Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

A Recent Advancement in Nanotechnology Approaches for the Treatment of Cervical Cancer

Author(s): Yashoda Mariappa Hegde, Panneerselvam Theivendren*, Geetha Srinivas, Monashilpa Palanivel, Nivetha Shanmugam, Selvaraj Kunjiappan, Sivakumar Vellaichamy, Murugananthan Gopal and Senthil Rajan Dharmalingam

Volume 23, Issue 1, 2023

Published on: 15 August, 2022

Page: [37 - 59] Pages: 23

DOI: 10.2174/1871520622666220513160706

Price: $65

Abstract

Background: Cervical cancer is one of the leading causes of female death, with a mortality rate of over 200,000 per year in developing countries. Despite a decrease in cervical cancer occurrences in developed countries over the last decade, the frequency of the disease in developing nations continues to rise at an alarming rate, particularly when it is linked to the human papillomavirus (HPV). With just a few highly invasive conventional therapies available, there is a clear need for novel treatment options such as nanotechnology-based chemotherapeutic drug delivery.

Methods: Traditional anticancer therapy is limited by poor drug potency, non-specificity, unwanted side effects, and the development of multiple drug resistance (MDR), leading to a decrease in long-term anticancer therapeutic efficacy. An ideal cancer therapy requires a personalized and specialized medication delivery method capable of eradicating even the last cancer cell responsible for disease recurrence.

Results: Nanotechnology provides effective drug delivery mechanisms, allowing it to serve both therapeutic and diagnostic purposes. Nanotechnology-based formulations are widely used to accurately target the target organ, maintain drug load bioactivity, preferentially accumulate the drug at the target location, and reduce cytotoxicity.

Conclusion: The key benefits of this drug delivery are that it improves pharmacological activity, solubility, and bioavailability and reduces toxicity in the target tissue by targeting ligands, allowing for new innovative treatment methods in an area that is desperately required. The goal of this review is to highlight possible research on nanotechnologybased delivery systems for cancer detection and treatment.

Keywords: Cervical cancer, human papillomavirus, nanotechnology, drug delivery, diagnosis, treatment methods.

Graphical Abstract

[1]
Albulet, D.; Florea, D.A.; Boarca, B.; Ditu, L.M.; Chifiriuc, M.C.; Grumezescu, A.M. Nanotechnology for personalized medicine: Cancer research, diagnosis, and therapy. In: Nanostructures for Cancer Therapy; Elsevier, 2017, pp. 1-21.
[2]
Yadav, N.; Parveen, S.; Banerjee, M. Potential of nano-phytochemicals in cervical cancer therapy. Clin. Chim. Acta, 2020, 505, 60-72.
[http://dx.doi.org/10.1016/j.cca.2020.01.035] [PMID: 32017926]
[3]
Asik, M.R.; Gowdhami, B.; Jaabir, M.S.; Archunan, G.; Suganthy, N. Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Mater. Sci. Eng. C, 2019, 103, 109840.
[http://dx.doi.org/10.1016/j.msec.2019.109840] [PMID: 31349511]
[4]
Zhang, Q.; Lu, Q-B. New combination chemotherapy of cisplatin with an electron-donating compound for treatment of multiple cancers. Sci. Rep., 2021, 11(1), 788.
[http://dx.doi.org/10.1038/s41598-020-80876-z] [PMID: 33436996]
[5]
Xia, Y.; Xiao, M.; Zhao, M.; Xu, T.; Guo, M.; Wang, C.; Li, Y.; Zhu, B.; Liu, H. Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. Mater. Sci. Eng. C, 2020, 106, 110100.
[http://dx.doi.org/10.1016/j.msec.2019.110100] [PMID: 31753388]
[6]
Pillai, G. Nanotechnology toward treating cancer: A comprehensive review. Applications of targeted nano drugs and delivery systems, 2019, 221-256. Elsevier.
[7]
He, Z.; Liu, K.; Byrne, H.J.; Cullen, P.J.; Tian, F.; Curtin, J.F. Combination strategies for targeted delivery of nanoparticles for cancer therapy. Applications of targeted nano drugs and delivery systems, 2019, 191-219. Elsevier.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00008-9]
[8]
Bregoli, L.; Movia, D.; Gavigan-Imedio, J.D.; Lysaght, J.; Reynolds, J.; Prina-Mello, A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine, 2016, 12(1), 81-103.
[http://dx.doi.org/10.1016/j.nano.2015.08.006] [PMID: 26370707]
[9]
Chen, J.; Gu, W.; Yang, L.; Chen, C.; Shao, R.; Xu, K.; Xu, Z.P. Nanotechnology in the management of cervical cancer. Rev. Med. Virol., 2015, 25(Suppl. 1), 72-83.
[http://dx.doi.org/10.1002/rmv.1825] [PMID: 25752817]
[10]
Kessler, T.A. Ed.; Cervical cancer: Prevention and early detection. Seminars in oncology nursing; Elsevier, 2017.
[11]
Renal, V.; Retroperitoneais, T. Estimativa 2018: Incidência de câncer no Brasil. Rev. Bras. Cancerol., 2018, 64(1), 119-120.
[http://dx.doi.org/10.32635/2176-9745.RBC.2018v64n1.115]
[12]
Bansal, A.; Singh, M.P.; Rai, B. Human papillomavirus-associated cancers: A growing global problem. Int. J. Appl. Basic Med. Res., 2016, 6(2), 84-89.
[http://dx.doi.org/10.4103/2229-516X.179027] [PMID: 27127735]
[13]
Medina-Alarcón, K.P.; Voltan, A.R.; Fonseca-Santos, B.; Moro, I.J.; de Oliveira Souza, F.; Chorilli, M.; Soares, C.P.; Dos Santos, A.G.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Highlights in nanocarriers for the treatment against cervical cancer. Mater. Sci. Eng. C, 2017, 80, 748-759.
[http://dx.doi.org/10.1016/j.msec.2017.07.021] [PMID: 28866224]
[14]
Kaarthigeyan, K. Cervical cancer in India and HPV vaccination. Indian J. Med. Paediatr. Oncol., 2012, 33(1), 7-12.
[http://dx.doi.org/10.4103/0971-5851.96961] [PMID: 22754202]
[15]
Sankaranarayanan, R.; Joshi, S.; Muwonge, R.; Esmy, P.O.; Basu, P.; Prabhu, P.; Bhatla, N.; Nene, B.M.; Shaw, J.; Poli, U.R.R.; Verma, Y.; Zomawia, E.; Pimple, S.; Tommasino, M.; Pawlita, M.; Gheit, T.; Waterboer, T.; Sehr, P.; Pillai, M.R. Can a single dose of human papillomavirus (HPV) vaccine prevent cervical cancer? Early findings from an Indian study. Vaccine, 2018, 36(32 Pt A), 4783-4791.
[http://dx.doi.org/10.1016/j.vaccine.2018.02.087] [PMID: 29551226]
[16]
Frazer, I.H. Development and implementation of papillomavirus prophylactic vaccines. J. Immunol., 2014, 192(9), 4007-4011.
[http://dx.doi.org/10.4049/jimmunol.1490012] [PMID: 24748633]
[17]
Bosch, F.X.; de Sanjosé, S. Human papillomavirus in cervical cancer. Curr. Oncol. Rep., 2002, 4(2), 175-183.
[http://dx.doi.org/10.1007/s11912-002-0079-y] [PMID: 11822990]
[18]
Prabhu, P.; Patravale, V. The upcoming field of theranostic nanomedicine: An overview. J. Biomed. Nanotechnol., 2012, 8(6), 859-882.
[http://dx.doi.org/10.1166/jbn.2012.1459] [PMID: 23029995]
[19]
Bangham, A.D. A correlation between surface charge and coagulant action of phospholipids. Nature, 1961, 192(4808), 1197-1198.
[http://dx.doi.org/10.1038/1921197a0] [PMID: 13864660]
[20]
Sawant, R.R.; Torchilin, V.P. Challenges in development of targeted liposomal therapeutics. AAPS J., 2012, 14(2), 303-315.
[http://dx.doi.org/10.1208/s12248-012-9330-0] [PMID: 22415612]
[21]
Al-Jamal, W.T.; Al-Jamal, K.T.; Bomans, P.H.; Frederik, P.M.; Kostarelos, K. Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small, 2008, 4(9), 1406-1415.
[http://dx.doi.org/10.1002/smll.200701043] [PMID: 18711753]
[22]
Saengkrit, N.; Saesoo, S.; Srinuanchai, W.; Phunpee, S.; Ruktanonchai, U.R. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf. B Biointerfaces, 2014, 114, 349-356.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.005] [PMID: 24246195]
[23]
Casagrande, N.; De Paoli, M.; Celegato, M.; Borghese, C.; Mongiat, M.; Colombatti, A.; Aldinucci, D. Preclinical evaluation of a new liposomal formulation of cisplatin, lipoplatin, to treat cisplatin-resistant cervical cancer. Gynecol. Oncol., 2013, 131(3), 744-752.
[http://dx.doi.org/10.1016/j.ygyno.2013.08.041] [PMID: 24029417]
[24]
Sreekanth, C.N.; Bava, S.V.; Sreekumar, E.; Anto, R.J. Molecular evidences for the chemosensitizing efficacy of liposomal curcumin in paclitaxel chemotherapy in mouse models of cervical cancer. Oncogene, 2011, 30(28), 3139-3152.
[http://dx.doi.org/10.1038/onc.2011.23] [PMID: 21317920]
[25]
Rangel-Corona, R.; Corona-Ortega, T.; del Río-Ortiz, I.; Nieves-Ramírez, M.E.; Morán-Bañuelos, H.; González-Tenorio, O.; Cáceres-Cortés, J.R.; Weiss-Steider, B. Cationic liposomes bearing IL-2 on their external surface induced mice leukocytes to kill human cervical cancer cells in vitro, and significantly reduced tumor burden in immunodepressed mice. J. Drug Target., 2011, 19(2), 79-85.
[http://dx.doi.org/10.3109/10611861003733920] [PMID: 20367025]
[26]
Lim, S.B.; Banerjee, A.; Önyüksel, H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release, 2012, 163(1), 34-45.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.002] [PMID: 22698939]
[27]
Yang, J.; Li, S.; Guo, F.; Zhang, W.; Wang, Y.; Pan, Y. Induction of apoptosis by chitosan/HPV16 E7 siRNA complexes in cervical cancer cells. Mol. Med. Rep., 2013, 7(3), 998-1002.
[http://dx.doi.org/10.3892/mmr.2012.1246] [PMID: 23258711]
[28]
Jin, C.; Bai, L.; Wu, H.; Song, W.; Guo, G.; Dou, K. Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm. Res., 2009, 26(7), 1776-1784.
[http://dx.doi.org/10.1007/s11095-009-9889-z] [PMID: 19384463]
[29]
Pearson, R.M.; Sunoqrot, S.; Hsu, H.J.; Bae, J.W.; Hong, S. Dendritic nanoparticles: The next generation of nanocarriers? Ther. Deliv., 2012, 3(8), 941-959.
[http://dx.doi.org/10.4155/tde.12.76] [PMID: 22946429]
[30]
Schilrreff, P.; Mundiña-Weilenmann, C.; Romero, E.L.; Morilla, M.J. Selective cytotoxicity of PAMAM G5 core--PAMAM G2.5 shell tecto-dendrimers on melanoma cells. Int. J. Nanomedicine, 2012, 7, 4121-4133.
[PMID: 22904625]
[31]
Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res., 2009, 2(2), 85-120.
[http://dx.doi.org/10.1007/s12274-009-9009-8] [PMID: 20174481]
[32]
Anilkumar, P.; Lu, F.; Cao, L.; Luo, P.G.; Liu, J.H.; Sahu, S.; Tackett, K.N.; Wang, Y.; Sun, Y.P. Fullerenes for applications in biology and medicine. Curr. Med. Chem., 2011, 18(14), 2045-2059.
[http://dx.doi.org/10.2174/092986711795656225] [PMID: 21517770]
[33]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[34]
Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging: The recent advances. Adv. Drug Deliv. Rev., 2013, 65(15), 1951-1963.
[http://dx.doi.org/10.1016/j.addr.2013.10.002] [PMID: 24184130]
[35]
Bi, S.; Zhou, H.; Zhang, S. Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosens. Bioelectron., 2009, 24(10), 2961-2966.
[http://dx.doi.org/10.1016/j.bios.2009.03.002] [PMID: 19345084]
[36]
Bhatnagar, I.; Venkatesan, J.; Kiml, S.K. Polymer functionalized single walled carbon nanotubes mediated drug delivery of gliotoxin in cancer cells. J. Biomed. Nanotechnol., 2014, 10(1), 120-130.
[http://dx.doi.org/10.1166/jbn.2014.1677] [PMID: 24724504]
[37]
Wang, W.; Pang, D-W.; Tang, H-W. Sensitive multiplexed DNA detection using silica nanoparticles as the target capturing platform. Talanta, 2014, 128, 263-267.
[http://dx.doi.org/10.1016/j.talanta.2014.05.011] [PMID: 25059158]
[38]
Tran, L.D.; Nguyen, D.T.; Nguyen, B.H.; Do, Q.P.; Nguyen, H.L. Development of interdigitated arrays coated with functional polyaniline/MWCNT for electrochemical biodetection: Application for human papilloma virus. Talanta, 2011, 85(3), 1560-1565.
[http://dx.doi.org/10.1016/j.talanta.2011.06.048] [PMID: 21807222]
[39]
Zhang, K.; Xu, Z.P.; Lu, J.; Tang, Z.Y.; Zhao, H.J.; Good, D.A.; Wei, M.Q. Potential for layered double hydroxides-based, innovative drug delivery systems. Int. J. Mol. Sci., 2014, 15(5), 7409-7428.
[http://dx.doi.org/10.3390/ijms15057409] [PMID: 24786098]
[40]
Li, L.; Gu, W.; Chen, J.; Chen, W.; Xu, Z.P. Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials, 2014, 35(10), 3331-3339.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.095] [PMID: 24456604]
[41]
Oh, J-M.; Park, D-H.; Choi, S-J.; Choy, J-H. LDH nanocontainers as bio-reservoirs and drug delivery carriers. Recent Pat. Nanotechnol., 2012, 6(3), 200-217.
[http://dx.doi.org/10.2174/187221012803531538] [PMID: 22747720]
[42]
Chen, J.; Huang, L.; Lai, H.; Lu, C.; Fang, M.; Zhang, Q.; Luo, X. Methotrexate-loaded PEGylated chitosan nanoparticles: Synthesis, characterization, and in vitro and in vivo antitumoral activity. Mol. Pharm., 2014, 11(7), 2213-2223.
[http://dx.doi.org/10.1021/mp400269z] [PMID: 24164427]
[43]
Choy, J-H.; Oh, J-M.; Choi, S-J.; Jung, H. Bioinspired layered nanomaterials in medical therapy; Biomimetic and Bioinspired In: Nanomaterials for the life Sciences; Challa S.S. Kumar, Ed.; Wiley-VCH: Weinheim, 2010, pp. 213-249.
[44]
Barahuie, F.; Hussein, M.Z.; Hussein-Al-Ali, S.H.; Arulselvan, P.; Fakurazi, S.; Zainal, Z. Preparation and controlled-release studies of a protocatechuic acid-magnesium/aluminum-layered double hydroxide nanocomposite. Int. J. Nanomedicine, 2013, 8, 1975-1987.
[http://dx.doi.org/10.2147/IJN.S42718] [PMID: 23737666]
[45]
Kim, T-H; Lee, GJ; Kang, J-H; Kim, H-J; Kim, T-i; Oh, J-M Anticancer drug-incorporated layered double hydroxide nanohybrids and their enhanced anticancer therapeutic efficacy in combination cancer treatment. BioMed Res. Int., 2014, 2014
[http://dx.doi.org/10.1155/2014/193401]
[46]
Yu, M.; Jambhrunkar, S.; Thorn, P.; Chen, J.; Gu, W.; Yu, C. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale, 2013, 5(1), 178-183.
[http://dx.doi.org/10.1039/C2NR32145A] [PMID: 23076766]
[47]
Palantavida, S.; Guz, N.V.; Sokolov, I. Functionalized ultrabright fluorescent mesoporous silica nanoparticles. Part. Part. Syst. Charact., 2013, 30(9), 804-811.
[http://dx.doi.org/10.1002/ppsc.201300143]
[48]
Palantavida, S.; Guz, N.V.; Woodworth, C.D.; Sokolov, I. Ultrabright fluorescent mesoporous silica nanoparticles for prescreening of cervical cancer. Nanomedicine, 2013, 9(8), 1255-1262.
[http://dx.doi.org/10.1016/j.nano.2013.04.011] [PMID: 23665420]
[49]
Palantavida, S.; Tang, R.; Sudlow, G.P.; Akers, W.J.; Achilefu, S.; Sokolov, I. Ultrabright NIR fluorescent mesoporous silica nanoparticles. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(20), 3107-3114.
[http://dx.doi.org/10.1039/C4TB00287C] [PMID: 32261686]
[50]
Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release, 2008, 132(3), 171-183.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.010] [PMID: 18582981]
[51]
Vannucci, L.; Falvo, E.; Fornara, M.; Di Micco, P.; Benada, O.; Krizan, J.; Svoboda, J.; Hulikova-Capkova, K.; Morea, V.; Boffi, A.; Ceci, P. Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles. Int. J. Nanomedicine, 2012, 7, 1489-1509.
[PMID: 22619508]
[52]
Elsadek, B.; Kratz, F. Impact of albumin on drug delivery--new applications on the horizon. J. Control. Release, 2012, 157(1), 4-28.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.069] [PMID: 21959118]
[53]
Kratz, F. A clinical update of using albumin as a drug vehicle - a commentary. J. Control. Release, 2014, 190, 331-336.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.013] [PMID: 24637463]
[54]
Alberts, D.S.; Blessing, J.A.; Landrum, L.M.; Warshal, D.P.; Martin, L.P.; Rose, S.L.; Bonebrake, A.J.; Ramondetta, L.M. Phase II trial of nab-paclitaxel in the treatment of recurrent or persistent advanced cervix cancer: A gynecologic oncology group study. Gynecol. Oncol., 2012, 127(3), 451-455.
[http://dx.doi.org/10.1016/j.ygyno.2012.09.008] [PMID: 22986144]
[55]
Fu, S.; Naing, A.; Moulder, S.L.; Culotta, K.S.; Madoff, D.C.; Ng, C.S.; Madden, T.L.; Falchook, G.S.; Hong, D.S.; Kurzrock, R. Phase I trial of hepatic arterial infusion of nanoparticle albumin-bound paclitaxel: Toxicity, pharmacokinetics, and activity. Mol. Cancer Ther., 2011, 10(7), 1300-1307.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0259] [PMID: 21571911]
[56]
Gregory, A.E.; Titball, R.; Williamson, D. Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol., 2013, 3, 13.
[http://dx.doi.org/10.3389/fcimb.2013.00013] [PMID: 23532930]
[57]
Sekhon, B.S.; Saluja, V. Nanovaccines-an overview. Int. J. Pharm. Front. Res., 2011, 1(1), 101-109.
[58]
Vijayan, V.; Mohapatra, A.; Uthaman, S.; Park, I-K. Recent advances in nanovaccines using biomimetic immunomodulatory materials. Pharmaceutics, 2019, 11(10), 534.
[http://dx.doi.org/10.3390/pharmaceutics11100534] [PMID: 31615112]
[59]
Bhardwaj, P.; Bhatia, E.; Sharma, S.; Ahamad, N.; Banerjee, R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater., 2020, 108, 1-21.
[http://dx.doi.org/10.1016/j.actbio.2020.03.020] [PMID: 32268235]
[60]
Spagnoli, G.; Pouyanfard, S.; Cavazzini, D.; Canali, E.; Maggi, S.; Tommasino, M.; Bolchi, A.; Müller, M.; Ottonello, S. Broadly neutralizing antiviral responses induced by a single-molecule HPV vaccine based on thermostable thioredoxin-L2 multiepitope nanoparticles. Sci. Rep., 2017, 7(1), 18000.
[http://dx.doi.org/10.1038/s41598-017-18177-1] [PMID: 29269879]
[61]
Chen, Y-C.; Cheng, H-F.; Yang, Y-C.; Yeh, M-K. Nanotechnologies applied in biomedical vaccines; IntechOpen, 2016.
[62]
Stanley, M. Tumour virus vaccines: Hepatitis B virus and human papillomavirus. Philos. Trans. R. Soc. B, Bio. Sci, 2017, 37(1732), 20160268.
[http://dx.doi.org/10.1098/rstb.2016.0268]
[63]
Corbett, H.J.; Fernando, G.J.; Chen, X.; Frazer, I.H.; Kendall, M.A. Skin vaccination against cervical cancer associated human papillomavirus with a novel micro-projection array in a mouse model. PLoS One, 2010, 5(10), e13460.
[http://dx.doi.org/10.1371/journal.pone.0013460] [PMID: 20976136]
[64]
Sankaranarayanan, R.; Basu, P.; Kaur, P.; Bhaskar, R.; Singh, G.B.; Denzongpa, P.; Grover, R.K.; Sebastian, P.; Saikia, T.; Oswal, K.; Kanodia, R.; Dsouza, A.; Mehrotra, R.; Rath, G.K.; Jaggi, V.; Kashyap, S.; Kataria, I.; Hariprasad, R.; Sasieni, P.; Bhatla, N.; Rajaraman, P.; Trimble, E.L.; Swaminathan, S.; Purushotham, A. Current status of human papillomavirus vaccination in India’s cervical cancer prevention efforts. Lancet Oncol., 2019, 20(11), e637-e644.
[http://dx.doi.org/10.1016/S1470-2045(19)30531-5] [PMID: 31674322]
[65]
Jenkins, D. Diagnosing human papillomaviruses: Recent advances. Curr. Opin. Infect. Dis., 2001, 14(1), 53-62.
[http://dx.doi.org/10.1097/00001432-200102000-00010] [PMID: 11979116]
[66]
Mandelblatt, J.S.; Lawrence, W.F.; Womack, S.M.; Jacobson, D.; Yi, B.; Hwang, Y.T.; Gold, K.; Barter, J.; Shah, K. Benefits and costs of using HPV testing to screen for cervical cancer. JAMA, 2002, 287(18), 2372-2381.
[http://dx.doi.org/10.1001/jama.287.18.2372] [PMID: 11988058]
[67]
Baek, T.J.; Park, P.Y.; Han, K.N.; Kwon, H.T.; Seong, G.H. Development of a photodiode array biochip using a bipolar semiconductor and its application to detection of human papilloma virus. Anal. Bioanal. Chem., 2008, 390(5), 1373-1378.
[http://dx.doi.org/10.1007/s00216-007-1814-x] [PMID: 18193408]
[68]
Mwai, L.M.; Kyama, M.C.; Ngugi, C.W.; Walong, E. Development of HPV 16/18 E6 oncoprotein paperbased nanokit for enhanced detection of HPV 16/18 E6 oncoprotein in cervical cancer screening. medRiv., 2020, 1(2)
[69]
Wu, M.; Huang, S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol., 2017, 7(5), 738-746.
[http://dx.doi.org/10.3892/mco.2017.1399] [PMID: 29075487]
[70]
Yokchom, R.; Laiwejpithaya, S.; Maneeprakorn, W.; Tapaneeyakorn, S.; Rabablert, J.; Dharakul, T. Paper-based immunosensor with signal amplification by enzyme-labeled anti-p16INK4a multifunctionalized gold nanoparticles for cervical cancer screening. Nanomedicine, 2018, 14(3), 1051-1058.
[http://dx.doi.org/10.1016/j.nano.2018.01.016] [PMID: 29407199]
[71]
Riccò, R.; Meneghello, A.; Enrichi, F. Signal enhancement in DNA microarray using dye doped silica nanoparticles: Application to human papilloma virus (HPV) detection. Biosens. Bioelectron., 2011, 26(5), 2761-2765.
[http://dx.doi.org/10.1016/j.bios.2010.10.024] [PMID: 21074399]
[72]
Demir, B.; Barlas, F.B.; Gumus, Z.P.; Unak, P.; Timur, S. Theranostic niosomes as a promising tool for combined therapy and diagnosis:“All-in-One” Approach. ACS Appl. Nano Mater., 2018, 1(6), 2827-2835.
[http://dx.doi.org/10.1021/acsanm.8b00468]
[73]
Nida, D.L.; Rahman, M.S.; Carlson, K.D.; Richards-Kortum, R.; Follen, M. Fluorescent nanocrystals for use in early cervical cancer detection. Gynecol. Oncol., 2005, 99(3)(Suppl. 1), S89-S94.
[http://dx.doi.org/10.1016/j.ygyno.2005.07.050] [PMID: 16139342]
[74]
Mahmoodi, P.; Rezayi, M.; Rasouli, E.; Avan, A.; Gholami, M.; Ghayour Mobarhan, M.; Karimi, E.; Alias, Y. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J. Nanobiotechnology, 2020, 18(1), 11.
[http://dx.doi.org/10.1186/s12951-020-0577-9] [PMID: 31931815]
[75]
Laurent, S.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles: Promises for diagnosis and treatment of cancer. Int. J. Mol. Epidemiol. Genet., 2011, 2(4), 367-390.
[PMID: 22199999]
[76]
Prabhakar, U.; Maeda, H.; Jain, R.K.; Sevick-Muraca, E.M.; Zamboni, W.; Farokhzad, O.C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology; AACR. Cancer Res., 2013, 73(8)
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4561]
[77]
Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res., 1994, 54(4), 987-992.
[PMID: 8313389]
[78]
Moghimi, S.M.; Hunter, C. Capture of stealth nanoparticles by the body’s defences. Crit. Rev. Ther. Drug Carrier Syst., 2001, 18(6)
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v18.i6.30]
[79]
Markman, M. Chemoradiation in the management of cervix cancer: Current status and future directions. Oncology, 2013, 84(4), 246-250.
[http://dx.doi.org/10.1159/000346804] [PMID: 23392268]
[80]
Long, H.J., III Management of metastatic cervical cancer: Review of the literature. J. Clin. Oncol., 2007, 25(20), 2966-2974.
[http://dx.doi.org/10.1200/JCO.2006.09.3781] [PMID: 17617528]
[81]
Xue, X.; Hall, M.D.; Zhang, Q.; Wang, P.C.; Gottesman, M.M.; Liang, X-J. Nanoscale drug delivery platforms overcome platinum-based resistance in cancer cells due to abnormal membrane protein trafficking. ACS Nano, 2013, 7(12), 10452-10464.
[http://dx.doi.org/10.1021/nn405004f] [PMID: 24219825]
[82]
Liu, D.; He, C.; Wang, A.Z.; Lin, W. Application of liposomal technologies for delivery of platinum analogs in oncology. Int. J. Nanomedicine, 2013, 8, 3309-3319.
[PMID: 24023517]
[83]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[84]
Guo, S.; Miao, L.; Wang, Y.; Huang, L. Unmodified drug used as a material to construct nanoparticles: Delivery of cisplatin for enhanced anti-cancer therapy. J. Control. Release, 2014, 174, 137-142.
[http://dx.doi.org/10.1016/j.jconrel.2013.11.019] [PMID: 24280262]
[85]
de Palo, G.M.; Bajetta, E.; Luciani, L.; Musumeci, R.; Di Re, F.; Bonadonna, G. Methotrexate (NSC-740) and bleomycin (NSC-125066) in the treatment of advanced epidermoid carcinoma of the uterine cervix. Cancer Chemother. Rep., 1973, 57(4), 429-435.
[PMID: 4128423]
[86]
Civit, L.; Fragoso, A.; O’Sullivan, C.K. Electrochemical biosensor for the multiplexed detection of human papillomavirus genes. Biosens. Bioelectron., 2010, 26(4), 1684-1687.
[http://dx.doi.org/10.1016/j.bios.2010.06.072] [PMID: 20667709]
[87]
McGuire, W.P.; Blessing, J.A.; Moore, D.; Lentz, S.S.; Photopulos, G. Paclitaxel has moderate activity in squamous cervix cancer. A Gynecologic Oncology Group study. J. Clin. Oncol., 1996, 14(3), 792-795.
[http://dx.doi.org/10.1200/JCO.1996.14.3.792] [PMID: 8622025]
[88]
Randall-Whitis, L.M.; Monk, B.J. Topotecan in the management of cervical cancer. Expert Opin. Pharmacother., 2007, 8(2), 227-236.
[http://dx.doi.org/10.1517/14656566.8.2.227] [PMID: 17257092]
[89]
Buda, A.; Dell’Anna, T.; Signorelli, M.; Mangioni, C. Role of ifosfamide in cervical cancer: An overview. Oncology, 2003, 65(Suppl. 2), 63-66.
[http://dx.doi.org/10.1159/000073362] [PMID: 14586151]
[90]
Gómez-Aguado, I.; Rodríguez-Castejón, J.; Vicente-Pascual, M.; Rodríguez-Gascón, A.; Solinís, M.Á.; Del Pozo-Rodríguez, A. Nanomedicines to deliver mRNA: State of the art and future perspectives. Nanomaterials (Basel), 2020, 10(2), 364.
[http://dx.doi.org/10.3390/nano10020364] [PMID: 32093140]
[91]
Pal, A.; Kundu, R. Human papillomavirus E6 and E7: The cervical cancer hallmarks and targets for therapy. Front. Microbiol., 2020, 10, 3116.
[http://dx.doi.org/10.3389/fmicb.2019.03116] [PMID: 32038557]
[92]
Aquino-Jarquin, G.; Rojas-Hernández, R.; Alvarez-Salas, L.M. Design and function of triplex hairpin ribozymes.In: RNA Therapeutics; Springer, 2010, pp. 321-336.
[http://dx.doi.org/10.1007/978-1-60761-657-3_21]
[93]
Yamato, K.; Yamada, T.; Kizaki, M.; Ui-Tei, K.; Natori, Y.; Fujino, M.; Nishihara, T.; Ikeda, Y.; Nasu, Y.; Saigo, K.; Yoshinouchi, M. New highly potent and specific E6 and E7 siRNAs for treatment of HPV16 positive cervical cancer. Cancer Gene Ther., 2008, 15(3), 140-153.
[http://dx.doi.org/10.1038/sj.cgt.7701118] [PMID: 18157144]
[94]
Xia, Y.; Tang, G.; Wang, C.; Zhong, J.; Chen, Y.; Hua, L.; Li, Y.; Liu, H.; Zhu, B. Functionalized selenium nanoparticles for targeted siRNA delivery silence Derlin1 and promote antitumor efficacy against cervical cancer. Drug Deliv., 2020, 27(1), 15-25.
[http://dx.doi.org/10.1080/10717544.2019.1667452] [PMID: 31830840]
[95]
Hu, Z.; Ding, W.; Zhu, D.; Yu, L.; Jiang, X.; Wang, X.; Zhang, C.; Wang, L.; Ji, T.; Liu, D.; He, D.; Xia, X.; Zhu, T.; Wei, J.; Wu, P.; Wang, C.; Xi, L.; Gao, Q.; Chen, G.; Liu, R.; Li, K.; Li, S.; Wang, S.; Zhou, J.; Ma, D.; Wang, H. TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. J. Clin. Invest., 2015, 125(1), 425-436.
[http://dx.doi.org/10.1172/JCI78206] [PMID: 25500889]
[96]
Shankar, S.; Prasad, D.; Sanawar, R.; Das, A.V.; Pillai, M.R. TALEN based HPV-E7 editing triggers necrotic cell death in cervical cancer cells. Sci. Rep., 2017, 7(1), 5500.
[http://dx.doi.org/10.1038/s41598-017-05696-0] [PMID: 28710417]
[97]
Zhen, S.; Li, X. Oncogenic human papillomavirus: Application of CRISPR/Cas9 therapeutic strategies for cervical cancer. Cell. Physiol. Biochem., 2017, 44(6), 2455-2466.
[http://dx.doi.org/10.1159/000486168] [PMID: 29268281]
[98]
Carvalho, J.; Paiva, A.; Cabral Campello, M.P.; Paulo, A.; Mergny, J-L.; Salgado, G.F.; Queiroz, J.A.; Cruz, C. Aptamer-based Targeted Delivery of a G-quadruplex Ligand in Cervical Cancer Cells. Sci. Rep., 2019, 9(1), 7945.
[http://dx.doi.org/10.1038/s41598-019-44388-9] [PMID: 31138870]
[99]
Chen, Y.; Wang, J.; Wang, J.; Wang, L.; Tan, X.; Tu, K.; Tong, X.; Qi, L. Aptamer functionalized cisplatin-albumin nanoparticles for targeted delivery to epidermal growth factor receptor positive cervical cancer. J. Biomed. Nanotechnol., 2016, 12(4), 656-666.
[http://dx.doi.org/10.1166/jbn.2016.2203] [PMID: 27301192]
[100]
Zhang, Q.; Lv, R.; Guo, W.; Li, X. microRNA-802 inhibits cell proliferation and induces apoptosis in human cervical cancer by targeting serine/arginine-rich splicing factor 9. J. Cell. Biochem., 2019, 120(6), 10370-10379.
[http://dx.doi.org/10.1002/jcb.28321] [PMID: 30565744]
[101]
Rui, X.; Xu, Y.; Jiang, X.; Ye, W.; Huang, Y.; Jiang, J. Long non-coding RNA C5orf66-AS1 promotes cell proliferation in cervical cancer by targeting miR-637/RING1 axis. Cell Death Dis., 2018, 9(12), 1175.
[http://dx.doi.org/10.1038/s41419-018-1228-z] [PMID: 30518760]
[102]
Alshatwi, A.A.; Athinarayanan, J.; Vaiyapuri Subbarayan, P. Green synthesis of platinum nanoparticles that induce cell death and G2/M-phase cell cycle arrest in human cervical cancer cells. J. Mater. Sci. Mater. Med., 2015, 26(1), 5330.
[http://dx.doi.org/10.1007/s10856-014-5330-1] [PMID: 25577212]
[103]
Áyen, Á.; Jiménez Martínez, Y.; Boulaiz, H. Targeted gene delivery therapies for cervical cancer. Cancers (Basel), 2020, 12(5), 1301.
[http://dx.doi.org/10.3390/cancers12051301] [PMID: 32455616]
[104]
Shah, P.V.; Rajput, S. Surface decorated mesoporous silica nanoparticles: A promising and emerging tool for cancer targeting. Indian J Pharm Educ Res., 2019, 53(3), 382-399.
[http://dx.doi.org/10.5530/ijper.53.3.72]
[105]
Wang, J.; Zheng, M.; Xie, Z. Carrier-free core-shell nanodrugs for synergistic two-photon photodynamic therapy of cervical cancer. J. Colloid Interface Sci., 2019, 535, 84-91.
[http://dx.doi.org/10.1016/j.jcis.2018.09.095] [PMID: 30286310]
[106]
Zafari, J.; Zadehmodarres, S.; Javani Jouni, F.; Bagheri-Hosseinabadi, Z.; Najjar, N.; Asnaashari, M. Investigation into the effect of photodynamic therapy and cisplatin on the cervical cancer cell line (A2780). J. Lasers Med. Sci., 2020, 11(Suppl. 1), S85-S91.
[http://dx.doi.org/10.34172/jlms.2020.S14] [PMID: 33995975]
[107]
de Freitas, L.M.; Serafim, R.B.; de Sousa, J.F.; Moreira, T.F.; Dos Santos, C.T.; Baviera, A.M.; Valente, V.; Soares, C.P.; Fontana, C.R. Photodynamic therapy combined to cisplatin potentiates cell death responses of cervical cancer cells. BMC Cancer, 2017, 17(1), 123.
[http://dx.doi.org/10.1186/s12885-017-3075-1] [PMID: 28187758]
[108]
Ellahioui, Y.; Patra, M.; Mari, C.; Kaabi, R.; Karges, J.; Gasser, G.; Gómez-Ruiz, S. Mesoporous silica nanoparticles functionalised with a photoactive ruthenium(ii) complex: Exploring the formulation of a metal-based photodynamic therapy photosensitiser. Dalton Trans., 2019, 48(18), 5940-5951.
[http://dx.doi.org/10.1039/C8DT02392A] [PMID: 30209497]
[109]
Hodgkinson, N.; Kruger, C.A.; Mokwena, M.; Abrahamse, H. Cervical cancer cells (HeLa) response to photodynamic therapy using a zinc phthalocyanine photosensitizer. J. Photochem. Photobiol. B, 2017, 177, 32-38.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.10.004] [PMID: 29045918]
[110]
He, G.; Mu, T.; Yuan, Y.; Yang, W.; Zhang, Y.; Chen, Q.; Bian, M.; Pan, Y.; Xiang, Q.; Chen, Z.; Sun, A. Effects of notch signaling pathway in cervical cancer by curcumin mediated photodynamic therapy and its possible mechanisms in vitro and in vivo. J. Cancer, 2019, 10(17), 4114-4122.
[http://dx.doi.org/10.7150/jca.30690] [PMID: 31417656]
[111]
Kuo, S-H.; Wu, P-T.; Huang, J-Y.; Chiu, C-P.; Yu, J.; Liao, M-Y. Fabrication of anisotropic Cu ferrite-polymer core-shell nanoparticles for photodynamic ablation of cervical cancer cells. Nanomaterials (Basel), 2020, 10(12), 2429.
[http://dx.doi.org/10.3390/nano10122429] [PMID: 33291730]
[112]
Soergel, P.; Wang, X.; Stepp, H.; Hertel, H.; Hillemanns, P. Photodynamic therapy of cervical intraepithelial neoplasia with hexaminolevulinate. Lasers Surg. Med., 2008, 40(9), 611-615.
[http://dx.doi.org/10.1002/lsm.20686] [PMID: 18951428]
[113]
Yu, J.; Hsu, C-H.; Huang, C-C.; Chang, P-Y. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells. ACS Appl. Mater. Interfaces, 2015, 7(1), 432-441.
[http://dx.doi.org/10.1021/am5064298] [PMID: 25494339]
[114]
Eshghi, H.; Sazgarnia, A.; Rahimizadeh, M.; Attaran, N.; Bakavoli, M.; Soudmand, S. Protoporphyrin IX-gold nanoparticle conjugates as an efficient photosensitizer in cervical cancer therapy. Photodiagn. Photodyn. Ther., 2013, 10(3), 304-312.
[http://dx.doi.org/10.1016/j.pdpdt.2013.02.003] [PMID: 23993857]
[115]
Wang, J. Combination treatment of cervical cancer using folate-decorated, ph-sensitive, carboplatin and paclitaxel co-loaded lipid-polymer hybrid nanoparticles. Drug Des. Devel. Ther., 2020, 14, 823-832.
[http://dx.doi.org/10.2147/DDDT.S235098] [PMID: 32161442]
[116]
Qiu, B.; Ji, M.; Song, X.; Zhu, Y.; Wang, Z.; Zhang, X.; Wu, S.; Chen, H.; Mei, L.; Zheng, Y. Co-delivery of docetaxel and endostatin by a biodegradable nanoparticle for the synergistic treatment of cervical cancer. Nanoscale Res. Lett., 2012, 7(1), 666.
[http://dx.doi.org/10.1186/1556-276X-7-666] [PMID: 23216701]
[117]
Zheng, Y.; Chen, H.; Zeng, X.; Liu, Z.; Xiao, X.; Zhu, Y.; Gu, D.; Mei, L. Surface modification of TPGS-b-(PCL-ran-PGA) nanoparticles with polyethyleneimine as a co-delivery system of TRAIL and endostatin for cervical cancer gene therapy. Nanoscale Res. Lett., 2013, 8(1), 161.
[http://dx.doi.org/10.1186/1556-276X-8-161] [PMID: 23570619]
[118]
Wang, T.; Zhu, D.; Liu, G.; Tao, W.; Cao, W.; Zhang, L.; Wang, L.; Chen, H.; Mei, L.; Huang, L.; Zeng, X. DTX-loaded star-shaped TAPP-PLA-b-TPGS nanoparticles for cancer chemical and photodynamic combination therapy. RSC Advances, 2015, 5(62), 50617-50627.
[http://dx.doi.org/10.1039/C5RA09042C]
[119]
Dixit, N.; Vaibhav, K.; Pandey, R.S.; Jain, U.K.; Katare, O.P.; Katyal, A.; Madan, J. Improved cisplatin delivery in cervical cancer cells by utilizing folate-grafted non-aggregated gelatin nanoparticles. Biomed. Pharmacother., 2015, 69, 1-10.
[http://dx.doi.org/10.1016/j.biopha.2014.10.016] [PMID: 25661330]
[120]
Gawde, K.A.; Sau, S.; Tatiparti, K.; Kashaw, S.K.; Mehrmohammadi, M.; Azmi, A.S.; Iyer, A.K. Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids Surf. B Biointerfaces, 2018, 167, 8-19.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.046] [PMID: 29625422]
[121]
Liu, B.; Han, L.; Liu, J.; Han, S.; Chen, Z.; Jiang, L. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Int. J. Nanomedicine, 2017, 12, 955-968.
[http://dx.doi.org/10.2147/IJN.S115136] [PMID: 28203075]
[122]
Yuan, Y-G.; Gurunathan, S. Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int. J. Nanomedicine, 2017, 12, 6537-6558.
[http://dx.doi.org/10.2147/IJN.S125281] [PMID: 28919753]
[123]
Zhang, Y.; Zhang, X.; Zhang, L.; Alarfaj, A.A.; Hirad, A.H.; Alsabri, A.E. Green formulation, chemical characterization, and antioxidant, cytotoxicity, and anti-human cervical cancer effects of vanadium nanoparticles: A pre-clinical study. Arab. J. Chem., 2021, 14(6), 103147.
[http://dx.doi.org/10.1016/j.arabjc.2021.103147]
[124]
Yu, Y.; Xu, S.; You, H.; Zhang, Y.; Yang, B.; Sun, X.; Yang, L.; Chen, Y.; Fu, S.; Wu, J. In vivo synergistic anti-tumor effect of paclitaxel nanoparticles combined with radiotherapy on human cervical carcinoma. Drug Deliv., 2017, 24(1), 75-82.
[http://dx.doi.org/10.1080/10717544.2016.1230902] [PMID: 28155566]
[125]
Venkatas, J.; Singh, M. Cervical cancer: A meta-analysis, therapy and future of nanomedicine; Ecancer Medical Science, 2020, p. 14.
[126]
Lai, Y.; Fan, L.; Zhao, Y.; Ge, H.; Feng, X.; Wang, Q.; Zhang, X.; Peng, Y.; Wang, X.; Tao, L. Cx32 suppresses extrinsic apoptosis in human cervical cancer cells via the NF κB signalling pathway. Int. J. Oncol., 2017, 51(4), 1159-1168.
[http://dx.doi.org/10.3892/ijo.2017.4106] [PMID: 28902345]
[127]
Jin, Y.; Qiu, S.; Shao, N.; Zheng, J. Fucoxanthin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically promotes apoptosis of human cervical cancer cells by targeting PI3K/Akt/NF-κB signaling pathway. Med. Sci. Monit., 2018, 24, 11-18.
[http://dx.doi.org/10.12659/MSM.905360] [PMID: 29291370]
[128]
Xu, L.; Xu, Q.; Li, X.; Zhang, X. MicroRNA-21 regulates the proliferation and apoptosis of cervical cancer cells via tumor necrosis factor-α Mol. Med. Rep., 2017, 16(4), 4659-4663.
[http://dx.doi.org/10.3892/mmr.2017.7143] [PMID: 28765959]
[129]
Méndez, J.; Morales Cruz, M.; Delgado, Y.; Figueroa, C.M.; Orellano, E.A.; Morales, M.; Monteagudo, A.; Griebenow, K. Delivery of chemically glycosylated cytochrome c immobilized in mesoporous silica nanoparticles induces apoptosis in HeLa cancer cells. Mol. Pharm., 2014, 11(1), 102-111.
[http://dx.doi.org/10.1021/mp400400j] [PMID: 24294910]
[130]
Yao, R.; Zheng, H.; Wu, L.; Cai, P. miRNA-641 inhibits the proliferation, migration, and invasion and induces apoptosis of cervical cancer cells by directly targeting ZEB1. OncoTargets Ther., 2018, 11, 8965-8976.
[http://dx.doi.org/10.2147/OTT.S190303] [PMID: 30588009]
[131]
Wang, Q.; Yen, Y-T.; Xie, C.; Liu, F.; Liu, Q.; Wei, J.; Yu, L.; Wang, L.; Meng, F.; Li, R.; Liu, B. Combined delivery of salinomycin and docetaxel by dual-targeting gelatinase nanoparticles effectively inhibits cervical cancer cells and cancer stem cells. Drug Deliv., 2021, 28(1), 510-519.
[http://dx.doi.org/10.1080/10717544.2021.1886378] [PMID: 33657950]
[132]
Chizenga, E.P.; Chandran, R.; Abrahamse, H. Photodynamic therapy of cervical cancer by eradication of cervical cancer cells and cervical cancer stem cells. Oncotarget, 2019, 10(43), 4380-4396.
[http://dx.doi.org/10.18632/oncotarget.27029] [PMID: 31320992]
[133]
Moreira, A.F.; Dias, D.R.; Correia, I.J. Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous Mesoporous Mater., 2016, 236, 141-157.
[http://dx.doi.org/10.1016/j.micromeso.2016.08.038]
[134]
Ji, J.; Zuo, P.; Wang, Y-L. Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles. Nanoscale Res. Lett., 2015, 10(1), 453.
[http://dx.doi.org/10.1186/s11671-015-1162-2] [PMID: 26608536]
[135]
Ha, J-H.; Kim, Y-J. Photodynamic and cold atmospheric plasma combination therapy using polymeric nanoparticles for the synergistic treatment of cervical cancer. Int. J. Mol. Sci., 2021, 22(3), 1172.
[http://dx.doi.org/10.3390/ijms22031172] [PMID: 33504007]
[136]
Pignata, S.; Frezza, P.; Tramontana, S.; Perrone, F.; Tambaro, R.; Casella, G.; Ferrari, E.; Iodice, F.; De Vivo, R.; Ricchi, P.; Tramontana, F.; Silvestro, G. Phase I study with weekly cisplatin-paclitaxel and concurrent radiotherapy in patients with carcinoma of the cervix uteri. Ann. Oncol., 2000, 11(4), 455-459.
[http://dx.doi.org/10.1023/A:1008379922120] [PMID: 10847466]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy