Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Research Article

Investigating the Effect of Hydroxyl Functionalized MWCNT on the Mechanical Properties of PMMA-Based Polymer Nanocomposites

Author(s): Vijay Patel*, Unnati Joshi and Anand Joshi

Volume 8, Issue 2, 2023

Published on: 19 August, 2022

Page: [162 - 174] Pages: 13

DOI: 10.2174/2405461507666220516154332

Price: $65

Abstract

Aims: This study aimed to evaluate the mechanical properties of polymer nanocomposites (PNCs) reinforced with multi-walled carbon nanotubes (MWCNT).

Methods: Mixing MWCNT into the polymer at very small propositions can enrich the mechanical properties of the polymer nanocomposites. The test specimen was fabricated with 0.1wt%, 0.5wt%, and 1wt% mixing ratios using extrusion and injection molding process. Computational analysis was performed through the square RVE model and analyzed with finite element analysis (FEA) using the DIGIMAT simulation tool. The specimens were evaluated by ASTM D3039 for tensile strength and ASTM D7264 for flexural strength.

Results: The simulated results were compared with experimental results. Scanning electron microscopy( SEM) was performed to evaluate the dispersion state of nanotubes in the matrix.

Conclusion: The impactful improvement in mechanical properties has been observed after adding functionalized MWCNTs (f-MWCNT) compared to pure polymer and non-functionalized MWCNT composites.

Keywords: Nanocomposites, Representative Volume Element, Carbon nanotube, Scanning electron microscopy, Finite Element Analysis, CNT

Graphical Abstract

[1]
Hussain F, Okamoto M, Gorga RE. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application J Comp Mat 2006; 40(17): 1511-75.
[2]
Hwang TY, Kim HJ, Ahn Y, Lee JW. Influence of twin screw extrusion processing condition on the properties of polypropylene/multi-walled carbon nanotube nanocomposites. Korea-Australia Rheol J 2010; 22(2): 141-8.
[3]
Oliveira M, Machado AV. Preparation of polymer-based nanocomposites by different routes.In: Wang X, Eds Nanocomposites: Synthesis, characterization and applications. NOVA 2013; pp. 1-22.
[4]
Iijima S. Helical microtubes of graphitic carbon. Nature 1991; 354(6348): 56-8.
[http://dx.doi.org/10.1038/354056a0]
[5]
Yellampalli S. Carbon Nanotubes: Polymer nanocomposites. IntechOpen 2011.
[6]
Winkler DER, Staab TEM, Muller TM, Raether FG. Using of novel microstructure generator to calculate microscopic properties of multi-phase non-oxide ceramics in comparison to experiments. Ceram Int 2016; 42(1): 325-33.
[http://dx.doi.org/10.1016/j.ceramint.2015.08.114]
[7]
Ma PC, Siddiqui NA, Marom G, Kim JK. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos, Part A Appl Sci Manuf 2010; 41(10): 1345-67.
[http://dx.doi.org/10.1016/j.compositesa.2010.07.003]
[8]
Hu Z, Arefin MRH, Yan X, Fan QH. Mechanical property characterization of carbon nanotube modified polymeric nanocomposites by computer modeling. Compos, Part B Eng 2014; 56: 100-8.
[http://dx.doi.org/10.1016/j.compositesb.2013.08.052]
[9]
Harper LT, Qian C, Turner TA, Li S, Warrior NA. Representative volume elements for discontinuous carbon fibre composites - Part 1: Boundary conditions. Compos Sci Technol 2012; 72(2): 225-34.
[http://dx.doi.org/10.1016/j.compscitech.2011.11.006]
[10]
Kari S, Berger H, Gabbert U. Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites. Comput Mater Sci 2007; 39(1): 198-204.
[http://dx.doi.org/10.1016/j.commatsci.2006.02.024]
[11]
Li C, Chou TW. Multiscalemodeling of compressive behavior of carbon nanotube/polymer composites. Compos Sci Technol 2006; 66(14): 2409-14.
[http://dx.doi.org/10.1016/j.compscitech.2006.01.013]
[12]
Fatalla AA, Tukmachi MS, Jani GH. Assessment of some mechanical properties of PMMA/silica/zirconia nanocomposite as a denture base material. In IOP Conf Ser. Mater Sci Eng 2020; 987(1)012031
[13]
Ondracek G. On the relationship between the properties and the microstructure of multiphase materials. Sci Eng Technol 1978; 9(3): 96-100.
[14]
Valavala PK, Odegard GM. Modeling techniques for determination of mechanical properties of polymer nanocomposites. Rev Adv Mater Sci 2005; 9: 34-4.
[15]
Joshi UA, Sharma SC, Harsha SP. Effect of carbon nanotube orientation on the mechanical properties of nanocomposites. Compos, Part B Eng 2012; 43(4): 2063-71.
[http://dx.doi.org/10.1016/j.compositesb.2012.01.063]
[16]
Liu YJ, Chen XL. Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech Mater 2003; 35(1-2): 69-81.
[http://dx.doi.org/10.1016/S0167-6636(02)00200-4]
[17]
Chen XL, Liu YJ. Square representative volume elements for evaluating the effective material properties of carbon nanotubebased composites. Comput Mater Sci 2004; 29(1): 1-11.
[http://dx.doi.org/10.1016/S0927-0256(03)00090-9]
[18]
Patel V, Joshi U, Joshi A. Investigating the mechanical properties of nonfunctionalized MWCNT reinforced polymer nanocomposites. Mater Today Proc 2021; 43: 3511-5.
[19]
Yi J, Wu S, Bai S, Liu Y, Li N, Zhou H. Interfacial construction of Li2O2 for a performance-improved polymer Li–O2 battery. J Mater Chem A Mater Energy Sustain 2016; 4(7): 2403-7.
[http://dx.doi.org/10.1039/C5TA10436J]
[20]
Yi J, Zhou H. A unique hybrid quasi-solid-state electrolyte for Li-O2 batteries with improved cycle life and safety. ChemSusChem 2016; 9(17): 2391-6.
[http://dx.doi.org/10.1002/cssc.201600536] [PMID: 27487523]
[21]
Yi J, Guo S, He P, Zhou H. Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy Environ Sci 2017; 10(4): 860-84.
[http://dx.doi.org/10.1039/C6EE03499C]
[22]
Yi J, Liu Y, Qiao Y, He P, Zhou H. Boosting the cycle life of Li–O2 batteries at elevated temperature by employing a hybrid polymer–ceramic solid electrolyte. ACS Energy Lett 2017; 2(6): 1378-84.
[http://dx.doi.org/10.1021/acsenergylett.7b00292]
[23]
Wu K, Huang J, Yi J, et al. Recent advances in polymer electrolytes for zinc ion batteries: Mechanisms, properties, and perspectives. Adv Energy Mater 2020; 10(12)1903977
[http://dx.doi.org/10.1002/aenm.201903977]
[24]
Tebeta RT, Fattahi AM, Ahmed NA. Prediction of the elastic behaviour of HDPE/SWCNTs nanocomposites with FEM approach. J Phys Conf Ser 2019; 1378(3): 1378.
[http://dx.doi.org/10.1088/1742-6596/1378/3/032073]
[25]
Tahouneh V, Mashhadi MM, Naei MH. Finite element and micromechanical modeling for investigating effective material properties of polymer–matrix nanocomposites with microfiber, reinforced by CNT arrays. Int J Adv Struct Eng 2016; 8(3): 297-306.
[http://dx.doi.org/10.1007/s40091-016-0132-y]
[26]
Hua H, Onyebueke L, Abatan A. Characterizing and modeling mechanical properties of nanocomposites review and evaluation. J Miner Mater Charact Eng 2010; 9(4): 275-319.
[http://dx.doi.org/10.4236/jmmce.2010.94022]
[27]
Joshi UA, Joshi P, Harsha SP, Sharma SC. Evaluation of the mechanical properties of carbon nanotube based composites by finite element analysis. Int J Eng Sci Technol 2010; 2(5): 1098-107.
[28]
Akpan EI, Shen X, Wetzel B, Friedrich K. Design and synthesis of polymer nanocomposites.In Polymer Composites with Functionalized Nanoparticles. Elsevier 2019; pp. 47-83.
[http://dx.doi.org/10.1016/B978-0-12-814064-2.00002-0]
[29]
Nurazzi NM, Sabaruddin FA, Harussani MM, et al. Mechanical performance and applications of CNTs reinforced polymer composites-A review. Nanomaterials 2021; 11(9): 2186.
[http://dx.doi.org/10.3390/nano11092186] [PMID: 34578502]
[30]
Deep N, Mishra P. Evaluation of mechanical properties of functionalized carbon nanotube reinforced PMMA polymer nanocomposite. Karbala Int J Mod Sci 2018; 4(2): 207-15.
[http://dx.doi.org/10.1016/j.kijoms.2018.02.001]
[31]
Liu LQ, Wagner HD. A comparison of the mechanical strength and stiffness of MWNT-PMMA and MWNT-epoxy nanocomposites. Compos Interfaces 2007; 14(4): 285-97.
[http://dx.doi.org/10.1163/156855407780452904]
[32]
Mallick A, Mishra P, Swain SK. The effect of functionalized MWCNT on mechanical and electrical properties of PMMA nanocomposites. Nanoelectronic Materials and Devices, Lecture Notes in Electrical Engineering 2018; pp. 1-9.
[33]
Ismail NM, Aziz A, Jaafar M. Mechanical properties of multiwalled carbon nanotube (MWCNT)/polymethyl methacrylite (PMMA) nanocomposite prepared via the coagulation method. In AIP Conference Proceedings 2012; 1455(1): 208-11.
[http://dx.doi.org/10.1063/1.4732493]
[34]
Mathur RB, Pande S, Singh BP, Dhami TL. Electrical and mechanical properties of multi-walled carbon, nanotubes reinforced PMMA and PS composite. Polym Compos 2008; 29(7): 717-27.
[http://dx.doi.org/10.1002/pc.20449]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy