Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Natural-Derived COX-2 Inhibitors as Anticancer Drugs: A Review of their Structural Diversity and Mechanism of Action

Author(s): Mohammad Mahboubi-Rabbani, Maryam Abbasi and Afshin Zarghi*

Volume 23, Issue 1, 2023

Published on: 02 August, 2022

Page: [15 - 36] Pages: 22

DOI: 10.2174/1389450123666220516153915

Price: $65

conference banner
Abstract

Cyclooxygenase-2 (COX-2) is a key-type enzyme playing a crucial role in cancer development, making it a target of high interest for drug designers. In the last two decades, numerous selective COX-2 inhibitors have been approved for various clinical conditions. However, data from clinical trials propose that the prolonged use of COX-2 inhibitors is associated with life-threatening cardiovascular side effects. The data indicate that a slight structural modification can help develop COX-2 selective inhibitors with comparative efficacy and limited side effects. In this regard, secondary metabolites from natural sources offer great hope for developing novel COX-2 inhibitors with potential anticancer activity. In recent years, various nature-derived organic scaffolds are being explored as leads for developing new COX-2 inhibitors. The current review attempts to highlight the COX-2 inhibition activity of some naturally occurring secondary metabolites, concerning their capacity to inhibit COX-1 and COX-2 enzymes and inhibit cancer development, aiming to establish a structure-activity relationship.

Keywords: Cyclooxygenase, COX-2 inhibitors, cardiovascular, homeostatic, anticancer, secondary metabolites.

Graphical Abstract

[1]
Ong, C.K.S.; Lirk, P.; Tan, C.H.; Seymour, R.A. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin. Med. Res., 2007, 5(1), 19-34.
[http://dx.doi.org/10.3121/cmr.2007.698] [PMID: 17456832]
[2]
Mitchell, J.A.; Warner, T.D. Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br. J. Pharmacol., 1999, 128(6), 1121-1132.
[http://dx.doi.org/10.1038/sj.bjp.0702897] [PMID: 10578123]
[3]
Vane, S.J. Differential inhibition of cyclooxygenase isoforms: An explanation of the action of NSAIDs. J. Clin. Rheumatol., 1998, 4(5)(Suppl.), s3-s10.
[http://dx.doi.org/10.1097/00124743-199810001-00002] [PMID: 19078319]
[4]
Botting, R.M. Vane’s discovery of the mechanism of action of aspirin changed our understanding of its clinical pharmacology. Pharmacol. Rep., 2010, 62(3), 518-525.
[http://dx.doi.org/10.1016/S1734-1140(10)70308-X]
[5]
Vane, J.R.; Botting, R.M. The mechanism of action of aspirin. Thromb. Res., 2003, 110(5-6), 255-258.
[http://dx.doi.org/10.1016/S0049-3848(03)00379-7] [PMID: 14592543]
[6]
Williams, C.S.; Mann, M.; DuBois, R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 1999, 18(55), 7908-7916.
[http://dx.doi.org/10.1038/sj.onc.1203286] [PMID: 10630643]
[7]
Lucido, M.J.; Orlando, B.J.; Vecchio, A.J.; Malkowski, M.G. Crystal Structure of aspirin-acetylated human cyclooxygenase-2: insight into the formation of products with reversed stereochemistry. Biochemistry, 2016, 55(8), 1226-1238.
[http://dx.doi.org/10.1021/acs.biochem.5b01378] [PMID: 26859324]
[8]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[9]
Danielsson, K.; Ebrahimi, M.; Wahlin, Y.B.; Nylander, K.; Boldrup, L. Increased levels of COX-2 in oral lichen planus supports an autoimmune cause of the disease. J. Eur. Acad. Dermatol. Venereol., 2012, 26(11), 1415-1419.
[http://dx.doi.org/10.1111/j.1468-3083.2011.04306.x] [PMID: 22017396]
[10]
Greenhough, A.; Smartt, H.J.M.; Moore, A.E.; Roberts, H.R.; Williams, A.C.; Paraskeva, C.; Kaidi, A. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 2009, 30(3), 377-386.
[http://dx.doi.org/10.1093/carcin/bgp014] [PMID: 19136477]
[11]
Burdan, F. Chałas, A.; Szumiło, J. Cyclooxygenase and prostanoids--biological implications. Postepy Hig. Med. Dosw., 2006, 60, 129-141.
[12]
Jang, Y.; Kim, M.; Hwang, S.W. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J. Neuroinflammation, 2020, 17(1), 30.
[http://dx.doi.org/10.1186/s12974-020-1703-1] [PMID: 31969159]
[13]
Sheng, J.; Sun, H.; Yu, F-B.; Li, B.; Zhang, Y.; Zhu, Y-T. The role of cyclooxygenase-2 in colorectal cancer. Int. J. Med. Sci., 2020, 17(8), 1095-1101.
[http://dx.doi.org/10.7150/ijms.44439] [PMID: 32410839]
[14]
Evans, J.F.; Kargman, S.L. Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr. Pharm. Des., 2004, 10(6), 627-634.
[http://dx.doi.org/10.2174/1381612043453126] [PMID: 14965325]
[15]
Pang, L.Y.; Hurst, E.A.; Argyle, D.J. Cyclooxygenase-2: A role in cancer stem cell survival and repopulation of cancer cells during therapy. Stem Cells Int., 2016, 2016, 2048731.
[http://dx.doi.org/10.1155/2016/2048731] [PMID: 27882058]
[16]
Wang, Z. The role of COX-2 in oral cancer development, and chemoprevention/treatment of oral cancer by selective COX-2 inhibitors. Curr. Pharm. Des., 2005, 11(14), 1771-1777.
[http://dx.doi.org/10.2174/1381612053764887] [PMID: 15892674]
[17]
Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; Burr, A.M.; Zhao, W.W.; Kent, J.D.; Lefkowith, J.B.; Verburg, K.M.; Geis, G.S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: The CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA, 2000, 284(10), 1247-1255.
[http://dx.doi.org/10.1001/jama.284.10.1247] [PMID: 10979111]
[18]
Ghodsi, R.; Zarghi, A.; Daraei, B.; Hedayati, M. Design, synthesis and biological evaluation of new 2,3-diarylquinoline derivatives as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2010, 18(3), 1029-1033.
[http://dx.doi.org/10.1016/j.bmc.2009.12.060] [PMID: 20061161]
[19]
Mahboubi-Rabbani, M.; Zarghi, A. Dual human carbonic anhydrase/cyclooxygenase-2 inhibitors: A promising approach for cancer treatment. Anticancer. Agents Med. Chem., 2021, 21(16), 2163-2180.
[http://dx.doi.org/10.2174/1871520621666210129093116] [PMID: 33511940]
[20]
Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
[21]
Müller, P.; Schier, A.F. Extracellular movement of signaling molecules. Dev. Cell, 2011, 21(1), 145-158.
[http://dx.doi.org/10.1016/j.devcel.2011.06.001] [PMID: 21763615]
[22]
Lee, K.; Lee, S.H.; Kim, T.H. The biology of prostaglandins and their role as a target for allergic airway disease therapy. Int. J. Mol. Sci., 2020, 21(5), 1851.
[http://dx.doi.org/10.3390/ijms21051851] [PMID: 32182661]
[23]
Tyagi, S.; Gupta, P.; Saini, A.S.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res., 2011, 2(4), 236-240.
[http://dx.doi.org/10.4103/2231-4040.90879] [PMID: 22247890]
[24]
Tao, Y-X.; Conn, P.M. Chaperoning G protein-coupled receptors: From cell biology to therapeutics. Endocr. Rev., 2014, 35(4), 602-647.
[http://dx.doi.org/10.1210/er.2013-1121] [PMID: 24661201]
[25]
Majed, B.H.; Khalil, R.A. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol. Rev., 2012, 64(3), 540-582.
[http://dx.doi.org/10.1124/pr.111.004770] [PMID: 22679221]
[26]
Huang, Z.L.; Urade, Y.; Hayaishi, O. Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr. Opin. Pharmacol., 2007, 7(1), 33-38.
[http://dx.doi.org/10.1016/j.coph.2006.09.004] [PMID: 17129762]
[27]
Urade, Y.; Hayaishi, O. Prostaglandin D2 and sleep/wake regulation. Sleep Med. Rev., 2011, 15(6), 411-418.
[http://dx.doi.org/10.1016/j.smrv.2011.08.003] [PMID: 22024172]
[28]
Dickerson, L.M.; Mazyck, P.J.; Hunter, M.H. Premenstrual syndrome. Am. Fam. Physician, 2003, 67(8), 1743-1752.
[PMID: 12725453]
[29]
Budoff, P.W. The use of prostaglandin inhibitors for the premenstrual syndrome. J. Reprod. Med., 1983, 28(7), 469-478.
[PMID: 6350580]
[30]
Queck, A.; Thomas, D.; Jansen, C.; Schreiber, Y.; Rüschenbaum, S.; Praktiknjo, M. Pathophysiological role of prostanoids in coagulation of the portal venous system in liver cirrhosis. PLoS One, 2019, 14(10), e0222840-e.
[31]
Narumiya, S. Physiology and pathophysiology of prostanoid receptors. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2007, 83(9-10), 296-319.
[http://dx.doi.org/10.2183/pjab.83.296] [PMID: 24367153]
[32]
Bley, K.R.; Hunter, J.C.; Eglen, R.M.; Smith, J.A. The role of IP prostanoid receptors in inflammatory pain. Trends Pharmacol. Sci., 1998, 19(4), 141-147.
[http://dx.doi.org/10.1016/S0165-6147(98)01185-7] [PMID: 9612089]
[33]
Zampronio, A.R.; Soares, D.M.; Souza, G.E.P. Central mediators involved in the febrile response: Effects of antipyretic drugs. Temperature, 2015, 2(4), 506-521.
[http://dx.doi.org/10.1080/23328940.2015.1102802] [PMID: 27227071]
[34]
Ushikubi, F.; Segi, E.; Sugimoto, Y.; Murata, T.; Matsuoka, T.; Kobayashi, T.; Hizaki, H.; Tuboi, K.; Katsuyama, M.; Ichikawa, A.; Tanaka, T.; Yoshida, N.; Narumiya, S. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature, 1998, 395(6699), 281-284.
[http://dx.doi.org/10.1038/26233] [PMID: 9751056]
[35]
Oka, T.; Oka, K.; Kobayashi, T.; Sugimoto, Y.; Ichikawa, A.; Ushikubi, F.; Narumiya, S.; Saper, C.B. Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors. J. Physiol., 2003, 551(Pt 3), 945-954.
[http://dx.doi.org/10.1113/jphysiol.2003.048140] [PMID: 12837930]
[36]
Ueno, R.; Ishikawa, Y.; Nakayama, T.; Hayaishi, O. Prostaglandin D2 induces sleep when microinjected into the preoptic area of conscious rats. Biochem. Biophys. Res. Commun., 1982, 109(2), 576-582.
[http://dx.doi.org/10.1016/0006-291X(82)91760-0] [PMID: 6960896]
[37]
Clyman, R.I.; Mauray, F.; Roman, C.; Rudolph, A.M. PGE2 is a more potent vasodilator of the lamb ductus arteriosus than is either PGI2 or 6 keto PGF1alpha. Prostaglandins, 1978, 16(2), 259-264.
[http://dx.doi.org/10.1016/0090-6980(78)90028-X] [PMID: 360304]
[38]
Lippton, H.L.; Paustian, P.W.; Sporl, L.; Kadowitz, P.J. Comparative effects of PGD2 and PGE2 in the regional circulation of the cat. Prostaglandins Med., 1980, 5(5), 365-373.
[http://dx.doi.org/10.1016/0161-4630(80)90108-1] [PMID: 7454886]
[39]
Smith, J.B. Prostaglandins and platelet aggregation. Acta Med. Scand. Suppl., 1981, 651, 91-99.
[PMID: 7034481]
[40]
Takeuchi, K.; Amagase, K. Roles of cyclooxygenase, prostaglandin e2 and ep receptors in mucosal protection and ulcer healing in the gastrointestinal tract. Curr. Pharm. Des., 2018, 24(18), 2002-2011.
[http://dx.doi.org/10.2174/1381612824666180629111227] [PMID: 29956615]
[41]
Bureau, M.F.; De Clerck, F.; Lefort, J.; Arreto, C.D.; Vargaftig, B.B. Thromboxane A2 accounts for bronchoconstriction but not for platelet sequestration and microvascular albumin exchanges induced by fMLP in the guinea pig lung. J. Pharmacol. Exp. Ther., 1992, 260(2), 832-840.
[PMID: 1738127]
[42]
Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World, 2018, 11(5), 627-635.
[http://dx.doi.org/10.14202/vetworld.2018.627-635] [PMID: 29915501]
[43]
Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol., 2020, 180, 114147.
[http://dx.doi.org/10.1016/j.bcp.2020.114147] [PMID: 32653589]
[44]
Zidar, N.; Odar, K.; Glavac, D.; Jerse, M.; Zupanc, T.; Stajer, D. Cyclooxygenase in normal human tissues--is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J. Cell. Mol. Med., 2009, 13(9B), 3753-3763.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00430.x] [PMID: 18657230]
[45]
Botting, R.; Ayoub, S.S. COX-3 and the mechanism of action of paracetamol/acetaminophen. Prostaglandins Leukot. Essent. Fatty Acids, 2005, 72(2), 85-87.
[http://dx.doi.org/10.1016/j.plefa.2004.10.005] [PMID: 15626590]
[46]
Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J., 1998, 12(12), 1063-1073.
[http://dx.doi.org/10.1096/fasebj.12.12.1063] [PMID: 9737710]
[47]
Font-Nieves, M.; Sans-Fons, M.G.; Gorina, R.; Bonfill-Teixidor, E.; Salas-Pérdomo, A.; Márquez-Kisinousky, L.; Santalucia, T.; Planas, A.M. Induction of COX-2 enzyme and down-regulation of COX-1 expression by lipopolysaccharide (LPS) control prostaglandin E2 production in astrocytes. J. Biol. Chem., 2012, 287(9), 6454-6468.
[http://dx.doi.org/10.1074/jbc.M111.327874] [PMID: 22219191]
[48]
Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. J. Lipid Res., 2009, 50, S29-S34.
[49]
Rastegar, H.; Ashtiani, H.R.A.; Mirzaei, A.; Bakhshandi, A.K. Cyclooxygenases: Proliferation and differentiation. Afr. J. Biotechnol., 2012, 11(90), 15600-15616.
[http://dx.doi.org/10.5897/AJB11.1889]
[50]
Wieduwilt, M.J.; Moasser, M.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell. Mol. Life Sci., 2008, 65(10), 1566-1584.
[http://dx.doi.org/10.1007/s00018-008-7440-8] [PMID: 18259690]
[51]
Mohamadkhani, A.; Akbari, M.R.; Ghanbari, R.; Naderi, E.; Rezanejad-Asl, P.; Pourshams, A. Direct sequencing of cyclooxygenase-2 (cox-2) revealed an intronic variant rs201231411 in Iranian patients with pancreatic cancer. Middle East J. Dig. Dis., 2015, 7(1), 14-18.
[PMID: 25628848]
[52]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[http://dx.doi.org/10.1021/jm0613166] [PMID: 17341061]
[53]
Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem., 2000, 69(1), 145-182.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.145] [PMID: 10966456]
[54]
Vecchio, A.J.; Simmons, D.M.; Malkowski, M.G. Structural basis of fatty acid substrate binding to cyclooxygenase-2. J. Biol. Chem., 2010, 285(29), 22152-22163.
[http://dx.doi.org/10.1074/jbc.M110.119867] [PMID: 20463020]
[55]
Furse, K.E.; Pratt, D.A.; Porter, N.A.; Lybrand, T.P. Molecular dynamics simulations of arachidonic acid complexes with COX-1 and COX-2: Insights into equilibrium behavior. Biochemistry, 2006, 45(10), 3189-3205.
[http://dx.doi.org/10.1021/bi052337p] [PMID: 16519514]
[56]
Taketo, M.M. Cyclooxygenase-2 inhibitors in tumorigenesis (part I). J. Natl. Cancer Inst., 1998, 90(20), 1529-1536.
[http://dx.doi.org/10.1093/jnci/90.20.1529] [PMID: 9790545]
[57]
Fosslien, E. Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit. Rev. Clin. Lab. Sci., 2000, 37(5), 431-502.
[http://dx.doi.org/10.1080/10408360091174286] [PMID: 11078056]
[58]
Limongelli, V.; Bonomi, M.; Marinelli, L.; Gervasio, F.L.; Cavalli, A.; Novellino, E.; Parrinello, M. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition. Proc. Natl. Acad. Sci, 2010, 107(12), 5411-5416.
[http://dx.doi.org/10.1073/pnas.0913377107] [PMID: 20215464]
[59]
Mahboubi Rabbani, S.M.I.; Zarghi, A. Selective COX-2 inhibitors as anticancer agents: A patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(6), 407-427.
[http://dx.doi.org/10.1080/13543776.2019.1623880] [PMID: 31132889]
[60]
Xu, X.C. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs, 2002, 13(2), 127-137.
[http://dx.doi.org/10.1097/00001813-200202000-00003] [PMID: 11901304]
[61]
Rodrigues, S.; Bruyneel, E.; Rodrigue, C.M.; Shahin, E.; Gespach, C. Cyclooxygenase 2 and carcinogenesis Bull. Cancer, 2004, 91(Suppl. 2), S61-S76.
[62]
Kern, M.A.; Haugg, A.M.; Koch, A.F.; Schilling, T.; Breuhahn, K.; Walczak, H.; Fleischer, B.; Trautwein, C.; Michalski, C.; Schulze-Bergkamen, H.; Friess, H.; Stremmel, W.; Krammer, P.H.; Schirmacher, P.; Müller, M. Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res., 2006, 66(14), 7059-7066.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0325] [PMID: 16849551]
[63]
Khan, Z.; Khan, N.; Tiwari, R.P.; Sah, N.K.; Prasad, G.B.; Bisen, P.S. Biology of Cox-2: An application in cancer therapeutics. Curr. Drug Targets, 2011, 12(7), 1082-1093.
[http://dx.doi.org/10.2174/138945011795677764] [PMID: 21443470]
[64]
Fujimura, T.; Ohta, T.; Oyama, K.; Miyashita, T.; Miwa, K. Role of cyclooxygenase-2 in the carcinogenesis of gastrointestinal tract cancers: A review and report of personal experience. World J. Gastroenterol., 2006, 12(9), 1336-1345.
[http://dx.doi.org/10.3748/wjg.v12.i9.1336] [PMID: 16552798]
[65]
Singh, B.; Berry, J.A.; Shoher, A.; Ayers, G.D.; Wei, C.; Lucci, A. COX-2 involvement in breast cancer metastasis to bone. Oncogene, 2007, 26(26), 3789-3796.
[http://dx.doi.org/10.1038/sj.onc.1210154] [PMID: 17213821]
[66]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[67]
Sinicrope, F.A.; Gill, S. Role of cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev., 2004, 23(1-2), 63-75.
[http://dx.doi.org/10.1023/A:1025863029529] [PMID: 15000150]
[68]
Piazuelo, E.; Jimenez, P.; Lanas, A. COX-2 inhibition in esophagitis, Barrett’s esophagus and esophageal cancer. Curr. Pharm. Des., 2003, 9(27), 2267-2280.
[http://dx.doi.org/10.2174/1381612033454009] [PMID: 14552327]
[69]
Yokouchi, H.; Kanazawa, K. Revisiting the role of COX-2 inhibitor for non-small cell lung cancer. Transl. Lung Cancer Res., 2015, 4(5), 660-664.
[PMID: 26629442]
[70]
Mohseni, H.; Zaslau, S.; McFadden, D.; Riggs, D.R.; Jackson, B.J.; Kandzari, S. COX-2 inhibition demonstrates potent anti-proliferative effects on bladder cancer in vitro. J. Surg. Res., 2004, 119(2), 138-142.
[http://dx.doi.org/10.1016/j.jss.2004.03.005] [PMID: 15145695]
[71]
Jana, D.; Sarkar, D.K.; Ganguly, S.; Saha, S.; Sa, G.; Manna, A.K.; Banerjee, A.; Mandal, S. Role of cyclooxygenase 2 (COX-2) in prognosis of breast cancer. Indian J. Surg. Oncol., 2014, 5(1), 59-65.
[http://dx.doi.org/10.1007/s13193-014-0290-y] [PMID: 24669166]
[72]
Kirschenbaum, A.; Liu, X.; Yao, S.; Levine, A.C. The role of cyclooxygenase-2 in prostate cancer. Urology, 2001, 58(2)(Suppl. 1), 127-131.
[http://dx.doi.org/10.1016/S0090-4295(01)01255-9] [PMID: 11502467]
[73]
Wang, Z.; Chen, J-Q.; Liu, J-L. COX-2 inhibitors and gastric cancer. Gastroenterol. Res. Pract., 2014, 2014, 132320.
[http://dx.doi.org/10.1155/2014/132320] [PMID: 25371669]
[74]
Bakhle, Y.S. COX-2 and cancer: A new approach to an old problem. Br. J. Pharmacol., 2001, 134(6), 1137-1150.
[http://dx.doi.org/10.1038/sj.bjp.0704365] [PMID: 11704632]
[75]
Speed, N.; Blair, I.A. Cyclooxygenase- and lipoxygenase-mediated DNA damage. Cancer Metastasis Rev., 2011, 30(3-4), 437-447.
[http://dx.doi.org/10.1007/s10555-011-9298-8] [PMID: 22009064]
[76]
Pai, R.; Soreghan, B.; Szabo, I.L.; Pavelka, M.; Baatar, D.; Tarnawski, A.S. Prostaglandin E2 transactivates EGF receptor: A novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat. Med., 2002, 8(3), 289-293.
[http://dx.doi.org/10.1038/nm0302-289] [PMID: 11875501]
[77]
Bazzani, L.; Donnini, S.; Finetti, F.; Christofori, G.; Ziche, M. PGE2/EP3/SRC signaling induces EGFR nuclear translocation and growth through EGFR ligands release in lung adenocarcinoma cells. Oncotarget, 2017, 8(19), 31270-31287.
[http://dx.doi.org/10.18632/oncotarget.16116] [PMID: 28415726]
[78]
Tveteraas, I.H.; Müller, K.M.; Aasrum, M.; Ødegård, J.; Dajani, O.; Guren, T.; Sandnes, D.; Christoffersen, T. Mechanisms involved in PGE2-induced transactivation of the epidermal growth factor receptor in MH1C1 hepatocarcinoma cells. J. Exp. Clin. Cancer Res., 2012, 31(1), 72.
[http://dx.doi.org/10.1186/1756-9966-31-72] [PMID: 22967907]
[79]
Steinert, D.; Küper, C.; Bartels, H.; Beck, F.X.; Neuhofer, W. PGE2 potentiates tonicity-induced COX-2 expression in renal medullary cells in a positive feedback loop involving EP2-cAMP-PKA signaling. Am. J. Physiol. Cell Physiol., 2009, 296(1), C75-C87.
[http://dx.doi.org/10.1152/ajpcell.00024.2008] [PMID: 19005164]
[80]
Yoshida, K.; Fujino, H.; Otake, S.; Seira, N.; Regan, J.W.; Murayama, T. Induction of cyclooxygenase-2 expression by prostaglandin E2 stimulation of the prostanoid EP4 receptor via coupling to Gαi and transactivation of the epidermal growth factor receptor in HCA-7 human colon cancer cells. Eur. J. Pharmacol., 2013, 718(1-3), 408-417.
[http://dx.doi.org/10.1016/j.ejphar.2013.08.002] [PMID: 23973650]
[81]
Shaulian, E.; Karin, M. AP-1 in cell proliferation and survival. Oncogene, 2001, 20(19), 2390-2400.
[http://dx.doi.org/10.1038/sj.onc.1204383] [PMID: 11402335]
[82]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[83]
Sun, Y.; Tang, X.M.; Half, E.; Kuo, M.T.; Sinicrope, F.A. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res., 2002, 62(21), 6323-6328.
[PMID: 12414664]
[84]
Nzeako, U.C.; Guicciardi, M.E.; Yoon, J.H.; Bronk, S.F.; Gores, G.J. COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells. Hepatology, 2002, 35(3), 552-559.
[http://dx.doi.org/10.1053/jhep.2002.31774] [PMID: 11870367]
[85]
Stuelten, C.H.; Parent, C.A.; Montell, D.J. Cell motility in cancer invasion and metastasis: Insights from simple model organisms. Nat. Rev. Cancer, 2018, 18(5), 296-312.
[http://dx.doi.org/10.1038/nrc.2018.15] [PMID: 29546880]
[86]
Wells, A. Cell motility in cancer invasion and metastasis; Springer Science & Business Media, 2006.
[http://dx.doi.org/10.1007/b103440]
[87]
Hidalgo-Estévez, A.M.; Stamatakis, K.; Jiménez-Martínez, M.; López-Pérez, R.; Fresno, M. Cyclooxygenase 2-regulated genes an alternative avenue to the development of new therapeutic drugs for colorectal cancer. Front. Pharmacol., 2020, 11(533), 533.
[http://dx.doi.org/10.3389/fphar.2020.00533] [PMID: 32410997]
[88]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[89]
Deryugina, E.I.; Quigley, J.P. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol., 2015, 44-46, 94-112.
[http://dx.doi.org/10.1016/j.matbio.2015.04.004] [PMID: 25912949]
[90]
Yao, M.; Lam, E.C.; Kelly, C.R.; Zhou, W.; Wolfe, M.M. Cyclooxygenase-2 selective inhibition with NS-398 suppresses proliferation and invasiveness and delays liver metastasis in colorectal cancer. Br. J. Cancer, 2004, 90(3), 712-719.
[http://dx.doi.org/10.1038/sj.bjc.6601489] [PMID: 14760389]
[91]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[92]
Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[93]
Liu, X.H.; Kirschenbaum, A.; Lu, M.; Yao, S.; Dosoretz, A.; Holland, J.F.; Levine, A.C. Prostaglandin E2 induces hypoxia-inducible factor-1α stabilization and nuclear localization in a human prostate cancer cell line. J. Biol. Chem., 2002, 277(51), 50081-50086.
[http://dx.doi.org/10.1074/jbc.M201095200] [PMID: 12401798]
[94]
Wu, G.; Luo, J.; Rana, J.S.; Laham, R.; Sellke, F.W.; Li, J. Involvement of COX-2 in VEGF-induced angiogenesis via P38 and JNK pathways in vascular endothelial cells. Cardiovasc. Res., 2006, 69(2), 512-519.
[http://dx.doi.org/10.1016/j.cardiores.2005.09.019] [PMID: 16336951]
[95]
Gallo, O.; Franchi, A.; Magnelli, L.; Sardi, I.; Vannacci, A.; Boddi, V.; Chiarugi, V.; Masini, E. Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia, 2001, 3(1), 53-61.
[http://dx.doi.org/10.1038/sj.neo.7900127] [PMID: 11326316]
[96]
Xu, L.; Stevens, J.; Hilton, M.B.; Seaman, S.; Conrads, T.P.; Veenstra, T.D. COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Sci. Transl. Med., 2014, 6(6), 242ra84.
[97]
Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol., 2012, 188(1), 21-28.
[http://dx.doi.org/10.4049/jimmunol.1101029] [PMID: 22187483]
[98]
Wu, S-Y.; Fu, T.; Jiang, Y-Z.; Shao, Z-M. Natural killer cells in cancer biology and therapy. Mol. Cancer, 2020, 19(1), 120.
[http://dx.doi.org/10.1186/s12943-020-01238-x] [PMID: 32762681]
[99]
Ching, M.M.; Reader, J.; Fulton, A.M. Eicosanoids in cancer: Prostaglandin e2 receptor 4 in cancer therapeutics and immunotherapy. Front. Pharmacol., 2020, 11(819), 819.
[http://dx.doi.org/10.3389/fphar.2020.00819] [PMID: 32547404]
[100]
Harizi, H. The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. BioMed Res. Int., 2013, 2013, 683405.
[http://dx.doi.org/10.1155/2013/683405] [PMID: 24024207]
[101]
Holt, D.; Ma, X.; Kundu, N.; Fulton, A. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol. Immunother., 2011, 60(11), 1577-1586.
[http://dx.doi.org/10.1007/s00262-011-1064-9] [PMID: 21681369]
[102]
Sui, H.; Zhou, S.; Wang, Y.; Liu, X.; Zhou, L.; Yin, P.; Fan, Z.; Li, Q. COX-2 contributes to P-glycoprotein-mediated multidrug resistance via phosphorylation of c-Jun at Ser63/73 in colorectal cancer. Carcinogenesis, 2011, 32(5), 667-675.
[http://dx.doi.org/10.1093/carcin/bgr016] [PMID: 21296766]
[103]
Moon, H-J.; Kim, H-B.; Lee, S-H.; Jeun, S-E.; Kang, C-D.; Kim, S-H. Sensitization of multidrug-resistant cancer cells to Hsp90 inhibitors by NSAIDs-induced apoptotic and autophagic cell death. Oncotarget, 2018, 9(13), 11303-11321.
[http://dx.doi.org/10.18632/oncotarget.24130] [PMID: 29541415]
[104]
Kalle, A.M.; Rizvi, A. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrob. Agents Chemother., 2011, 55(1), 439-442.
[http://dx.doi.org/10.1128/AAC.00735-10] [PMID: 20937780]
[105]
O’Driscoll, L.; Walsh, N.; Larkin, A.; Ballot, J.; Ooi, W.S.; Gullo, G.; O’Connor, R.; Clynes, M.; Crown, J.; Kennedy, S. MDR1/P-glycoprotein and MRP-1 drug efflux pumps in pancreatic carcinoma. Anticancer Res., 2007, 27(4B), 2115-2120.
[PMID: 17695494]
[106]
Rahman, M.; Selvarajan, K.; Hasan, M.R.; Chan, A.P.; Jin, C.; Kim, J.; Chan, S.K.; Le, N.D.; Kim, Y.B.; Tai, I.T. Inhibition of COX-2 in colon cancer modulates tumor growth and MDR-1 expression to enhance tumor regression in therapy-refractory cancers in vivo. Neoplasia, 2012, 14(7), 624-633.
[http://dx.doi.org/10.1593/neo.12486] [PMID: 22904679]
[107]
Richards, J.A.; Brueggemeier, R.W. Prostaglandin E2 regulates aromatase activity and expression in human adipose stromal cells via two distinct receptor subtypes. J. Clin. Endocrinol. Metab., 2003, 88(6), 2810-2816.
[http://dx.doi.org/10.1210/jc.2002-021475] [PMID: 12788892]
[108]
Biava, M. Introduction to COX inhibitors. Fut. Med. Sci., 2018, 10(5)
[http://dx.doi.org/10.4155/fmc-2018-0159]
[109]
Zarghi, A.; Arefi, H.; Dadrass, O.G.; Torabi, S. Design and synthesis of new 2-aryl, 3-benzyl-(1,3-oxazolidine or 1,3-thiazolidine)-4-ones as selective cyclooxygenase (COX-2) inhibitors. Med. Chem. Res., 2010, 19(8), 782-793.
[http://dx.doi.org/10.1007/s00044-009-9230-8]
[110]
Zarghi, A.; Arfaee, S.; Rao, P.N.; Knaus, E.E. Design, synthesis, and biological evaluation of 1,3-diarylprop-2-en-1-ones: A novel class of cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2006, 14(8), 2600-2605.
[http://dx.doi.org/10.1016/j.bmc.2005.11.041] [PMID: 16356730]
[111]
Shahrasbi, M.; Azami Movahed, M.; Ghorban Dadras, O.; Daraei, B.; Zarghi, A. Design, synthesis and biological evaluation of new Imidazo [2, 1-B] thiazole derivatives as selective COX-2 inhibitors. Iran. J. Pharm. Res., 2018, 17(4), 1288-1296.
[PMID: 30568687]
[112]
Zarghi, A.; Ghodsi, R. Design, synthesis, and biological evaluation of ketoprofen analogs as potent cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2010, 18(16), 5855-5860.
[http://dx.doi.org/10.1016/j.bmc.2010.06.094] [PMID: 20650641]
[113]
Zarghi, A.; Arfaei, S.; Ghodsi, R. Design and synthesis of new 2,4,5-triarylimidazole derivatives as selective cyclooxygenase (COX-2) inhibitors. Med. Chem. Res., 2012, 21(8), 1803-1810.
[http://dx.doi.org/10.1007/s00044-011-9710-5]
[114]
Akbari, S.; Zebardast, T.; Zarghi, A.; Hajimahdi, Z. QSAR modeling of COX-2 inhibitory activity of some dihydropyridine and hydroquinoline derivatives using multiple linear regression (MLR) method. Iran. J. Pharm. Res., 2017, 16(2), 525-532.
[PMID: 28979307]
[115]
Zarghi, A.; Reihanfard, H.; Arfaei, S.; Daraei, B.; Hedayati, M. Design and synthesis of new 1, 2-diaryl-4, 5, 6, 7-tetrahydro-1H-benzo [d] imidazoles as selective cyclooxygenase (COX-2) inhibitors. Med. Chem. Res., 2012, 21(8), 1869-1875.
[http://dx.doi.org/10.1007/s00044-011-9709-y]
[116]
Sabakhi, I.; Topuzyan, V.; Hajimahdi, Z.; Daraei, B.; Arefi, H.; Zarghi, A. Design, synthesis and biological evaluation of new 1, 4-dihydropyridine (DHP) derivatives as selective cyclooxygenase-2 inhibitors. Iran. J. Pharm. Res., 2015, 14(4), 1087-1093.
[PMID: 26664375]
[117]
Zebardast, T.; Zarghi, A.; Daraie, B.; Hedayati, M.; Dadrass, O.G. Design and synthesis of 3-alkyl-2-aryl-1,3-thiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(12), 3162-3165.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.125] [PMID: 19447036]
[118]
Zarghi, A.; Zebardast, T.; Daraie, B.; Hedayati, M. Design and synthesis of new 1,3-benzthiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem., 2009, 17(15), 5369-5373.
[http://dx.doi.org/10.1016/j.bmc.2009.06.056] [PMID: 19596198]
[119]
Zarghi, A.; Ghodsi, R.; Azizi, E.; Daraie, B.; Hedayati, M.; Dadrass, O.G. Synthesis and biological evaluation of new 4-carboxyl quinoline derivatives as cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2009, 17(14), 5312-5317.
[http://dx.doi.org/10.1016/j.bmc.2009.05.084] [PMID: 19560931]
[120]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[121]
Janse van Rensburg, H.D.; Legoabe, L.J. Terre’Blanche, G. C3 amino-substituted chalcone derivative with selective adenosine rA1 receptor affinity in the micromolar range. Chem. Zvesti, 2021, 75(4), 1581-1605.
[http://dx.doi.org/10.1007/s11696-020-01414-9] [PMID: 33223599]
[122]
Macarini, A.F.; Sobrinho, T.U.C.; Rizzi, G.W.; Corrêa, R. Pyrazole–chalcone derivatives as selective COX-2 inhibitors: Design, virtual screening, and in vitro analysis. Med. Chem. Res., 2019, 28(8), 1235-1245.
[http://dx.doi.org/10.1007/s00044-019-02368-8]
[123]
Almutairi, M.S.; Hegazy, G.H.; Haiba, M.E.; Ali, H.I.; Khalifa, N.M.; Soliman, A-M. Synthesis, docking and biological activities of novel hybrids celecoxib and anthraquinone analogs as potent cytotoxic agents. Int. J. Mol. Sci., 2014, 15(12), 22580-22603.
[http://dx.doi.org/10.3390/ijms151222580] [PMID: 25490139]
[124]
Liao, J-C.; Deng, J-S.; Chiu, C-S.; Hou, W-C.; Huang, S-S.; Shie, P-H.; Huang, G.J. Anti-inflammatory activities of cinnamomum cassia constituents in vitro and in vivo. Evid. Based Complement. Alternat. Med., 2012, 2012, 429320.
[http://dx.doi.org/10.1155/2012/429320] [PMID: 22536283]
[125]
Silva, T.; Borges, F.; Edraki, N.; Alizadeh, M.; Miri, R.; Saso, L.; Firuzi, O. Hydroxycinnamic acid as a novel scaffold for the development of cyclooxygenase-2 inhibitors. RSC Advances, 2015, 5(72), 58902-58911.
[http://dx.doi.org/10.1039/C5RA08692B]
[126]
Ribeiro, D.; Proença, C.; Varela, C.; Janela, J.; Tavares da Silva, E.J.; Fernandes, E.; Roleira, F.M.F. New phenolic cinnamic acid derivatives as selective COX-2 inhibitors. Design, synthesis, biological activity and structure-activity relationships. Bioorg. Chem., 2019, 91, 103179.
[http://dx.doi.org/10.1016/j.bioorg.2019.103179] [PMID: 31404794]
[127]
Dawood, D.H.; Batran, R.Z.; Farghaly, T.A.; Khedr, M.A.; Abdulla, M.M. New coumarin derivatives as potent selective COX‐2 inhibitors: Synthesis, anti‐Inflammatory, QSAR, and molecular modeling studies. Arch. Pharm. (Weinheim), 2015, 348(12), 875-888.
[http://dx.doi.org/10.1002/ardp.201500274] [PMID: 26462142]
[128]
Manikandan, A.; Ravichandran, S.; Sathiyanarayanan, K.I.; Sivakumar, A. Efficacy of phenyl quinoline phenol derivatives as COX-2 inhibitors; an approach to emergent the small molecules as the anti-inflammatory and analgesic therapeutics. Inflammopharmacology, 2017, 25(6), 621-631.
[http://dx.doi.org/10.1007/s10787-017-0342-3] [PMID: 28378280]
[129]
Zykova, T.A.; Zhu, F.; Zhai, X.; Ma, W-Y.; Ermakova, S.P.; Lee, K.W.; Bode, A.M.; Dong, Z. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol. Carcinog., 2008, 47(10), 797-805.
[http://dx.doi.org/10.1002/mc.20437] [PMID: 18381589]
[130]
Savio, M.; Ferraro, D.; Maccario, C.; Vaccarone, R.; Jensen, L.D.; Corana, F.; Mannucci, B.; Bianchi, L.; Cao, Y.; Stivala, L.A. Resveratrol analogue 4,4′-dihydroxy-trans-stilbene potently inhibits cancer invasion and metastasis. Sci. Rep., 2016, 6(1), 19973.
[http://dx.doi.org/10.1038/srep19973] [PMID: 26829331]
[131]
Sirerol, J.A.; Rodríguez, M.L.; Mena, S.; Asensi, M.A.; Estrela, J.M.; Ortega, A.L. Role of natural stilbenes in the prevention of cancer. Oxid. Med. Cell. Longev., 2016, 2016, 3128951.
[http://dx.doi.org/10.1155/2016/3128951] [PMID: 26798416]
[132]
Saha, B.; Pai, G.B.; Subramanian, M.; Gupta, P.; Tyagi, M.; Patro, B.S.; Chattopadhyay, S. Resveratrol analogue, trans-4,4′-dihydroxystilbene (DHS), inhibits melanoma tumor growth and suppresses its metastatic colonization in lungs. Biomed. Pharmacother., 2018, 107, 1104-1114.
[http://dx.doi.org/10.1016/j.biopha.2018.08.085] [PMID: 30257322]
[133]
Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.; Szekeres, T.; Jäger, W. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: Synthesis and structure-activity relationship. Bioorg. Med. Chem., 2004, 12(21), 5571-5578.
[http://dx.doi.org/10.1016/j.bmc.2004.08.008] [PMID: 15465334]
[134]
Regulski, M.; Piotrowska-Kempisty, H. Prukała, W.; Dutkiewicz, Z.; Regulska, K.; Stanisz, B.; Murias, M. Synthesis, in vivo and in vitro evaluation of novel trans-stilbene analogues as potential COX-2 inhibitors. Bioorg. Med. Chem., 2018, 26(1), 141-151.
[http://dx.doi.org/10.1016/j.bmc.2017.11.027] [PMID: 29191502]
[135]
Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers (Basel), 2018, 11(1), 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[136]
Jeong, J.H.; An, J.Y.; Kwon, Y.T.; Rhee, J.G.; Lee, Y.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem., 2009, 106(1), 73-82.
[http://dx.doi.org/10.1002/jcb.21977] [PMID: 19009557]
[137]
Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828.
[http://dx.doi.org/10.3892/or.2017.5766] [PMID: 28677813]
[138]
Lee, K.M.; Lee, K.W.; Jung, S.K.; Lee, E.J.; Heo, Y.S.; Bode, A.M.; Lubet, R.A.; Lee, H.J.; Dong, Z. Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity. Biochem. Pharmacol., 2010, 80(12), 2042-2049.
[http://dx.doi.org/10.1016/j.bcp.2010.06.042] [PMID: 20599768]
[139]
Park, S.E.; Sapkota, K.; Kim, S.; Kim, H.; Kim, S.J. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br. J. Pharmacol., 2011, 164(3), 1008-1025.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01389.x] [PMID: 21449918]
[140]
Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[141]
Kiraly, A.J.; Soliman, E.; Jenkins, A.; Van Dross, R.T. Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice. Prostaglandins Leukot. Essent. Fatty Acids, 2016, 104, 44-53.
[http://dx.doi.org/10.1016/j.plefa.2015.11.006] [PMID: 26802941]
[142]
Jara-Gutiérrez, Á.; Baladrón, V. The role of prostaglandins in different types of cancer. Cells, 2021, 10(6), 1487.
[http://dx.doi.org/10.3390/cells10061487] [PMID: 34199169]
[143]
Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants, 2019, 8(2), 35.
[http://dx.doi.org/10.3390/antiox8020035] [PMID: 30764536]
[144]
Ponte, L.G.S.; Pavan, I.C.B.; Mancini, M.C.S.; da Silva, L.G.S.; Morelli, A.P.; Severino, M.B.; Bezerra, R.M.N.; Simabuco, F.M. The hallmarks of flavonoids in cancer. Molecules, 2021, 26(7), 2029.
[http://dx.doi.org/10.3390/molecules26072029] [PMID: 33918290]
[145]
Swami, S.; Krishnan, A.V.; Moreno, J.; Bhattacharyya, R.S.; Gardner, C.; Brooks, J.D.; Peehl, D.M.; Feldman, D. Inhibition of prostaglandin synthesis and actions by genistein in human prostate cancer cells and by soy isoflavones in prostate cancer patients. Int. J. Cancer, 2009, 124(9), 2050-2059.
[http://dx.doi.org/10.1002/ijc.24161] [PMID: 19127598]
[146]
Chavan, H.V.; Bandgar, B.P.; Adsul, L.K.; Dhakane, V.D.; Bhale, P.S.; Thakare, V.N.; Masand, V. Design, synthesis, characterization and anti-inflammatory evaluation of novel pyrazole amalgamated flavones. Bioorg. Med. Chem. Lett., 2013, 23(5), 1315-1321.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.094] [PMID: 23357629]
[147]
Baek, S-H.; Hwang, S.; Park, T.; Kwon, Y-J.; Cho, M.; Park, D. Evaluation of selective cox-2 inhibition and in vitro study of kuwanon derivatives isolated from morus alba. Int. J. Mol. Sci., 2021, 22(7), 3659.
[http://dx.doi.org/10.3390/ijms22073659] [PMID: 33915826]
[148]
Farzaneh, S.; Zeinalzadeh, E.; Daraei, B.; Shahhosseini, S.; Zarghi, A. New ferrocene compounds as selective cyclooxygenase (cox-2) inhibitors: Design, synthesis, cytotoxicity and enzyme-inhibitory activity. Anticancer. Agents Med. Chem., 2018, 18(2), 295-301.
[http://dx.doi.org/10.2174/1871520617666171003145533] [PMID: 28971779]
[149]
Razmi, A.; Zarghi, A.; Arfaee, S.; Naderi, N.; Faizi, M. Evaluation of anti-nociceptive and anti-inflammatory activities of novel chalcone derivatives. Iran. J. Pharm. Res., 2013, 12(Suppl.), 153-159.
[PMID: 24250683]
[150]
Zarghi, A.; Zebardast, T.; Hakimion, F.; Shirazi, F.H.; Rao, P.N.; Knaus, E.E. Synthesis and biological evaluation of 1,3-diphenylprop-2-en-1-ones possessing a methanesulfonamido or an azido pharmacophore as cyclooxygenase-1/-2 inhibitors. Bioorg. Med. Chem., 2006, 14(20), 7044-7050.
[http://dx.doi.org/10.1016/j.bmc.2006.06.022] [PMID: 16798002]
[151]
Mourad, M.A.E.; Abdel-Aziz, M.; Abuo-Rahma, G-D.; Farag, H.H. Design, synthesis and anticancer activity of nitric oxide donating/chalcone hybrids. Eur. J. Med. Chem., 2012, 54, 907-913.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.030] [PMID: 22703846]
[152]
Li, J.; Li, D.; Xu, Y.; Guo, Z.; Liu, X.; Yang, H.; Wu, L.; Wang, L. Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2017, 27(3), 602-606.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.008] [PMID: 28011213]
[153]
Fu, Z-Y.; Jin, Q-H.; Qu, Y-L.; Guan, L-P. Chalcone derivatives bearing chromen or benzo[f]chromen moieties: Design, synthesis, and evaluations of anti-inflammatory, analgesic, selective COX-2 inhibitory activities. Bioorg. Med. Chem. Lett., 2019, 29(15), 1909-1912.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.051] [PMID: 31160177]
[154]
Labib, M.B.; Sharkawi, S.M.Z.; El-Daly, M. Design, synthesis of novel isoindoline hybrids as COX-2 inhibitors: Anti-inflammatory, analgesic activities and docking study. Bioorg. Chem., 2018, 80, 70-80.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.018] [PMID: 30005203]
[155]
Hawash, M.; Jaradat, N.; Hameedi, S.; Mousa, A. Design, synthesis and biological evaluation of novel benzodioxole derivatives as COX inhibitors and cytotoxic agents. BMC Chem., 2020, 14(1), 54.
[http://dx.doi.org/10.1186/s13065-020-00706-1] [PMID: 32944715]
[156]
Abdelgawad, M.A.; Musa, A.; Almalki, A.H.; Alzarea, S.I.; Mostafa, E.M.; Hegazy, M.M.; Mostafa-Hedeab, G.; Ghoneim, M.M.; Parambi, D.G.T.; Bakr, R.B.; Al-Muaikel, N.S.; Alanazi, A.S.; Alharbi, M.; Ahmad, W.; Bukhari, S.N.A.; Al-Sanea, M.M. Novel phenolic compounds as potential dual egfr and cox-2 inhibitors: Design, semisynthesis, in vitro biological evaluation and in vitro insights. Drug Des. Devel. Ther., 2021, 15, 2325-2337.
[http://dx.doi.org/10.2147/DDDT.S310820] [PMID: 34103896]
[157]
Vernieri, E.; Gomez-Monterrey, I.; Milite, C.; Grieco, P.; Musella, S.; Bertamino, A. Design, synthesis, and evaluation of new tripeptides as COX-2 inhibitors. J. Amino Acids, 2013, 2013, 606282.
[158]
Singh, P.; Kaur, S.; Kaur, J.; Singh, G.; Bhatti, R. Rational design of small peptides for optimal inhibition of cyclooxygenase-2: Development of a highly effective anti-inflammatory agent. J. Med. Chem., 2016, 59(8), 3920-3934.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00134] [PMID: 27019010]
[159]
Ahmaditaba, M.A.; Shahosseini, S.; Daraei, B.; Zarghi, A.; Houshdar Tehrani, M.H. Design, synthesis, and biological evaluation of new peptide analogues as selective cox-2 inhibitors. Arch. Pharm. (Weinheim), 2017, 350(10), 1700158.
[http://dx.doi.org/10.1002/ardp.201700158] [PMID: 28872704]
[160]
Ahmaditaba, M.A.; Houshdar Tehrani, M.H.; Zarghi, A.; Shahosseini, S.; Daraei, B. Design, synthesis and biological evaluation of novel peptide-like analogues as selective cox-2 inhibitors. Iran. J. Pharm. Res., 2018, 17(1), 87-92.
[PMID: 29755541]
[161]
Hashmi, M.A.; Khan, A.; Farooq, U.; Khan, S. Alkaloids as cyclooxygenase inhibitors in anticancer drug discovery. Curr. Protein Pept. Sci., 2018, 19(3), 292-301.
[http://dx.doi.org/10.2174/1389203718666170106103031] [PMID: 28059042]
[162]
Niu, X.F.; Zhou, P.; Li, W.F.; Xu, H-B. Effects of chelerythrine, a specific inhibitor of cyclooxygenase-2, on acute inflammation in mice. Fitoterapia, 2011, 82(4), 620-625.
[http://dx.doi.org/10.1016/j.fitote.2011.01.020] [PMID: 21291962]
[163]
Chmura, S.J.; Dolan, M.E.; Cha, A.; Mauceri, H.J.; Kufe, D.W.; Weichselbaum, R.R. In vitro and in vivo activity of protein kinase C inhibitor chelerythrine chloride induces tumor cell toxicity and growth delay in vivo. Clin. Cancer Res., 2000, 6(2), 737-742.
[PMID: 10690561]
[164]
Chen, X.M.; Zhang, M.; Fan, P.L.; Qin, Y.H.; Zhao, H.W. Chelerythrine chloride induces apoptosis in renal cancer HEK-293 and SW-839 cell lines. Oncol. Lett., 2016, 11(6), 3917-3924.
[http://dx.doi.org/10.3892/ol.2016.4520] [PMID: 27313717]
[165]
Zhu, Y.; Pan, Y.; Zhang, G.; Wu, Y.; Zhong, W.; Chu, C.; Qian, Y.; Zhu, G. Chelerythrine inhibits human hepatocellular carcinoma metastasis in vitro. Biol. Pharm. Bull., 2018, 41(1), 36-46.
[http://dx.doi.org/10.1248/bpb.b17-00451] [PMID: 29093327]
[166]
Lin, W.; Huang, J.; Yuan, Z.; Feng, S.; Xie, Y.; Ma, W. Protein kinase C inhibitor chelerythrine selectively inhibits proliferation of triple-negative breast cancer cells. Sci. Rep., 2017, 7(1), 2022.
[http://dx.doi.org/10.1038/s41598-017-02222-0] [PMID: 28515445]
[167]
Kemény-Beke, A.; Aradi, J.; Damjanovich, J.; Beck, Z.; Facskó, A.; Berta, A.; Bodnár, A. Apoptotic response of uveal melanoma cells upon treatment with chelidonine, sanguinarine and chelerythrine. Cancer Lett., 2006, 237(1), 67-75.
[http://dx.doi.org/10.1016/j.canlet.2005.05.037] [PMID: 16019128]
[168]
Park, J.E.; Cuong, T.D.; Hung, T.M.; Lee, I.; Na, M.; Kim, J-C.; Ryoo, S.; Lee, J.H.; Choi, J.S.; Woo, M.H.; Min, B.S. Alkaloids from Chelidonium majus and their inhibitory effects on lps-induced no production in RAW264.7 cells. Bioorg. Med. Chem. Lett., 2011, 21(23), 6960-6963.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.128] [PMID: 22024033]
[169]
Liao, W.; He, X.; Yi, Z.; Xiang, W.; Ding, Y. Chelidonine suppresses LPS-Induced production of inflammatory mediators through the inhibitory of the TLR4/NF-κB signaling pathway in RAW264.7 macrophages. Biomed. Pharmacother., 2018.
[170]
Du, B.; Cao, L.; Wang, K.; Miu, J.; Yao, L.; Xu, Z.; Song, J. Peiminine attenuates acute lung injury induced by lps through inhibiting lipid rafts formation. Inflammation, 2020, 43(3), 1110-1119.
[http://dx.doi.org/10.1007/s10753-020-01198-w] [PMID: 32152924]
[171]
Niu, X.; Zhang, H.; Li, W.; Mu, Q.; Yao, H.; Wang, Y. Anti-inflammatory effects of cavidine in vitro and in vivo, a selective COX-2 inhibitor in LPS-induced peritoneal macrophages of mouse. Inflammation, 2015, 38(2), 923-933.
[http://dx.doi.org/10.1007/s10753-014-0054-4] [PMID: 25373916]
[172]
Yun, K-J.; Shin, J-S.; Choi, J-H.; Back, N-I.; Chung, H-G.; Lee, K-T. Quaternary alkaloid, pseudocoptisine isolated from tubers of Corydalis turtschaninovi inhibits LPS-induced nitric oxide, PGE(2), and pro-inflammatory cytokines production via the down-regulation of NF-kappaB in RAW 264.7 murine macrophage cells. Int. Immunopharmacol., 2009, 9(11), 1323-1331.
[http://dx.doi.org/10.1016/j.intimp.2009.08.001] [PMID: 19666143]
[173]
Fukuda, K.; Hibiya, Y.; Mutoh, M.; Koshiji, M.; Akao, S.; Fujiwara, H. Inhibition by berberine of cyclooxygenase-2 transcriptional activity in human colon cancer cells. J. Ethnopharmacol., 1999, 66(2), 227-233.
[http://dx.doi.org/10.1016/S0378-8741(98)00162-7] [PMID: 10433483]
[174]
Liu, D.; Meng, X.; Wu, D.; Qiu, Z.; Luo, H. A Natural isoquinoline alkaloid with antitumor activity: Studies of the biological activities of berberine. Front. Pharmacol., 2019, 10(9), 9.
[http://dx.doi.org/10.3389/fphar.2019.00009] [PMID: 30837865]
[175]
Sawhney, M.; Rohatgi, N.; Kaur, J.; Shishodia, S.; Sethi, G.; Gupta, S.D.; Deo, S.V.; Shukla, N.K.; Aggarwal, B.B.; Ralhan, R. Expression of NF-kappaB parallels COX-2 expression in oral precancer and cancer: Association with smokeless tobacco. Int. J. Cancer, 2007, 120(12), 2545-2556.
[http://dx.doi.org/10.1002/ijc.22657] [PMID: 17354234]
[176]
Och, A.; Podgórski, R.; Nowak, R. Biological activity of berberine-a summary update. Toxins (Basel), 2020, 12(11), 713.
[http://dx.doi.org/10.3390/toxins12110713] [PMID: 33198257]
[177]
Kuo, C.L.; Chi, C.W.; Liu, T.Y. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett., 2004, 203(2), 127-137.
[http://dx.doi.org/10.1016/j.canlet.2003.09.002] [PMID: 14732220]
[178]
Huh, J.; Liepins, A.; Zielonka, J.; Andrekopoulos, C.; Kalyanaraman, B.; Sorokin, A. Cyclooxygenase 2 rescues LNCaP prostate cancer cells from sanguinarine-induced apoptosis by a mechanism involving inhibition of nitric oxide synthase activity. Cancer Res., 2006, 66(7), 3726-3736.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4033] [PMID: 16585199]
[179]
Liu, T.; Liu, X.; Li, W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget, 2016, 7(26), 40800-40815.
[http://dx.doi.org/10.18632/oncotarget.8315] [PMID: 27027348]
[180]
Zhang, H.; Jiao, Y.; Shi, C.; Song, X.; Chang, Y.; Ren, Y.; Shi, X. Berbamine suppresses cell proliferation and promotes apoptosis in ovarian cancer partially via the inhibition of Wnt/β-catenin signaling. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(6), 532-539.
[http://dx.doi.org/10.1093/abbs/gmy036] [PMID: 29701777]
[181]
Xu, R.; Dong, Q.; Yu, Y.; Zhao, X.; Gan, X.; Wu, D.; Lu, Q.; Xu, X.; Yu, X.F. Berbamine: A novel inhibitor of bcr/abl fusion gene with potent anti-leukemia activity. Leuk. Res., 2006, 30(1), 17-23.
[http://dx.doi.org/10.1016/j.leukres.2005.05.023] [PMID: 16023722]
[182]
Duan, H.; Luan, J.; Liu, Q.; Yagasaki, K.; Zhang, G. Suppression of human lung cancer cell growth and migration by berbamine. Cytotechnology, 2010, 62(4), 341-348.
[http://dx.doi.org/10.1007/s10616-009-9240-x] [PMID: 19967402]
[183]
Liu, Z-M.; Huang, X-Y.; Cui, M-R.; Zhang, X-D.; Chen, Z.; Yang, B-S.; Zhao, X.K. Amaryllidaceae alkaloids from the bulbs of Lycoris radiata with cytotoxic and anti-inflammatory activities. Fitoterapia, 2015, 101, 188-193.
[http://dx.doi.org/10.1016/j.fitote.2015.01.003] [PMID: 25596094]
[184]
Chen, C-H.; Liao, C-H.; Chang, Y-L.; Guh, J-H.; Pan, S-L.; Teng, C-M. Protopine, a novel microtubule-stabilizing agent, causes mitotic arrest and apoptotic cell death in human hormone-refractory prostate cancer cell lines. Cancer Lett., 2012, 315(1), 1-11.
[http://dx.doi.org/10.1016/j.canlet.2011.09.042] [PMID: 22033245]
[185]
Bournine, L.; Bensalem, S.; Wauters, J-N.; Iguer-Ouada, M.; Maiza-Benabdesselam, F.; Bedjou, F.; Castronovo, V.; Bellahcène, A.; Tits, M.; Frédérich, M. Identification and quantification of the main active anticancer alkaloids from the root of Glaucium flavum. Int. J. Mol. Sci., 2013, 14(12), 23533-23544.
[http://dx.doi.org/10.3390/ijms141223533] [PMID: 24317429]
[186]
Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; Cao, D.; Liao, Q. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther., 2018, 11, 2063-2073.
[http://dx.doi.org/10.2147/OTT.S161109] [PMID: 29695914]
[187]
Utar, Z.; Majid, M.I.; Adenan, M.I.; Jamil, M.F.A.; Lan, T.M. Mitragynine inhibits the COX-2 mRNA expression and prostaglandin E₂ production induced by lipopolysaccharide in RAW264.7 macrophage cells. J. Ethnopharmacol., 2011, 136(1), 75-82.
[http://dx.doi.org/10.1016/j.jep.2011.04.011] [PMID: 21513785]
[188]
Goh, T.B.; Koh, R.Y.; Mordi, M.N.; Mansor, S.M. Antioxidant value and antiproliferative efficacy of mitragynine and a silane reduced analogue. APJCP, 2014, 15(14), 5659-5665.
[PMID: 25081682]
[189]
Kang, J.; Zhang, Y.; Cao, X.; Fan, J.; Li, G.; Wang, Q.; Diao, Y.; Zhao, Z.; Luo, L.; Yin, Z. Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. Int. Immunopharmacol., 2012, 12(1), 249-256.
[http://dx.doi.org/10.1016/j.intimp.2011.11.018] [PMID: 22155741]
[190]
Wang, J.; Xu, J.; Xing, G. Lycorine inhibits the growth and metastasis of breast cancer through the blockage of STAT3 signaling pathway. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(9), 771-779.
[http://dx.doi.org/10.1093/abbs/gmx076] [PMID: 28910973]
[191]
Dalwadi, H.; Krysan, K.; Heuze-Vourc’h, N.; Dohadwala, M.; Elashoff, D.; Sharma, S.; Cacalano, N.; Lichtenstein, A.; Dubinett, S. Cyclooxygenase-2-dependent activation of signal transducer and activator of transcription 3 by interleukin-6 in non-small cell lung cancer. Clin. Cancer Res., 2005, 11(21), 7674-7682.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1205] [PMID: 16278387]
[192]
Lo, H-W.; Cao, X.; Zhu, H.; Ali-Osman, F. Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes. Mol. Cancer Res., 2010, 8(2), 232-245.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0391] [PMID: 20145033]
[193]
Yoo, J.H.; Ha, T-W.; Hong, J.T.; Oh, K-W. Sinomenine, an alkaloid derived from Sinomenium acutum potentiates pentobarbital-induced sleep behaviors and non-rapid eye movement (NREM) sleep in rodents. Biomol. Ther. (Seoul), 2017, 25(6), 586-592.
[http://dx.doi.org/10.4062/biomolther.2017.157] [PMID: 29081090]
[194]
Liu, W.; Yu, X.; Zhou, L.; Li, J.; Li, M.; Li, W.; Gao, F. Sinomenine inhibits non-small cell lung cancer via downregulation of hexokinases II-mediated aerobic glycolysis. OncoTargets Ther., 2020, 13, 3209-3221.
[http://dx.doi.org/10.2147/OTT.S243212] [PMID: 32368080]
[195]
Wang, W.; Cheng, M.H.; Wang, X.H. Monoterpenoid indole alkaloids from Alstonia rupestris with cytotoxic, anti-inflammatory and antifungal activities. Molecules, 2013, 18(6), 7309-7322.
[http://dx.doi.org/10.3390/molecules18067309] [PMID: 23792896]
[196]
Cao, P.; Liang, Y.; Gao, X.; Li, X.M.; Song, Z.Q.; Liang, G. Monoterpenoid indole alkaloids from Alstonia yunnanensis and their cytotoxic and anti-inflammatory activities. Molecules, 2012, 17(11), 13631-13641.
[http://dx.doi.org/10.3390/molecules171113631] [PMID: 23159924]
[197]
Pan, X.; Matsumoto, M.; Nishimoto, Y.; Ogihara, E.; Zhang, J.; Ukiya, M.; Tokuda, H.; Koike, K.; Akihisa, M.; Akihisa, T. Cytotoxic and nitric oxide production-inhibitory activities of limonoids and other compounds from the leaves and bark of Melia azedarach. Chem. Biodivers., 2014, 11(8), 1121-1139.
[http://dx.doi.org/10.1002/cbdv.201400190] [PMID: 25146759]
[198]
Liu, Y-N.; Pan, S-L.; Liao, C-H.; Huang, D-Y.; Guh, J-H.; Peng, C-Y.; Chang, Y.L.; Teng, C.M. Evodiamine represses hypoxia-induced inflammatory proteins expression and hypoxia-inducible factor 1α accumulation in RAW264.7. Shock, 2009, 32(3), 263-269.
[http://dx.doi.org/10.1097/SHK.0b013e31819940cb] [PMID: 19106818]
[199]
Yonezawa, T.; Hasegawa, S.; Asai, M.; Ninomiya, T.; Sasaki, T.; Cha, B.Y.; Teruya, T.; Ozawa, H.; Yagasaki, K.; Nagai, K.; Woo, J.T. Harmine, a β-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. Eur. J. Pharmacol., 2011, 650(2-3), 511-518.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.048] [PMID: 21047508]
[200]
Uddin, M.J.; Xu, S.; Crews, B.C.; Aleem, A.M.; Ghebreselasie, K.; Banerjee, S.; Marnett, L.J. Harmaline analogs as substrate-selective cyclooxygenase-2 inhibitors. ACS Med. Chem. Lett., 2020, 11(10), 1881-1885.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00555] [PMID: 33062168]
[201]
Son, D.J.; Akiba, S.; Hong, J.T.; Yun, Y.P.; Hwang, S.Y.; Park, Y.H.; Lee, S.E. Piperine inhibits the activities of platelet cytosolic phospholipase A2 and thromboxane A2 synthase without affecting cyclooxygenase-1 activity: Different mechanisms of action are involved in the inhibition of platelet aggregation and macrophage inflammatory response. Nutrients, 2014, 6(8), 3336-3352.
[http://dx.doi.org/10.3390/nu6083336] [PMID: 25153972]
[202]
Song, L.; Wang, Y.; Zhen, Y.; Li, D.; He, X.; Yang, H.; Zhang, H.; Liu, Q. Piperine inhibits colorectal cancer migration and invasion by regulating STAT3/Snail-mediated epithelial-mesenchymal transition. Biotechnol. Lett., 2020, 42(10), 2049-2058.
[http://dx.doi.org/10.1007/s10529-020-02923-z] [PMID: 32500474]
[203]
Lin, J-Y.; Yeh, T-H. Rutaecarpine administration inhibits cancer cell growth in allogenic TRAMP-C1 prostate cancer mice correlating with immune balance in vivo. Biomed. Pharmacother., 2021, 139, 111648.
[http://dx.doi.org/10.1016/j.biopha.2021.111648] [PMID: 33945915]
[204]
Moon, T.C.; Murakami, M.; Kudo, I.; Son, K.H.; Kim, H.P.; Kang, S.S. A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm. Res., 1999, 48(12), 621-625.
[205]
Wang, Z.; Wu, X.; Wang, C-L.; Wang, L.; Sun, C.; Zhang, D-B.; Liu, J-L.; Liang, Y-N.; Tang, D-X.; Tang, Z-S. Tryptanthrin protects mice against dextran sulfate sodium-induced colitis through inhibition of TNF-α/NF-κB and IL-6/STAT3 pathways. Molecules, 2018, 23(5), 1062.
[http://dx.doi.org/10.3390/molecules23051062]
[206]
Li, W.; Zhang, H.; Niu, X.; Wang, X.; Wang, Y.; He, Z.; Yao, H. Effects and mechanisms of cavidine protecting mice against LPS-induced endotoxic shock. Toxicol. Appl. Pharmacol., 2016, 305, 46-54.
[http://dx.doi.org/10.1016/j.taap.2016.05.021] [PMID: 27260672]
[207]
Jeon, S.; Kim, M.M. Tomatidine inhibits cell invasion through the negative modulation of gelatinase and inactivation of p38 and ERK. Chem. Biol. Interact., 2019, 313, 108826.
[http://dx.doi.org/10.1016/j.cbi.2019.108826] [PMID: 31545954]
[208]
Chiu, F-L.; Lin, J.K. Tomatidine inhibits iNOS and COX-2 through suppression of NF-kappaB and JNK pathways in LPS-stimulated mouse macrophages. FEBS Lett., 2008, 582(16), 2407-2412.
[http://dx.doi.org/10.1016/j.febslet.2008.05.049] [PMID: 18544347]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy