Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Histogram Analysis of Apparent Diffusion Coefficient on Diffusion Weighted Magnetic Resonance Imaging in Differentiation between Low and High Grade Serous Ovarian Cancer

Author(s): Xuefen Liu, Tianping Wang, Yida Wang, Jue Wang, Jun Jin, Guofu Zhang and He Zhang*

Volume 19, Issue 2, 2023

Published on: 06 September, 2022

Article ID: e170522204889 Pages: 8

DOI: 10.2174/1573405618666220517101012

Price: $65

conference banner
Abstract

Background: Ovarian cancer is a leading cause of death in gynecological malignancies. Being the most common subtype in OEC, ovarian serous cancer also includes two subtypes: low grade serous ovarian cancer (LGSC) and high grade serous ovarian cancer (HGSC) (1). Purpose: The study aims to assess the capability of apparent diffusion coefficient (ADC) histogram analysis and conventional measurements on magnetic resonance imaging (MRI) in differentiating between LGSC and HGSC.

Methods: We retrospectively recruited 38 patients with pathologically proven ovarian serous epithelial cancer. The mean ADC value was measured by one technician using two methods on post-processed workstation. The ADC value and histogram parameter difference between LGSC and HGSC groups were compared. The correlation between the ADC value and the Ki-67 expression was calculated across both groups.

Results: The repeatability of ADC measurements across two methods was good; the ROI method (ADC-roi) had better performance repeatability than the area method (ADC-area). The value of ADC-mean , ADC-min, ADC-max, and ADC-area significantly differed between both groups (p < 0.001). The value of ADC-area correlated inversely with ki-67 expression in the whole group (Pearson coefficient = -0.382, p = 0.02). The 3D computerized-diagnostic model had the best discriminative performance in determining HGSC than 2D and conventional ADC measurements. The 3D model yielded a sensitivity of 100%, a specificity of 95.45%, and an accuracy of 97.73%.

Conclusion: In the present study, the 3D ADC histogram model help differentiate HGSC from LGSC with a better performance than conventional ADC measurements.

Keywords: ovarian epithelial cancer, magnetic resonance imaging, apparent coefficient value, diffusion weighted imaging

[1]
Bowtell DD, Böhm S, Ahmed AA, et al. Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 2015; 15(11): 668-79.
[http://dx.doi.org/10.1038/nrc4019] [PMID: 26493647]
[2]
Goulding EA, Bryony S, Jennifer M, et al. Low-grade serous ovarian carcinoma: A comprehensive literature review. Aust N Z J Obstet Gynaecol 2020; 60(1): 27-33.
[3]
Slomovitz B, Gourley C, Carey MS, et al. Low-grade serous ovarian cancer: State of the science. Gynecol Oncol 2020; 156(3): 715-25.
[http://dx.doi.org/10.1016/j.ygyno.2019.12.033] [PMID: 31969252]
[4]
Pauly N, Ehmann S, Ricciardi E, et al. Low-grade serous tumors: Are we making progress? Curr Oncol Rep 2020; 22(1): 8.
[http://dx.doi.org/10.1007/s11912-020-0872-5] [PMID: 31989304]
[5]
Prahm KP, Karlsen MA, Høgdall E, et al. The prognostic value of dividing epithelial ovarian cancer into type I and type II tumors based on pathologic characteristics. Gynecol Oncol 2015; 136(2): 205-11.
[http://dx.doi.org/10.1016/j.ygyno.2014.12.029] [PMID: 25546113]
[6]
Khan SR, Arshad M, Wallitt K, Stewart V, Bharwani N, Barwick TD. What’s new in imaging for gynecologic cancer? Curr Oncol Rep 2017; 19(12): 85.
[http://dx.doi.org/10.1007/s11912-017-0640-3] [PMID: 29105030]
[7]
Medeiros LR, Freitas LB, Rosa DD, et al. Accuracy of magnetic resonance imaging in ovarian tumor: A systematic quantitative review. Am J Obstet Gynecol 2011; 204(1): 67.e1-67.e10.
[http://dx.doi.org/10.1016/j.ajog.2010.08.031] [PMID: 21047612]
[8]
Thomassin-Naggara I, Poncelet E, Jalaguier-Coudray A, et al. Ovarian- Adnexal Reporting Data System Magnetic Resonance Imaging (ORADS MRI) score for risk stratification of sonographically indeterminate adnexal masses. JAMA NETW Open 2020; 3(1): e1919896-e.
[9]
Surov A, Meyer HJ, Wienke A. Associations between apparent diffusion coefficient (ADC) and KI 67 in different tumors: A meta-analysis. Part 1: ADCmean. Oncotarget 2017; 8(43): 75434-44.
[http://dx.doi.org/10.18632/oncotarget.20406] [PMID: 29088879]
[10]
Gerges L, Popiolek D, Rosenkrantz AB. Explorative investigation of whole-lesion histogram MRI metrics for differentiating uterine leiomyomas and leiomyosarcomas. AJR Am J Roentgenol 2018; 210(5): 1172-7.
[http://dx.doi.org/10.2214/AJR.17.18605] [PMID: 29547053]
[11]
Schob S, Meyer HJ, Pazaitis N, et al. ADC histogram analysis of cervical cancer aids detecting lymphatic metastases-a preliminary study. Mol Imaging Biol 2017; 19(6): 953-62.
[http://dx.doi.org/10.1007/s11307-017-1073-y] [PMID: 28315203]
[12]
Thapa D, Wang P, Wu G, Wang X, Sun Q. A histogram analysis of diffusion and perfusion features of cervical cancer based on intravoxel incoherent motion magnetic resonance imaging. Magn Reson Imaging 2019; 55: 103-11.
[http://dx.doi.org/10.1016/j.mri.2018.06.016] [PMID: 29953932]
[13]
Guan Y, Shi H, Chen Y, et al. Whole-lesion histogram analysis of apparent diffusion coefficient for the assessment of cervical cancer. J Comput Assist Tomogr 2016; 40(2): 212-7.
[http://dx.doi.org/10.1097/RCT.0000000000000349] [PMID: 26720205]
[14]
van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res 2017; 77(21): e104-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0339] [PMID: 29092951]
[15]
Lalwani N, Prasad SR, Vikram R, Shanbhogue AK, Huettner PC, Fasih N. Histologic, molecular, and cytogenetic features of ovarian cancers: Implications for diagnosis and treatment. Radiographics 2011; 31(3): 625-46.
[http://dx.doi.org/10.1148/rg.313105066] [PMID: 21571648]
[16]
Rajkotia K, Veeramani M, Macura KJ. Magnetic resonance imaging of adnexal masses. Top Magn Reson Imaging 2006; 17(6): 379-97.
[http://dx.doi.org/10.1097/RMR.0b013e3180417d8e] [PMID: 17417086]
[17]
Korkolopoulou P, Vassilopoulos I, Konstantinidou AE, et al. The combined evaluation of p27Kip1 and Ki-67 expression provides independent information on overall survival of ovarian carcinoma patients. Gynecol Oncol 2002; 85(3): 404-14.
[http://dx.doi.org/10.1006/gyno.2002.6627] [PMID: 12051866]
[18]
Zhang H, Zhang GF, He ZY, Li ZY, Zhang GX. Prospective evaluation of 3T MRI findings for primary adnexal lesions and comparison with the final histological diagnosis. Arch Gynecol Obstet 2014; 289(2): 357-64.
[http://dx.doi.org/10.1007/s00404-013-2990-x] [PMID: 23934242]
[19]
Liu D, Zhang L, Indima N, et al. CT and MRI findings of type I and type II epithelial ovarian cancer. Eur J Radiol 2017; 90: 225-33.
[http://dx.doi.org/10.1016/j.ejrad.2017.02.017] [PMID: 28583639]
[20]
Hatano Y, Hatano K, Tamada M, et al. A comprehensive review of ovarian serous carcinoma. Adv Anat Pathol 2019; 26(5): 329-39.
[http://dx.doi.org/10.1097/PAP.0000000000000243] [PMID: 31368906]
[21]
Lindgren A, Anttila M, Rautiainen S, et al. Primary and metastatic ovarian cancer: Characterization by 3.0T diffusion-weighted MRI. Eur Radiol 2017; 27(9): 4002-12.
[http://dx.doi.org/10.1007/s00330-017-4786-z] [PMID: 28289938]
[22]
Mukuda N, Fujii S, Inoue C, et al. Apparent Diffusion Coefficient (ADC) measurement in ovarian tumor: Effect of region-of-interest methods on ADC values and diagnostic ability. J Magn Reson Imaging 2016; 43(3): 720-5.
[http://dx.doi.org/10.1002/jmri.25011] [PMID: 26201495]
[23]
Inoue C, Fujii S, Kaneda S, et al. Apparent diffusion coefficient (ADC) measurement in endometrial carcinoma: Effect of region of interest methods on ADC values. J Magn Reson Imaging 2014; 40(1): 157-61.
[http://dx.doi.org/10.1002/jmri.24372] [PMID: 24677497]
[24]
Onodera K, Hatakenaka M, Yama N, et al. Repeatability analysis of ADC histogram metrics of the uterus. Acta Radiol 2019; 60(4): 526-34.
[http://dx.doi.org/10.1177/0284185118786062] [PMID: 29969050]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy