-the story. Nanotechnol Percept 2012; 8(1): 7-16.
[http://dx.doi.org/10.4024/N03TH12A.ntp.08.01] [PMID: 24198751]
[43]
Lechner F, Jegerlehner A, Tissot AC, et al. Virus-like particles as a modular system for novel vaccines. Intervirology 2002; 45(4-6): 212-7.
[http://dx.doi.org/10.1159/000067912] [PMID: 12566703]
[44]
Kramer RM, Li C, Carter DC, Stone MO, Naik RR. Engineered protein cages for nanomaterial synthesis. J Am Chem Soc 2004; 126(41): 13282-6.
[http://dx.doi.org/10.1021/ja046735b] [PMID: 15479082]
[45]
Wang Q, Lin T, Tang L, Johnson JE, Finn MG. Icosahedral virus particles as addressable nanoscale building blocks. Angew Chem Int Ed 2002; 41(3): 459-62.
[http://dx.doi.org/10.1002/1521-3773(20020201)41:3<459:AID-ANIE459>3.0.CO;2-O] [PMID: 12491378]
[46]
Raja KS, Wang Q, Gonzalez MJ, Manchester M, Johnson JE, Finn MG. Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules 2003; 4(3): 472-6.
[http://dx.doi.org/10.1021/bm025740+] [PMID: 12741758]
[47]
Strable E, Johnson JE, Finn MG. Natural nanochemical building blocks: Icosahedral virus particles organized by attached oligonucleotides. Nano Lett 2004; 4(8): 1385-9.
[http://dx.doi.org/10.1021/nl0493850]
[48]
Chatterji A, Burns LL, Taylor SS, et al. Cowpea mosaic virus: From the presentation of antigenic peptides to the display of active biomaterials. Intervirology 2002; 45(4-6): 362-70.
[http://dx.doi.org/10.1159/000067929] [PMID: 12602357]
[49]
Raja KS, Wang Q, Finn MG. Icosahedral virus particles as polyvalent carbohydrate display platforms. ChemBioChem 2003; 4(12): 1348-51.
[http://dx.doi.org/10.1002/cbic.200300759] [PMID: 14661279]
[50]
Douglas T, Stark VT. Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg Chem 2000; 39(8): 1828-30.
[http://dx.doi.org/10.1021/ic991269q] [PMID: 12526579]
[51]
Okuda M, Iwahori K, Yamashita I, Yoshimura H. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol Bioeng 2003; 84(2): 187-94.
[http://dx.doi.org/10.1002/bit.10748] [PMID: 12966575]
[52]
Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y. Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew Chem Int Ed 2004; 43(19): 2527-30.
[http://dx.doi.org/10.1002/anie.200353436] [PMID: 15127443]
[53]
Senthilkumar R. Design and analysis of peptide based nanoparticles 2008; 181.
[54]
Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol Adv 2017; 35(5): 575-96.
[http://dx.doi.org/10.1016/j.biotechadv.2017.05.002] [PMID: 28522213]
[55]
Desai D, Shende P. Experimental aspects of NPY-decorated gold nanoclusters using randomized hybrid design against breast cancer cell line. Biotechnol J 2021; 16(12): e2100319.
[http://dx.doi.org/10.1002/biot.202100319] [PMID: 34595845]
[56]
Bayburt TH, Grinkova YV, Sligar SG. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2002; 2(8): 853-6.
[http://dx.doi.org/10.1021/nl025623k]
[57]
Wang W, Qu X, Gray AI, Tetley L, Uchegbu IF. Self-assembly of cetyl linear polyethylenimine to give micelles, vesicles, and dense nanoparticles. Macromolecules 2004; 37(24): 9114-22.
[http://dx.doi.org/10.1021/ma049042o]
[58]
Antonietti M, Förster S. Vesicles and liposomes: A self-assembly principle beyond lipids. Adv Mater 2003; 15(16): 1323-33.
[http://dx.doi.org/10.1002/adma.200300010]
[59]
Ilhan F, Galow TH, Gray M, Clavier G, Rotello VM. Giant vesicle formation through self-assembly of complementary random copolymers. J Am Chem Soc 2000; 122(24): 5895-6.
[http://dx.doi.org/10.1021/ja0011966]
[60]
Cheng G, Li W, Ha L, et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins. J Am Chem Soc 2018; 140(23): 7282-91.
[http://dx.doi.org/10.1021/jacs.8b03584] [PMID: 29809001]
[61]
Lee DE, Ryu J, Hong D, Park S, Lee DH, Russell TP. Directed self-assembly of asymmetric block copolymers in thin films driven by uniaxially aligned topographic patterns. ACS Nano 2018; 12(2): 1642-9.
[http://dx.doi.org/10.1021/acsnano.7b08226] [PMID: 29390179]
[62]
Phillips KR, Shirman T, Shirman E, Shneidman AV, Kay TM, Aizenberg J. Nanocrystalline precursors for the co-assembly of crack-free metal oxide inverse opals. Adv Mater 2018; 30(19): e1706329.
[http://dx.doi.org/10.1002/adma.201706329] [PMID: 29349818]
[63]
Qiu F, Edison JR, Preisler Z, et al. Design rules for self-assembly of 2D nanocrystal/metal-organic framework superstructures. Angew Chem Int Ed Engl 2018; 57(40): 13172-6.
[http://dx.doi.org/10.1002/anie.201807776] [PMID: 30136423]
[64]
Zhu H, Fan Z, Yuan Y, et al. Self-assembly of quantum dot-gold heterodimer nanocrystals with orientational order. Nano Lett 2018; 18(8): 5049-56.
[http://dx.doi.org/10.1021/acs.nanolett.8b01860] [PMID: 29989818]
[65]
Pankova AA, Akhmetshina TG, Blatov VA, Proserpio DM. A collection of topological types of nanoclusters and its application to icosahedron-based intermetallics. Inorg Chem 2015; 54(13): 6616-30.
[http://dx.doi.org/10.1021/acs.inorgchem.5b00960] [PMID: 26067382]
[66]
Zhao M, Sun L, Crooks RM. Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 1998; 120(19): 4877-8.
[http://dx.doi.org/10.1021/ja980438n]
[67]
Reetz MT, Helbig W. Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 1994; 116(16): 1401-2.
[http://dx.doi.org/10.1021/ja00095a051]
[68]
Das A, Natarajan K, Tiwari S, Ganguli AK. Nanostructures synthesized by the reverse microemulsion method and their magnetic properties. Mater Res Express 2020; 7(10): 104001.
[http://dx.doi.org/10.1088/2053-1591/abbb55]
[69]
Tojo C, Blanco MC, Garcı L. Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 2004; 9(3-4): 264-78.
[http://dx.doi.org/10.1016/j.cocis.2004.05.029]
[70]
Vázquez-Vázquez C, Bañobre-López M, Mitra A, López-Quintela MA, Rivas J. Synthesis of small atomic copper clusters in microemulsions. Langmuir 2009; 25(14): 8208-16.
[http://dx.doi.org/10.1021/la900100w] [PMID: 19545135]
[71]
Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in in a two-phase liquid–liquid system. J Chem Soc Chem Commun 2000; 801-2.
[72]
Li Y, Zaluzhna O, Xu B, Gao Y, Modest JM, Tong YJ. Mechanistic insights into the Brust-Schiffrin two-phase synthesis of organo-chalcogenate-protected metal nanoparticles. J Am Chem Soc 2011; 133(7): 2092-5.
[http://dx.doi.org/10.1021/ja1105078] [PMID: 21268580]
[73]
Wei W, Lu Y, Chen W, Chen S. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J Am Chem Soc 2011; 133(7): 2060-3.
[http://dx.doi.org/10.1021/ja109303z] [PMID: 21280578]
[74]
Gill NS, Taylor FB, Hatfield WE, Parker WE, Fountain CS, Bunger FL. Tetrahalo complexes of dipositive metals in the first transition series. Inorg Synth 1967; 9: 136-42.
[http://dx.doi.org/10.1002/9780470132401.ch37]
[75]
Jheng LC, Wang YZ, Huang WY, et al. Melting and recrystallization of copper nanoparticles prepared by microwave-assisted reduction in the presence of triethylenetetramine. Materials (Basel) 2020; 13(7): 1507.
[http://dx.doi.org/10.3390/ma13071507] [PMID: 32224884]
[76]
Boles MA, Engel M, Talapin DV. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem Rev 2016; 116(18): 11220-89.
[http://dx.doi.org/10.1021/acs.chemrev.6b00196] [PMID: 27552640]
[77]
Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002; 295(5564): 2418-21.
[http://dx.doi.org/10.1126/science.1070821] [PMID: 11923529]
[78]
Kokkoli E, Mardilovich A, Wedekind A, Rexeisen EL, Garg A, Craig JA. Self-assembly and applications of biomimetic and bioactive peptide-amphiphiles. Soft Matter 2006; 2(12): 1015-24.
[http://dx.doi.org/10.1039/b608929a] [PMID: 32680204]
[79]
Aeschimann W, Staats S, Kammer S, et al. Self-assembled α-tocopherol transfer protein nanoparticles promote vitamin E delivery across an endothelial barrier. Sci Rep 2017; 7(1): 4970.
[PMID: 28694484]
[80]
Yang D, Liu D, Qin M, et al. Intestinal mucin induces more endocytosis but less transcytosis of nanoparticles across enterocytes by triggering nano-clustering and strengthening the retrograde pathway. ACS Appl Mater Interfaces 2018; 10(14): 11443-56.
[http://dx.doi.org/10.1021/acsami.7b19153] [PMID: 29485849]
[81]
Gracias DH, Tien J, Breen TL, Hsu C, Whitesides GM. Forming electrical networks in three dimensions by self-assembly. Science 2000; 289(5482): 1170-2.
[http://dx.doi.org/10.1126/science.289.5482.1170] [PMID: 10947979]
[82]
Yeh HJJ, Smith JS. Fluidic self-assembly of microstructures and its application to the integration of GaAs on Si. Proc IEEE Micro Electro Mech Syst. 279-84.
[83]
Rodrigues B, Shende P. Monodispersed metal-based dendrimeric nanoclusters for potentiation of anti-tuberculosis action. J Mol Liq 2020; 15(304): 112731.
[http://dx.doi.org/10.1016/j.molliq.2020.112731]
[84]
Teymorian S, West A, Lee M, Bedford N, Griep M. Site-specific nanocluster synthesis in energy- coupled biomolecular hosts. ARLA 2018.
[85]
Caruso M, Belloni L, Sthandier O, Amati P, Garcia M. Integrin acts as a cell receptor for murine polyomavirus at the postattachment level. J Virol 2003; 77(7): 3913-21.
[86]
Yu D, Amano C, Fukuda T, Yamada T, Kuroda S. The specific delivery of proteins to human liver cells by engineered bio-nanocapsules. FEBS J 2005; 272(14): 3651-60.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04790.x]
[87]
Rae CS, Wei I, Wang Q, et al. Systemic trafficking of plant virus nanoparticles in mice via the oral route. Virology 2005; 343(2): 224-35.
[http://dx.doi.org/10.1016/j.virol.2005.08.017]
[88]
Soto CM, Blum AS, Vora GJ, et al. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J Am Chem Soc 2006; 128(15): 5184-9.
[http://dx.doi.org/10.1021/ja058574x]
[89]
Yan J, He W, Yan S, et al. Self-assembled peptide-lanthanide nanoclusters for safe tumor therapy: Overcoming and utilizing biological barriers to peptide drug delivery. ACS Nano 2018; 12(2): 2017-26.
[http://dx.doi.org/10.1021/acsnano.8b00081] [PMID: 29376322]
[90]
Collins L, Parker AL, Gehman JD, et al. Self-assembly of peptides into spherical nanoparticles for delivery of hydrophilic moieties to the cytosol. ACS Nano 2010; 4(5): 2856-64.
[http://dx.doi.org/10.1021/nn901414q] [PMID: 20408581]
[91]
Wright DB, Thompson MP, Touve MA, et al. Enzyme-responsive polymer nanoparticles via ring-opening metathesis polymerization-induced self-assembly. Macromol Rapid Commun 2018; 1800467: 1800467.
[PMID: 30176076]
[92]
Fan T, Yu X, Shen B, Sun L. Peptide self-assembled nanostructures for drug delivery applications. J Nanomater 2017; 2017: 4562474.
[http://dx.doi.org/10.1155/2017/4562474]
[93]
He J, Wei Z, Wang L, et al. Hydrodynamically driven self-assembly of giant vesicles of metal nanoparticles for remote-controlled release. Angew Chem Int Ed Engl 2013; 52(9): 2463-8.
[http://dx.doi.org/10.1002/anie.201208425] [PMID: 23362104]
[94]
Karagoz B, Esser L, Duong HT, Basuki JS, Boyer C, Davis TP. Polymerization-induced self-assembly (PISA)-control over the morphology of nanoparticles for drug delivery applications. Polym Chem 2014; 5(2): 350-5.
[http://dx.doi.org/10.1039/C3PY01306E]
[95]
Wang T, Zhang S, Yu Q, et al. Novel self-assembly route assisted ultra-fast trace volatile organic compounds gas sensing based on three-dimensional opal microspheres composites for diabetes diagnosis. ACS Appl Mater Interfaces 2018; 10(38): 32913-21.
[http://dx.doi.org/10.1021/acsami.8b13010] [PMID: 30176721]
[96]
Shende P, Vaidya J, Kulkarni YA, Gaud RS. Systematic approaches for biodiagnostics using exhaled air. J Control Release 2017; 268: 282-95.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.035] [PMID: 29111149]
[97]
Gelain F, Luo Z, Zhang S. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem Rev 2020; 120(24): 13434-60.
[http://dx.doi.org/10.1021/acs.chemrev.0c00690] [PMID: 33216525]
[98]
Yishay-safranchik E, Golan M, David A. Controlled release of doxorubicin and Smac-derived pro-apoptotic peptide from self‐assembled KLD‐based peptide hydrogels. Polymer Adv Tech 2014.
[http://dx.doi.org/10.1002/pat.3300]
[99]
Jabbari E, Yang X, Moeinzadeh S, He X. Drug release kinetics, cell uptake, and tumor toxicity of hybrid VVVVVVKK peptide-assembled polylactide nanoparticles. Eur J Pharm Biopharm 2013; 84(1): 49-62.
[http://dx.doi.org/10.1016/j.ejpb.2012.12.012] [PMID: 23275111]
[100]
Wang Y, Chen J, Irudayaraj J. Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano 2011; 5(12): 9718-25.
[http://dx.doi.org/10.1021/nn2032177] [PMID: 22053819]
[101]
Ballarín-González B, Howard KA. Polycation-based nanoparticle delivery of RNAi therapeutics: Adverse effects and solutions. Adv Drug Deliv Rev 2012; 64(15): 1717-29.
[http://dx.doi.org/10.1016/j.addr.2012.07.004] [PMID: 22800620]
[102]
Yan X, He Q, Wang K, et al. Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew Chem Int Ed Engl 2007; 46(14): 2431-4.
[PMID: 17328086]
[103]
Martin ME, Rice KG. Peptide-guided gene delivery. AAPS J 2007; 9(1): E18-29.
[http://dx.doi.org/10.1208/aapsj0901003] [PMID: 17408236]
[104]
Fuchs SM, Raines RT. Internalization of cationic peptides: The road less (or more?) traveled. Cell Mol Life Sci 2006; 63(16): 1819-22.
[http://dx.doi.org/10.1007/s00018-006-6170-z] [PMID: 16909213]
[105]
Fan Z, Sun L, Huang Y, Wang Y, Zhang M. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat Nanotechnol 2016; 11(4): 388-94.
[http://dx.doi.org/10.1038/nnano.2015.312] [PMID: 26751169]
[106]
Sudha PR, Reddy RM, Kumar AC. Drug delivery applications of peptide self- assembled nanostructures. 2018; 510-20.
[107]
Koutsopoulos S, Unsworth LD, Nagai Y, Zhang S. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci USA 2009; 106(12): 4623-8.
[http://dx.doi.org/10.1073/pnas.0807506106] [PMID: 19273853]
[108]
Tian YF, Hudalla GA, Han H, Collier JH. Controllably degradable β-sheet nanofibers and gels from self-assembling depsipeptides. Biomater Sci 2013; 1(10): 1037-45.
[http://dx.doi.org/10.1039/c3bm60161g] [PMID: 24224082]
[109]
Wang C, Li J, Amatore C, et al. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew Chemie Int Ed 2011; 50(49): 11644-8.
[PMID: 21990208]
[110]
Zhang XD, Luo Z, Chen J, et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci Rep 2015; 5(1): 8669.
[http://dx.doi.org/10.1038/srep08669] [PMID: 25727895]
[111]
Yan K, Chen M, Zhou S, Wu L. Self-assembly of upconversion nanoclusters with an amphiphilic copolymer for near-infrared- and temperature-triggered drug release. RSC Advances 2016; 6(88): 85293-302.
[http://dx.doi.org/10.1039/C6RA17622D]
[112]
Earle KA, Lloyd MH, Yuan Z, Chang HT. Paget-Schroetter syndrome in a patient on the contraceptive pill. N Y State J Med 1989; 89(5): 293.
[PMID: 2733896]
[113]
Chung EJ, Tirrell M. Recent advances in targeted, self-assembling nanoparticles to address vascular damage due to atherosclerosis. Adv Healthc Mater 2015; 4(16): 2408-22.
[http://dx.doi.org/10.1002/adhm.201500126] [PMID: 26085109]
[114]
Halawa MI, Wu F, Nsabimana A, Lou B, Xu G. Inositol directed facile “green” synthesis of fluorescent gold nanoclusters as selective and sensitive detecting probes of ferric ions. Sens Actuators B Chem 2018; 257: 980-7.
[http://dx.doi.org/10.1016/j.snb.2017.11.046]
[115]
Zhang XD, Wu D, Shen X, Liu PX, Fan FY, Fan SJ. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 2012; 33(18): 4628-38.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.020] [PMID: 22459191]
[116]
Gao P, Chang X, Zhang D, et al. Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications. Acta Pharm Sin B 2021; 11(5): 1175-99.
[http://dx.doi.org/10.1016/j.apsb.2020.12.004] [PMID: 34094827]
[117]
Song Z, Shi J, Zhang Z, Qi Z, Han S, Cao S. Mesoporous silica-coated gold nanorods with a thermally responsive polymeric cap for near-infrared-activated drug delivery. J Mater Sci 2018; 53(10): 7165-79.
[http://dx.doi.org/10.1007/s10853-018-2117-7]
[118]
Mu J, Peng Y, Shi Z, Zhang D, Jia Q. Copper nanocluster composites for analytical (bio)-sensing and imaging: A review. Mikrochim Acta 2021; 188(11): 384.
[http://dx.doi.org/10.1007/s00604-021-05011-9] [PMID: 34664135]
[119]
Sagandykova G, Walczak-Skierska J, Monedeiro F, Pomastowski P, Buszewski B. New methodology for the identification of metabolites of saccharides and cyclitols by Off-line EC-MALDI-TOF-MS. Int J Mol Sci 2020; 21(15): 5265.
[http://dx.doi.org/10.3390/ijms21155265] [PMID: 32722273]
[120]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nature Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy