Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Chemotherapeutic Role of Polyphenols Present in Ocimum sanctum

Author(s): Saima Khatoon, Nida Kalam, Vinod RMT Balasubramaniam, Mohd. Farooq Shaikh* and Mohammad Tahir Ansari*

Volume 22, Issue 20, 2022

Published on: 07 September, 2022

Page: [3325 - 3342] Pages: 18

DOI: 10.2174/1871520622666220516142839

Price: $65

conference banner
Abstract

Ocimum sanctum is a sacred herb of India and is commonly known as ‘Tulsi’ or ‘Holy Basil’ in regional languages of the country. Various parts of O. sanctum are recognised to have remarkable therapeutic efficacy, and are therefore used in Indian traditional medicine system, Ayurveda. Scientific studies have shown that O. sanctum has a range of pharmacological activities. The presence of a substantial amount of polyphenols in O. sanctum could be the reason for its excellent bioactivity. Polyphenols are used to prevent or treat oncologic diseases due to their anti-cancer effects, which are related to activation of apoptotic signaling, cell cycle arrest, binding ability with membrane receptors, and potential effects on immunomodulation and epigenetic mechanisms.

The poor bioavailability of polyphenols restricts their clinical use. The application of nanonization has been implemented to improve their bioavailability, penetrability, and prolong their anticancer action. The present review analyses the recent preclinical studies related to the chemo-preventive and therapeutic potential of polyphenols present in O. sanctum. Moreover, the current article also examines in-depth the biochemical and molecular mechanisms involved in the antineoplastic actions of the considered polyphenols.

Keywords: Ocimum sanctum, cancer, eugenol, apigenin, ferulic acid, quercetin.

Graphical Abstract

[1]
Sur, S.; Panda, C.K. Molecular aspects of cancer chemopreventive and therapeutic efficacies of tea and tea polyphenols. Nutrition, 2017, 43-44, 8-15.
[http://dx.doi.org/10.1016/j.nut.2017.06.006] [PMID: 28935149]
[2]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[3]
Das, S.S.; Alkahtani, S.; Bharadwaj, P.; Ansari, M.T. ALKahtani, M.D.F.; Pang, Z.; Hasnain, M.S.; Nayak, A.K.; Aminabhavi, T.M. Mo-lecular insights and novel approaches for targeting tumor metastasis. Int. J. Pharm., 2020, 585, 119556.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119556] [PMID: 32574684]
[4]
Majeed, S.; Danish, M.; Ismail, M.H.B.; Ansari, M.T.; Ibrahim, M.N.M. Anticancer and apoptotic activity of biologically synthesized zinc oxide nanoparticles against human colon cancer HCT-116 cell line-in vitro study. Sustain. Chem. Pharm., 2019, 14, 100179.
[http://dx.doi.org/10.1016/j.scp.2019.100179]
[5]
Majeed, S.; Binti Sekeri, S.H.; Tahir Ansari, M. In vitro cytotoxic effect of Aspergillus clavatus generated silver nanoparticles on RAW 264.7 cells. Karbala Int. J. Mod. Sci., 2020, 6(4), 2.
[http://dx.doi.org/10.33640/2405-609X.1807]
[6]
Majeed, S.; Danish, M.; Ibrahim, M.N.M.; Sekeri, S.H.; Ansari, M.T.; Nanda, A. Bacteria mediated synthesis of iron oxide nanoparticles and their antibacterial, antioxidant, cytocompatibility properties. J. Cluster Sci., 2020, 32, 1083-1094.
[7]
Ansari, M.T.; Ramlan, T.A.; Jamaluddin, N.N.B.; Zamri, N.; Salfi, R.; Khan, A.; Sami, F.; Majeed, S.; Hasnain, M.S. Lipid based nano carriers for cancer and tumor treatment. Curr. Pharm. Des., 2020, 26(34), 4272-4276.
[http://dx.doi.org/10.2174/1381612826666200720235752] [PMID: 32693760]
[8]
Singh, S.; Singh, P.K. Pattern and impact of drugs targeted toward toxicity amelioration in patients receiving cancer chemotherapy. Perspect. Clin. Res., 2018, 9(1), 23-30.
[http://dx.doi.org/10.4103/picr.PICR_156_16] [PMID: 29430414]
[9]
Du, G.; Sun, L.; Zhao, R.; Du, L.; Song, J.; Zhang, L.; He, G.; Zhang, Y.; Zhang, J. Polyphenols: Potential source of drugs for the treatment of ischaemic heart disease. Pharmacol. Ther., 2016, 162, 23-34.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.008] [PMID: 27113411]
[10]
Zhou, Y.; Zheng, J.; Li, Y.; Xu, D-P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients, 2016, 8(8), 515.
[http://dx.doi.org/10.3390/nu8080515] [PMID: 27556486]
[11]
Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9), 552.
[http://dx.doi.org/10.3390/nu8090552] [PMID: 27618095]
[12]
Costa, A.; Bonner, M.Y.; Arbiser, J.L. Use of polyphenolic compounds in dermatologic oncology. Am. J. Clin. Dermatol., 2016, 17(4), 369-385.
[http://dx.doi.org/10.1007/s40257-016-0193-5] [PMID: 27164914]
[13]
Deep, P.; Singh, A.K.; Ansari, M.T.; Raghav, P. Pharmacological potentials of Ficus racemosa-a review. Int. J. Pharm. Sci. Rev. Res., 2013, 22, 29-33.
[14]
Ansari, M.T.; Sami, F.; Majeed, S.; Hasnain, M.S.; Badgujar, V.B. Design and evaluation of topical herbal antifungal stick containing ex-tracts of Rhinacanthus nasutus. J. Herb. Med., 2019, 17, 100290.
[http://dx.doi.org/10.1016/j.hermed.2019.100290]
[15]
Nadzri, M.N.; Shahnaz, M.; Farheen, S.; Ansari, M.T. Preparation and evaluation of hydrogels containing methanolic extract of Brassica oleracea ver. J. Glob. Pharma Technol., 2019, 11(1(s)), 140-146.
[16]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[17]
Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr., 2005, 81(1), 317S-325S.
[http://dx.doi.org/10.1093/ajcn/81.1.317S] [PMID: 15640497]
[18]
Badgujar, V.B.; Ansari, M.T.; Abdullah, M.S.; Badgujar, S.V. Homoharringtonne: A nascent phytochemical for cancer treatment (A re-view). World J. Pharm. Pharm. Sci., 2015, 5(1), 421-432.
[19]
Damasceno, S.S.; Dantas, B.B.; Ribeiro-Filho, J.; Antônio, M.; Araújo, D.; Galberto, M.; da Costa, J.; Galberto, M.; da Costa, J. Chemical properties of caffeic and ferulic acids in biological system: Implications in cancer therapy. A review. Curr. Pharm. Des., 2017, 23(20), 3015-3023.
[http://dx.doi.org/10.2174/1381612822666161208145508] [PMID: 27928956]
[20]
Negri, A.; Naponelli, V.; Rizzi, F.; Bettuzzi, S. Molecular targets of epigallocatechin-gallate (EGCG): A special focus on signal transduction and cancer. Nutrients, 2018, 10(12), 1936.
[http://dx.doi.org/10.3390/nu10121936] [PMID: 30563268]
[21]
Khan, H.; Sureda, A.; Belwal, T.; Çetinkaya, S.; Süntar, İ.; Tejada, S.; Devkota, H.P.; Ullah, H.; Aschner, M. Polyphenols in the treatment of autoimmune diseases. Autoimmun. Rev., 2019, 18(7), 647-657.
[http://dx.doi.org/10.1016/j.autrev.2019.05.001] [PMID: 31059841]
[22]
Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev., 2016, 2016, 7432797.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[23]
Zhang, M.; Xue, Y.; Chen, H.; Meng, L.; Chen, B.; Gong, H.; Zhao, Y.; Qi, R. Resveratrol inhibits MMP3 and MMP9 expression and se-cretion by suppressing TLR4/NF-κB/STAT3 activation in Ox-LDL-treated HUVECs. Oxid. Med. Cell. Longev., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/9013169]
[24]
Sajadimajd, S.; Bahramsoltani, R.; Iranpanah, A.; Kumar Patra, J.; Das, G.; Gouda, S.; Rahimi, R.; Rezaeiamiri, E.; Cao, H.; Giampieri, F.; Battino, M.; Tundis, R.; Campos, M.G.; Farzaei, M.H.; Xiao, J. Advances on natural polyphenols as anticancer agents for skin cancer. Pharmacol. Res., 2020, 151, 104584.
[http://dx.doi.org/10.1016/j.phrs.2019.104584] [PMID: 31809853]
[25]
Hu, M.L. Dietary polyphenols as antioxidants and anticancer agents: More questions than answers. Chang Gung Med. J., 2011, 34(5), 449-460.
[PMID: 22035889]
[26]
Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 2018, 10(11), 1618.
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[27]
Arora, I.; Sharma, M.; Tollefsbol, T.O. Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. Int. J. Mol. Sci., 2019, 20(18), 4567.
[http://dx.doi.org/10.3390/ijms20184567] [PMID: 31540128]
[28]
Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treat-ment of cancers. Nutr. J., 2016, 15(1), 99.
[http://dx.doi.org/10.1186/s12937-016-0217-2] [PMID: 27903278]
[29]
Ghasemzadeh, A.; Jaafar, H.Z. Profiling of phenolic compounds and their antioxidant and anticancer activities in Pandan (Pandanus ama-ryllifolius roxb.) extracts from different locations of Malaysia. BMC Complement. Altern. Med., 2013, 13(1), 341.
[http://dx.doi.org/10.1186/1472-6882-13-341] [PMID: 24289290]
[30]
Chen, H.M.; Wu, Y.C.; Chia, Y.C.; Chang, F.R.; Hsu, H.K.; Hsieh, Y.C.; Chen, C.C.; Yuan, S.S. Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer Lett., 2009, 286(2), 161-171.
[http://dx.doi.org/10.1016/j.canlet.2009.05.040] [PMID: 19589639]
[31]
Behbahani, M. Evaluation of in vitro anticancer activity of Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. PLoS One, 2014, 9(12), e116049.
[http://dx.doi.org/10.1371/journal.pone.0116049] [PMID: 25548920]
[32]
Liaudanskas, M.; Žvikas, V.; Petrikaitė, V. The potential of dietary antioxidants from a series of plant extracts as anticancer agents against melanoma, glioblastoma, and breast cancer. Antioxidants, 2021, 10(7), 1115.
[http://dx.doi.org/10.3390/antiox10071115] [PMID: 34356348]
[33]
Vijayalakshmi, A.; Kumar, P.R.; Sakthi Priyadarsini, S.; Meenaxshi, C. In vitro antioxidant and anticancer activity of flavonoid fraction from the aerial parts of Cissus quadrangularis Linn. against human breast carcinoma cell lines. J. Chem., 2013, 2013, 150675.
[http://dx.doi.org/10.1155/2013/150675]
[34]
Nguyen, N.H.; Ta, Q.T.H.; Pham, Q.T.; Luong, T.N.H.; Phung, V.T.; Duong, T.H.; Vo, V.G. Anticancer activity of novel plant extracts and compounds from Adenosma bracteosum (Bonati) in human lung and liver cancer cells. Molecules, 2020, 25(12), 2912.
[http://dx.doi.org/10.3390/molecules25122912] [PMID: 32599892]
[35]
Wihadmadyatami, H.; Karnati, S.; Hening, P.; Tjahjono, Y. Rizal; Maharjanti, F.; Kusindarta, D.L.; Triyono, T.; Supriatno., Ethanolic extract Ocimum sanctum Linn. induces an apoptosis in human lung adenocarcinoma (A549) cells. Heliyon, 2019, 5(11), e02772.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02772] [PMID: 31844708]
[36]
Luke, A.M.; Patnaik, R.; Kuriadom, S.T.; Jaber, M.; Mathew, S. An in vitro study of Ocimum sanctum as a chemotherapeutic agent on oral cancer cell-line. Saudi J. Biol. Sci., 2021, 28(1), 887-890.
[http://dx.doi.org/10.1016/j.sjbs.2020.11.030] [PMID: 33424380]
[37]
Ye, J.C.; Hsiao, M.W.; Hsieh, C.H.; Wu, W.C.; Hung, Y.C.; Chang, W.C. Analysis of caffeic acid extraction from Ocimum gratissimum Linn. by high performance liquid chromatography and its effects on a cervical cancer cell line. Taiwan. J. Obstet. Gynecol., 2010, 49(3), 266-271.
[http://dx.doi.org/10.1016/S1028-4559(10)60059-9] [PMID: 21056309]
[38]
Amutha, S.; Naveen Kumar, C.; Rajangam, I. Enhanced anticancer activity and apoptosis effect of bioactive compound quercetin extracted from Ocimum sanctum Leaves. Curr. Nanomed., 2021, 11(1), 61-69.
[http://dx.doi.org/10.2174/2468187310999201117155414]
[39]
Magesh, V.; Lee, J.C.; Ahn, K.S.; Lee, H.J.; Lee, H.J.; Lee, E.O.; Shim, B.S.; Jung, H.J.; Kim, J.S.; Kim, D.K.; Choi, S.H.; Ahn, K.S.; Kim, S.H. Ocimum sanctum induces apoptosis in A549 lung cancer cells and suppresses the in vivo growth of Lewis lung carcinoma cells. Phytother. Res., 2009, 23(10), 1385-1391.
[http://dx.doi.org/10.1002/ptr.2784] [PMID: 19277950]
[40]
Shivpuje, P.; Ammanangi, R.; Bhat, K.; Katti, S. Effect of Ocimum sanctum on oral cancer cell line: An in vitro study. J. Contemp. Dent. Pract., 2015, 16(9), 709-714.
[http://dx.doi.org/10.5005/jp-journals-10024-1745] [PMID: 26522595]
[41]
Manaharan, T.; Thirugnanasampandan, R.; Jayakumar, R.; Kanthimathi, M.S.; Ramya, G.; Ramnath, M.G. Purified essential oil from Ocimum sanctum Linn. triggers the apoptotic mechanism in human breast cancer cells. Pharmacogn. Mag., 2016, 12 46(3), S327-S331.
[http://dx.doi.org/10.4103/0973-1296.185738] [PMID: 27563220]
[42]
Venuprasad, M.P.; Kandikattu, H.K.; Razack, S.; Amruta, N.; Khanum, F. Chemical composition of Ocimum sanctum by LC-ESI-MS/MS analysis and its protective effects against smoke induced lung and neuronal tissue damage in rats. Biomed. Pharmacother., 2017, 91, 1-12.
[http://dx.doi.org/10.1016/j.biopha.2017.04.011] [PMID: 28433747]
[43]
Chaudhary, A.; Sharma, S.; Mittal, A.; Gupta, S.; Dua, A. Phytochemical and antioxidant profiling of Ocimum sanctum. J. Food Sci. Technol., 2020, 57(10), 3852-3863.
[http://dx.doi.org/10.1007/s13197-020-04417-2] [PMID: 32903995]
[44]
Khalil, A.A.; Rahman, U.; Khan, M.R.; Sahar, A.; Mehmood, T.; Khan, M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Advances, 2017, 7(52), 32669-32681.
[http://dx.doi.org/10.1039/C7RA04803C]
[45]
Mohammadi Nejad, S.; Özgüneş, H.; Başaran, N. Pharmacological and toxicological properties of eugenol. Turk. J. Pharm. Sci., 2017, 14(2), 201-206.
[http://dx.doi.org/10.4274/tjps.62207] [PMID: 32454614]
[46]
Pramod, K; Ansari, SH; Ali, J Eugenol: A natural compound with versatile pharmacological actions. Nat. Prod. Commun., 2010, 5(12), 1934578X000501.
[http://dx.doi.org/10.1177/1934578X1000501236]
[47]
Al-Sharif, I.; Remmal, A.; Aboussekhra, A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer, 2013, 13(1), 600.
[http://dx.doi.org/10.1186/1471-2407-13-600] [PMID: 24330704]
[48]
Toda, S.; Ohnishi, M.; Kimura, M.; Toda, T. Inhibitory effects of eugenol and related compounds on lipid peroxidation induced by reac-tive oxygen. Planta Med., 1994, 60(3), 282.
[http://dx.doi.org/10.1055/s-2006-959478] [PMID: 17236048]
[49]
Okada, N.; Hirata, A.; Murakami, Y.; Shoji, M.; Sakagami, H.; Fujisawa, S. Induction of cytotoxicity and apoptosis and inhibition of cy-clooxygenase-2 gene expression by eugenol-related compounds. Anticancer Res., 2005, 25(5), 3263-3269.
[PMID: 16101137]
[50]
Ou, H.C.; Chou, F.P.; Lin, T.M.; Yang, C.H.; Sheu, W.H.H. Protective effects of eugenol against oxidized LDL-induced cytotoxicity and adhesion molecule expression in endothelial cells. Food Chem. Toxicol., 2006, 44(9), 1485-1495.
[http://dx.doi.org/10.1016/j.fct.2006.04.011] [PMID: 16762475]
[51]
Yan, X.; Zhang, G.; Bie, F.; Lv, Y.; Ma, Y.; Ma, M.; Wang, Y.; Hao, X.; Yuan, N.; Jiang, X. Eugenol inhibits oxidative phosphorylation and fatty acid oxidation via downregulation of c-Myc/PGC-1β/ERRα signaling pathway in MCF10A-ras cells. Sci. Rep., 2017, 7(1), 12920.
[http://dx.doi.org/10.1038/s41598-017-13505-x]
[52]
Abdullah, M.L.; Hafez, M.M.; Al-Hoshani, A.; Al-Shabanah, O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complement. Altern. Med., 2018, 18(1), 321.
[http://dx.doi.org/10.1186/s12906-018-2392-5] [PMID: 30518369]
[53]
Fangjun, L.; Zhijia, Y. Tumor suppressive roles of eugenol in human lung cancer cells. Thorac. Cancer, 2018, 9(1), 25-29.
[http://dx.doi.org/10.1111/1759-7714.12508] [PMID: 29024500]
[54]
Islam, S.S.; Aboussekhra, A. Sequential combination of cisplatin with eugenol targets ovarian cancer stem cells through the Notch-Hes1 signalling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 382.
[http://dx.doi.org/10.1186/s13046-019-1360-3] [PMID: 31470883]
[55]
Choudhury, P.; Barua, A.; Roy, A.; Pattanayak, R.; Bhattacharyya, M.; Saha, P. Eugenol restricts cancer stem cell population by degrada-tion of β-catenin via N-terminal Ser37 phosphorylation-an in vivo and in vitro experimental evaluation. Chem. Biol. Interact., 2020, 316, 108938.
[http://dx.doi.org/10.1016/j.cbi.2020.108938] [PMID: 31926151]
[56]
Sarkar, A.; Das, S.; Rahaman, A.; Das Talukdar, A.; Bhattacharjee, S.; Mandal, D.P. Eugenol and capsaicin exhibit anti-metastatic activity via modulating TGF-β signaling in gastric carcinoma. Food Funct., 2020, 11(10), 9020-9034.
[http://dx.doi.org/10.1039/D0FO00887G] [PMID: 33016967]
[57]
Ma, M.; Ma, Y.; Zhang, G.J.; Liao, R.; Jiang, X.F.; Yan, X.X.; Bie, F.J.; Li, X.B.; Lv, Y.H. Eugenol alleviated breast precancerous lesions through HER2/PI3K-AKT pathway-induced cell apoptosis and S-phase arrest. Oncotarget, 2017, 8(34), 56296-56310.
[http://dx.doi.org/10.18632/oncotarget.17626] [PMID: 28915591]
[58]
Ali, I.; Naqshbandi, M.F.; Husain, M. Cell migration and apoptosis in human lung cancer cells by clove (Syzygium aromaticum) dried flower buds extract. J. Taibah Univ. Sci., 2019, 13(1), 1163-1174.
[http://dx.doi.org/10.1080/16583655.2019.1691480]
[59]
Das, A. K, H.; S K, D.K.; K, H.R.; Jayaprakash, B. Evaluation of therapeutic potential of eugenol-A natural derivative of Syzygium aro-maticum on cervical cancer. APJCP, 2018, 19(7), 1977-1985.
[PMID: 30051686]
[60]
Pal, D.; Sur, S.; Roy, R.; Mandal, S.; Kumar Panda, C. Epigallocatechin gallate in combination with eugenol or amarogentin shows syner-gistic chemotherapeutic potential in cervical cancer cell line. J. Cell. Physiol., 2018, 234(1), 825-836.
[http://dx.doi.org/10.1002/jcp.26900] [PMID: 30078217]
[61]
Yi, J.L.; Shi, S.; Shen, Y.L.; Wang, L.; Chen, H.Y.; Zhu, J.; Ding, Y. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1116-1127.
[PMID: 25972998]
[62]
Vargas, A.J.; Burd, R. Hormesis and synergy: Pathways and mechanisms of quercetin in cancer prevention and management. Nutr. Rev., 2010, 68(7), 418-428.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00301.x] [PMID: 20591109]
[63]
Sharmila, G.; Bhat, F.A.; Arunkumar, R.; Elumalai, P.; Raja Singh, P.; Senthilkumar, K.; Arunakaran, J. Chemopreventive effect of querce-tin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin. Nutr., 2014, 33(4), 718-726.
[http://dx.doi.org/10.1016/j.clnu.2013.08.011] [PMID: 24080313]
[64]
Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci. Rep., 2016, 6(1), 24049.
[http://dx.doi.org/10.1038/srep24049] [PMID: 27068577]
[65]
Zhang, W.; Yin, G.; Dai, J.; Sun, Y.U.; Hoffman, R.M.; Yang, Z.; Fan, Y. Chemoprevention by quercetin of oral squamous cell carcinoma by suppression of the NF-κB signaling pathway in DMBA-treated hamsters. Anticancer Res., 2017, 37(8), 4041-4049.
[PMID: 28739686]
[66]
Calgarotto, A.K.; Maso, V.; Junior, G.C.F.; Nowill, A.E.; Filho, P.L.; Vassallo, J.; Saad, S.T.O. Antitumor activities of quercetin and green tea in xenografts of human leukemia HL60 cells. Sci. Rep., 2018, 8(1), 3459.
[http://dx.doi.org/10.1038/s41598-018-21516-5] [PMID: 29472583]
[67]
Teekaraman, D.; Elayapillai, S.P.; Viswanathan, M.P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem. Biol. Interact., 2019, 300, 91-100.
[http://dx.doi.org/10.1016/j.cbi.2019.01.008] [PMID: 30639267]
[68]
Liu, Y.; Gong, W.; Yang, Z.Y.; Zhou, X.S.; Gong, C.; Zhang, T.R.; Wei, X.; Ma, D.; Ye, F.; Gao, Q.L. Quercetin induces protective autoph-agy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis, 2017, 22(4), 544-557.
[http://dx.doi.org/10.1007/s10495-016-1334-2] [PMID: 28188387]
[69]
Ji, Y.; Li, L.; Ma, Y.X.; Li, W.T.; Li, L.; Zhu, H.Z.; Wu, M.H.; Zhou, J.R. Quercetin inhibits growth of hepatocellular carcinoma by apop-tosis induction in part via autophagy stimulation in mice. J. Nutr. Biochem., 2019, 69, 108-119.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.018] [PMID: 31078904]
[70]
Ranganathan, S.; Halagowder, D.; Sivasithambaram, N.D. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS One, 2015, 10(10), e0141370.
[http://dx.doi.org/10.1371/journal.pone.0141370] [PMID: 26491966]
[71]
Wang, R.; Yang, L.; Li, S.; Ye, D.; Yang, L.; Liu, Q.; Zhao, Z.; Cai, Q.; Tan, J.; Li, X. Quercetin inhibits breast cancer stem cells via down-regulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), Mucin 1 (MUC1), and epithelial cell adhe-sion molecule (EpCAM). Med. Sci. Monit., 2018, 24, 412-420.
[http://dx.doi.org/10.12659/MSM.908022] [PMID: 29353288]
[72]
Xingyu, Z.; Peijie, M.; Dan, P.; Youg, W.; Daojun, W.; Xinzheng, C.; Xijun, Z.; Yangrong, S. Quercetin suppresses lung cancer growth by targeting aurora B kinase. Cancer Med., 2016, 5(11), 3156-3165.
[http://dx.doi.org/10.1002/cam4.891] [PMID: 27704720]
[73]
Chang, J-H.; Lai, S.L.; Chen, W.S.; Hung, W.Y.; Chow, J.M.; Hsiao, M.; Lee, W.J.; Chien, M.H. Quercetin suppresses the metastatic ability of lung cancer through inhibiting snail-dependent Akt activation and snail-independent ADAM9 expression pathways. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(10), 1746-1758.
[http://dx.doi.org/10.1016/j.bbamcr.2017.06.017] [PMID: 28648644]
[74]
Ali, A.; Kim, M.J.; Kim, M.Y.; Lee, H.J.; Roh, G.S.; Kim, H.J.; Cho, G.J.; Choi, W.S. Quercetin induces cell death in cervical cancer by reducing O-GlcNAcylation of adenosine monophosphate-activated protein kinase. Anat. Cell Biol., 2018, 51(4), 274-283.
[http://dx.doi.org/10.5115/acb.2018.51.4.274] [PMID: 30637162]
[75]
Refolo, M.G.; D’Alessandro, R.; Malerba, N.; Laezza, C.; Bifulco, M.; Messa, C.; Caruso, M.G.; Notarnicola, M.; Tutino, V. Anti prolifera-tive and pro apoptotic effects of flavonoid quercetin are mediated by CB1 receptor in human colon cancer cell lines. J. Cell. Physiol., 2015, 230(12), 2973-2980.
[http://dx.doi.org/10.1002/jcp.25026] [PMID: 25893829]
[76]
Yang, Y.; Wang, T.; Chen, D.; Ma, Q.; Zheng, Y.; Liao, S.; Wang, Y.; Zhang, J. Quercetin preferentially induces apoptosis in KRAS-mutant colorectal cancer cells via JNK signaling pathways. Cell Biol. Int., 2019, 43(2), 117-124.
[http://dx.doi.org/10.1002/cbin.11055] [PMID: 30203888]
[77]
He, D.; Guo, X.; Zhang, E.; Zi, F.; Chen, J.; Chen, Q.; Lin, X.; Yang, L.; Li, Y.; Wu, W.; Yang, Y.; He, J.; Cai, Z. Quercetin induces cell apoptosis of myeloma and displays a synergistic effect with dexamethasone in vitro and in vivo xenograft models. Oncotarget, 2016, 7(29), 45489-45499.
[http://dx.doi.org/10.18632/oncotarget.9993] [PMID: 27329589]
[78]
Ali, F. Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Health functionality of apigenin: A review. Int. J. Food Prop., 2016, 20(6), 1197-1238.
[http://dx.doi.org/10.1080/10942912.2016.1207188]
[79]
Singh, V.; Sharma, V.; Verma, V.; Pandey, D.; Yadav, S.K.; Maikhuri, J.P.; Gupta, G. Apigenin manipulates the ubiquitin-proteasome system to rescue estrogen receptor-β from degradation and induce apoptosis in prostate cancer cells. Eur. J. Nutr., 2015, 54(8), 1255-1267.
[http://dx.doi.org/10.1007/s00394-014-0803-z] [PMID: 25408199]
[80]
Kim, B.; Jung, N.; Lee, S.; Sohng, J.K.; Jung, H.J. Apigenin inhibits cancer stem cell-like phenotypes in human glioblastoma cells via sup-pression of c-Met signaling. Phytother. Res., 2016, 30(11), 1833-1840.
[http://dx.doi.org/10.1002/ptr.5689] [PMID: 27468969]
[81]
Xu, M.; Wang, S.; Song, Y.U.; Yao, J.; Huang, K.; Zhu, X. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol. Lett., 2016, 11(5), 3075-3080.
[http://dx.doi.org/10.3892/ol.2016.4331] [PMID: 27123066]
[82]
Erdogan, S.; Doganlar, O.; Doganlar, Z.B.; Serttas, R.; Turkekul, K.; Dibirdik, I.; Bilir, A. The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signaling. Life Sci., 2016, 162, 77-86.
[http://dx.doi.org/10.1016/j.lfs.2016.08.019] [PMID: 27569589]
[83]
Li, Y.; Liu, W.; Yang, L.; Ji, Z.; Zhao, Y.; Wang, P.; Zhang, L. Development of electro-hydraulic proportion control system of track-laying machinery for high speed railway construction. Mechatronics, 2016, 40, 167-177.
[http://dx.doi.org/10.1016/j.mechatronics.2016.10.002]
[84]
Tseng, T.H.; Chien, M.H.; Lin, W.L.; Wen, Y.C.; Chow, J.M.; Chen, C.K.; Kuo, T.C.; Lee, W.J. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 ex-pression. Environ. Toxicol., 2017, 32(2), 434-444.
[http://dx.doi.org/10.1002/tox.22247] [PMID: 26872304]
[85]
Seo, H.S.; Jo, J.K.; Ku, J.M.; Choi, H.S.; Choi, Y.K.; Woo, J.K.; Kim, H.I.; Kang, S.Y.; Lee, K.M.; Nam, K.W.; Park, N.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells. Biosci. Rep., 2015, 35(6), e00276.
[http://dx.doi.org/10.1042/BSR20150165] [PMID: 26500281]
[86]
Bauer, D.; Redmon, N.; Mazzio, E.; Soliman, K.F. Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells. PLoS One, 2017, 12(4), e0175558.
[http://dx.doi.org/10.1371/journal.pone.0175558] [PMID: 28441391]
[87]
Lee, Y.M.; Lee, G.; Oh, T.I.; Kim, B.M.; Shim, D.W.; Lee, K.H.; Kim, Y.J.; Lim, B.O.; Lim, J.H. Inhibition of glutamine utilization sensi-tizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress. Int. J. Oncol., 2016, 48(1), 399-408.
[http://dx.doi.org/10.3892/ijo.2015.3243] [PMID: 26573871]
[88]
Zhou, Z.; Tang, M.; Liu, Y.; Zhang, Z.; Lu, R.; Lu, J. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line. Anticancer Drugs, 2017, 28(4), 446-456.
[http://dx.doi.org/10.1097/CAD.0000000000000479] [PMID: 28125432]
[89]
Souza, R.P.; Bonfim-Mendonça, P.S.; Gimenes, F.; Ratti, B.A.; Kaplum, V.; Bruschi, M.L.; Nakamura, C.V.; Silva, S.O.; Maria-Engler, S.S.; Consolaro, M.E. Oxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines. Oxid. Med. Cell. Longev., 2017, 2017, 1512745.
[http://dx.doi.org/10.1155/2017/1512745] [PMID: 28191273]
[90]
Yang, P.M.; Chou, C.J.; Tseng, S.H.; Hung, C.F. Bioinformatics and in vitro experimental analyses identify the selective therapeutic poten-tial of interferon gamma and apigenin against cervical squamous cell carcinoma and adenocarcinoma. Oncotarget, 2017, 8(28), 46145-46162.
[http://dx.doi.org/10.18632/oncotarget.17574] [PMID: 28526810]
[91]
Cao, H.H.; Chu, J.H.; Kwan, H.Y.; Su, T.; Yu, H.; Cheng, C.Y.; Fu, X.Q.; Guo, H.; Li, T.; Tse, A.K.; Chou, G.X.; Mo, H.B.; Yu, Z.L. Inhi-bition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma. Sci. Rep., 2016, 6(1), 21731.
[http://dx.doi.org/10.1038/srep21731] [PMID: 26911838]
[92]
Bridgeman, B.B.; Wang, P.; Ye, B.; Pelling, J.C.; Volpert, O.V.; Tong, X. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention. Cell. Signal., 2016, 28(5), 460-468.
[http://dx.doi.org/10.1016/j.cellsig.2016.02.008] [PMID: 26876613]
[93]
Chaudhary, A.; Jaswal, V.S.; Choudhary, S. Sonika; Sharma, A.; Beniwal, V.; Tuli, H.S.; Sharma, S. Ferulic acid: A promising therapeu-tic phytochemical and recent patents advances. Recent Pat. Inflamm. Allergy Drug Discov., 2019, 13(2), 115-123.
[http://dx.doi.org/10.2174/1872213X13666190621125048] [PMID: 31223096]
[94]
Yue, S.J.; Zhang, P.X.; Zhu, Y.; Li, N.G.; Chen, Y.Y.; Li, J.J.; Zhang, S.; Jin, R.Y.; Yan, H.; Shi, X.Q.; Tang, Y.P.; Duan, J.A. A Ferulic acid derivative FXS-3 inhibits proliferation and metastasis of human lung cancer A549 cells via positive JNK signaling pathway and nega-tive ERK/p38, AKT/mTOR and MEK/ERK signaling pathways. Molecules, 2019, 24(11), 2165.
[http://dx.doi.org/10.3390/molecules24112165] [PMID: 31181779]
[95]
Gao, J.; Yu, H.; Guo, W.; Kong, Y.; Gu, L.; Li, Q.; Yang, S.; Zhang, Y.; Wang, Y. The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells. Cancer Cell Int., 2018, 18(1), 102.
[http://dx.doi.org/10.1186/s12935-018-0595-y] [PMID: 30013454]
[96]
Williams, G.T.; Smith, C.A. Molecular regulation of apoptosis: Genetic controls on cell death. Cell, 1993, 74(5), 777-779.
[http://dx.doi.org/10.1016/0092-8674(93)90457-2] [PMID: 8104100]
[97]
Luo, L.; Zhu, S.; Tong, Y.; Peng, S. Ferulic acid induces apoptosis of HeLa and Caski cervical carcinoma cells by down-regulating the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Med. Sci. Monit., 2020, 26, e920095.
[http://dx.doi.org/10.12659/MSM.920095] [PMID: 31983729]
[98]
Wang, T.; Gong, X.; Jiang, R.; Li, H.; Du, W.; Kuang, G. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell. Am. J. Transl. Res., 2016, 8(2), 968-980.
[PMID: 27158383]
[99]
Olgen, S. Overview on anticancer drug design and development. Curr. Med. Chem., 2018, 25(15), 1704-1719.
[http://dx.doi.org/10.2174/0929867325666171129215610] [PMID: 29189124]
[100]
Das, U.; Manna, K.; Adhikary, A.; Mishra, S.; Saha, K.D.; Sharma, R.D.; Majumder, B.; Dey, S. Ferulic acid enhances the radiation sensi-tivity of lung and liver carcinoma cells by collapsing redox homeostasis: Mechanistic involvement of Akt/p38 MAPK signalling pathway. Free Radic. Res., 2019, 53(9-10), 944-967.
[http://dx.doi.org/10.1080/10715762.2019.1655559] [PMID: 31576765]
[101]
Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol. Rep., 2016, 36(1), 271-278.
[http://dx.doi.org/10.3892/or.2016.4804] [PMID: 27177074]
[102]
Maruyama, H.; Kawakami, F.; Lwin, T.T.; Imai, M.; Shamsa, F. Biochemical characterization of ferulic acid and caffeic acid which effec-tively inhibit melanin synthesis via different mechanisms in B16 melanoma cells. Biol. Pharm. Bull., 2018, 41(5), 806-810.
[http://dx.doi.org/10.1248/bpb.b17-00892] [PMID: 29709918]
[103]
Kamm, A.; Przychodzeń, P.; Kuban-Jankowska, A.; Marino Gammazza, A.; Cappello, F.; Daca, A.; Żmijewski, M.A.; Woźniak, M.; Górska-Ponikowska, M. 2-Methoxyestradiol and its combination with a natural compound, ferulic acid, induces melanoma cell death via downregulation of Hsp60 and Hsp90. J. Oncol., 2019, 2019, 9293416.
[http://dx.doi.org/10.1155/2019/9293416] [PMID: 32082378]
[104]
Bandugula, V.R. N, R.P. 2-Deoxy-D-glucose and ferulic acid modulates radiation response signaling in non-small cell lung cancer cells. Tumour Biol., 2013, 34(1), 251-259.
[http://dx.doi.org/10.1007/s13277-012-0545-6] [PMID: 23065571]
[105]
Fong, Y.; Tang, C.C.; Hu, H.T.; Fang, H.Y.; Chen, B.H.; Wu, C.Y.; Yuan, S.S.; Wang, H.D.; Chen, Y.C.; Teng, Y.N.; Chiu, C.C. Inhibitory effect of trans-ferulic acid on proliferation and migration of human lung cancer cells accompanied with increased endogenous reactive ox-ygen species and β-catenin instability. Chin. Med., 2016, 11(1), 45.
[http://dx.doi.org/10.1186/s13020-016-0116-7] [PMID: 27733866]
[106]
Fahrioğlu, U.; Dodurga, Y.; Elmas, L.; Seçme, M. Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro. Gene, 2016, 576(1 Pt 3), 476-482.
[http://dx.doi.org/10.1016/j.gene.2015.10.061] [PMID: 26516023]
[107]
Eitsuka, T.; Tatewaki, N.; Nishida, H.; Kurata, T.; Nakagawa, K.; Miyazawa, T. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid. Biochem. Biophys. Res. Commun., 2014, 453(3), 606-611.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.126] [PMID: 25285637]
[108]
Olsen, H.; Aaby, K.; Borge, G.I.A. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn. J. Agric. Food Chem., 2009, 57(7), 2816-2825.
[http://dx.doi.org/10.1021/jf803693t] [PMID: 19253943]
[109]
Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol., 2019, 9, 541.
[http://dx.doi.org/10.3389/fonc.2019.00541] [PMID: 31293975]
[110]
Rezaei-Seresht, H.; Cheshomi, H.; Falanji, F.; Movahedi-Motlagh, F.; Hashemian, M.; Mireskandari, E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J. Phytomed., 2019, 9(6), 574-586.
[PMID: 31763216]
[111]
Chiang, E.P.I.; Tsai, S.Y.; Kuo, Y.H.; Pai, M.H.; Chiu, H.L.; Rodriguez, R.L.; Tang, F.Y. Caffeic acid derivatives inhibit the growth of co-lon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS One, 2014, 9(6), e99631.
[http://dx.doi.org/10.1371/journal.pone.0099631] [PMID: 24960186]
[112]
Chiang, C.F.; Chao, T.T.; Su, Y.F.; Hsu, C.C.; Chien, C.Y.; Chiu, K.C.; Shiah, S.G.; Lee, C.H.; Liu, S.Y.; Shieh, Y.S. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget, 2017, 8(13), 20706-20718.
[http://dx.doi.org/10.18632/oncotarget.14982] [PMID: 28157701]
[113]
Tyszka-Czochara, M.; Bukowska-Strakova, K.; Kocemba-Pilarczyk, K.A.; Majka, M. Caffeic acid targets AMPK signaling and regulates tricarboxylic acid cycle anaplerosis while metformin downregulates HIF-1α-induced glycolytic enzymes in human cervical squamous cell carcinoma lines. Nutrients, 2018, 10(7), 841.
[http://dx.doi.org/10.3390/nu10070841] [PMID: 29958416]
[114]
Pelinson, L.P.; Assmann, C.E.; Palma, T.V.; da Cruz, I.B.M.; Pillat, M.M.; Mânica, A.; Stefanello, N.; Weis, G.C.C.; de Oliveira Alves, A.; de Andrade, C.M.; Ulrich, H.; Morsch, V.M.M.; Schetinger, M.R.C.; Bagatini, M.D. Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells. Mol. Biol. Rep., 2019, 46(2), 2085-2092.
[http://dx.doi.org/10.1007/s11033-019-04658-1] [PMID: 30719606]
[115]
Teng, Y.N.; Wang, C.C.N.; Liao, W.C.; Lan, Y.H.; Hung, C.C. Caffeic acid attenuates multi-drug resistance in cancer cells by inhibiting efflux function of human P-glycoprotein. Molecules, 2020, 25(2), 247.
[http://dx.doi.org/10.3390/molecules25020247] [PMID: 31936160]
[116]
Chang, H.; Wang, Y.; Yin, X.; Liu, X.; Xuan, H. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy. BMC Complement. Altern. Med., 2017, 17(1), 471.
[http://dx.doi.org/10.1186/s12906-017-1984-9] [PMID: 28950845]
[117]
Chang, W.C.; Hsieh, C.H.; Hsiao, M.W.; Lin, W.C.; Hung, Y.C.; Ye, J.C. Caffeic acid induces apoptosis in human cervical cancer cells through the mitochondrial pathway. Taiwan. J. Obstet. Gynecol., 2010, 49(4), 419-424.
[http://dx.doi.org/10.1016/S1028-4559(10)60092-7] [PMID: 21199742]
[118]
Liu, G-L.; Han, N-Z.; Liu, S-S. Caffeic acid phenethyl ester inhibits the progression of ovarian cancer by regulating NF-?B signaling. Biomed. Pharmacother., 2018, 99, 825-831.
[http://dx.doi.org/10.1016/j.biopha.2018.01.129] [PMID: 29710481]
[119]
Kleczka, A.; Kubina, R.; Dzik, R.; Jasik, K.; Stojko, J.; Cholewa, K.; Kabała-Dzik, A. Caffeic acid phenethyl ester (CAPE) induced apopto-sis in serous ovarian cancer OV7 cells by deregulation of BCL2/BAX genes. Molecules, 2020, 25(15), 3514.
[http://dx.doi.org/10.3390/molecules25153514] [PMID: 32752091]
[120]
Yang, G.; Fu, Y.; Malakhova, M.; Kurinov, I.; Zhu, F.; Yao, K.; Li, H.; Chen, H.; Li, W.; Lim, D.Y.; Sheng, Y.; Bode, A.M.; Dong, Z.; Dong, Z. Caffeic acid directly targets ERK1/2 to attenuate solar UV-induced skin carcinogenesis. Cancer Prev. Res. (Phila.), 2014, 7(10), 1056-1066.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0141] [PMID: 25104643]
[121]
Zeng, N.; Hongbo, T.; Xu, Y.; Wu, M.; Wu, Y. Anticancer activity of caffeic acid n-butyl ester against A431 skin carcinoma cell line oc-curs via induction of apoptosis and inhibition of the mTOR/PI3K/AKT signaling pathway. Mol. Med. Rep., 2021, 23(5), 372.
[http://dx.doi.org/10.3892/mmr.2018.8599] [PMID: 33760142]
[122]
Matsunaga, T.; Tsuchimura, S.; Azuma, N.; Endo, S.; Ichihara, K.; Ikari, A. Caffeic acid phenethyl ester potentiates gastric cancer cell sensitivity to doxorubicin and cisplatin by decreasing proteasome function. Anticancer Drugs, 2019, 30(3), 251-259.
[http://dx.doi.org/10.1097/CAD.0000000000000715] [PMID: 30489290]
[123]
Dai, G.; Jiang, Z.; Sun, B.; Liu, C.; Meng, Q.; Ding, K.; Jing, W.; Ju, W. Caffeic Acid phenethyl ester prevents colitis-associated cancer by inhibiting NLRP3 inflammasome. Front. Oncol., 2020, 10, 721.
[http://dx.doi.org/10.3389/fonc.2020.00721] [PMID: 32435622]
[124]
Li, H.; Ji, H.S.; Kang, J.H.; Shin, D.H.; Park, H.Y.; Choi, M.S.; Lee, C.H.; Lee, I.K.; Yun, B.S.; Jeong, T.S. Soy leaf extract containing kaempferol glycosides and pheophorbides improves glucose homeostasis by enhancing pancreatic β-cell function and suppressing hepatic lipid accumulation in db/db Mice. J. Agric. Food Chem., 2015, 63(32), 7198-7210.
[http://dx.doi.org/10.1021/acs.jafc.5b01639] [PMID: 26211813]
[125]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[126]
Neuhouser, M.L. Dietary flavonoids and cancer risk: Evidence from human population studies. Nutr. Cancer, 2004, 50(1), 1-7.
[http://dx.doi.org/10.1207/s15327914nc5001_1] [PMID: 15572291]
[127]
Imran, M.; Rauf, A.; Shah, Z.A.; Saeed, F.; Imran, A.; Arshad, M.U.; Ahmad, B.; Bawazeer, S.; Atif, M.; Peters, D.G.; Mubarak, M.S. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother. Res., 2019, 33(2), 263-275.
[http://dx.doi.org/10.1002/ptr.6227] [PMID: 30402931]
[128]
Kim, B.; Jung, J.W.; Jung, J.; Han, Y.; Suh, D.H.; Kim, H.S.; Dhanasekaran, D.N.; Song, Y.S. PGC1α induced by reactive oxygen species contributes to chemoresistance of ovarian cancer cells. Oncotarget, 2017, 8(36), 60299-60311.
[http://dx.doi.org/10.18632/oncotarget.19140] [PMID: 28947972]
[129]
Kim, T.W.; Lee, S.Y.; Kim, M.; Cheon, C.; Ko, S-G. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibi-tion of G9a in gastric cancer cells. Cell Death Dis., 2018, 9(9), 875.
[http://dx.doi.org/10.1038/s41419-018-0930-1] [PMID: 30158521]
[130]
Wu, P.; Meng, X.; Zheng, H.; Zeng, Q.; Chen, T.; Wang, W.; Zhang, X.; Su, J. Kaempferol attenuates ROS-induced hemolysis and the mo-lecular mechanism of its induction of apoptosis on bladder cancer. Molecules, 2018, 23(10), 2592.
[http://dx.doi.org/10.3390/molecules23102592] [PMID: 30309003]
[131]
Zhu, G.; Liu, X.; Li, H.; Yan, Y.; Hong, X.; Lin, Z. Kaempferol inhibits proliferation, migration, and invasion of liver cancer HepG2 cells by down-regulation of microRNA-21. Int. J. Immunopathol. Pharmacol., 2018, 32, 2058738418814341.
[http://dx.doi.org/10.1177/2058738418814341] [PMID: 30477356]
[132]
Yang, S.; Si, L.; Jia, Y.; Jian, W.; Yu, Q.; Wang, M.; Lin, R. Kaempferol exerts anti-proliferative effects on human ovarian cancer cells by inducing apoptosis, G0/G1 cell cycle arrest and modulation of MEK/ERK and STAT3 pathways. J. BUON, 2019, 24(3), 975-981.
[PMID: 31424650]
[133]
Lee, J.; Kim, J.H. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One, 2016, 11(5), e0155264.
[http://dx.doi.org/10.1371/journal.pone.0155264] [PMID: 27175782]
[134]
Budisan, L.; Gulei, D.; Jurj, A.; Braicu, C.; Zanoaga, O.; Cojocneanu, R.; Pop, L.; Raduly, L.; Barbat, A.; Moldovan, A.; Moldovan, C.; Tigu, A.B.; Ionescu, C.; Atanasov, A.G.; Irimie, A.; Berindan-Neagoe, I. Inhibitory effect of CAPE and kaempferol in colon cancer cell lines-possible implications in new therapeutic strategies. Int. J. Mol. Sci., 2019, 20(5), 1199.
[http://dx.doi.org/10.3390/ijms20051199] [PMID: 30857282]
[135]
Yang, J.; Xiao, P.; Sun, J.; Guo, L. Anticancer effects of kaempferol in A375 human malignant melanoma cells are mediated via induction of apoptosis, cell cycle arrest, inhibition of cell migration and downregulation of m-TOR/PI3K/AKT pathway. J. BUON, 2018, 23(1), 218-223.
[PMID: 29552787]
[136]
Pham, H.N.T.; Sakoff, J.A.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Comparative cytotoxic activity between kaempferol and gallic acid against various cancer cell lines. Data Brief, 2018, 21, 1033-1036.
[http://dx.doi.org/10.1016/j.dib.2018.10.121] [PMID: 30450396]
[137]
Lei, X.; Guo, J.; Wang, Y.; Cui, J.; Feng, B.; Su, Y.; Zhao, H.; Yang, W.; Hu, Y. Inhibition of endometrial carcinoma by Kaempferol is interceded through apoptosis induction, G2/M phase cell cycle arrest, suppression of cell invasion and upregulation of m-TOR/PI3K sig-nalling pathway. J. BUON, 2019, 24(4), 1555-1561.
[PMID: 31646808]
[138]
Da, J.; Xu, M.; Wang, Y.; Li, W.; Lu, M.; Wang, Z. Kaempferol promotes apoptosis while inhibiting cell proliferation via androgen-dependent pathway and suppressing vasculogenic mimicry and invasion in prostate cancer. Anal. Cell. Pathol. (Amst.), 2019, 2019, 1907698.
[http://dx.doi.org/10.1155/2019/1907698] [PMID: 31871879]
[139]
Halimah, E.; Diantini, A.; Destiani, D.P.; Pradipta, I.S.; Sastramihardja, H.S.; Lestari, K.; Subarnas, A.; Abdulah, R.; Koyama, H. Induction of caspase cascade pathway by kaempferol-3-O-rhamnoside in LNCaP prostate cancer cell lines. Biomed. Rep., 2015, 3(1), 115-117.
[http://dx.doi.org/10.3892/br.2014.385] [PMID: 25469259]
[140]
Hung, T.W.; Chen, P.N.; Wu, H.C.; Wu, S.W.; Tsai, P.Y.; Hsieh, Y.S.; Chang, H.R. Kaempferol inhibits the invasion and migration of renal cancer cells through the downregulation of AKT and FAK pathways. Int. J. Med. Sci., 2017, 14(10), 984-993.
[http://dx.doi.org/10.7150/ijms.20336] [PMID: 28924370]
[141]
Song, W.; Dang, Q.; Xu, D.; Chen, Y.; Zhu, G.; Wu, K.; Zeng, J.; Long, Q.; Wang, X.; He, D.; Li, L. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling. Oncol. Rep., 2014, 31(3), 1350-1356.
[http://dx.doi.org/10.3892/or.2014.2965] [PMID: 24399193]
[142]
Li, C.; Zhao, Y.; Yang, D.; Yu, Y.; Guo, H.; Zhao, Z.; Zhang, B.; Yin, X. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochem. Cell Biol., 2015, 93(1), 16-27.
[http://dx.doi.org/10.1139/bcb-2014-0067] [PMID: 25453494]
[143]
Yi, X.; Zuo, J.; Tan, C.; Xian, S.; Luo, C.; Chen, S.; Yu, L.; Luo, Y. Kaempferol, a flavonoid compound from gynura medica induced apoptosis and growth inhibition in MCF-7 breast cancer cell. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(4), 210-215.
[http://dx.doi.org/10.21010/ajtcam.v13i4.27] [PMID: 28852738]
[144]
Zhu, L.; Xue, L. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells. Oncol. Res., 2019, 27(6), 629-634.
[http://dx.doi.org/10.3727/096504018X15228018559434] [PMID: 29739490]
[145]
Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr., 2020, 60(4), 626-659.
[http://dx.doi.org/10.1080/10408398.2018.1546669] [PMID: 30614249]
[146]
Tabrez, S.; Priyadarshini, M.; Urooj, M.; Shakil, S.; Ashraf, G.M.; Khan, M.S.; Kamal, M.A.; Alam, Q.; Jabir, N.R.; Abuzenadah, A.M.; Chaudhary, A.G.; Damanhouri, G.A. Cancer chemoprevention by polyphenols and their potential application as nanomedicine. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2013, 31(1), 67-98.
[http://dx.doi.org/10.1080/10590501.2013.763577] [PMID: 23534395]
[147]
Ernest, U.; Chen, H.Y.; Xu, M.J.; Taghipour, Y.D.; Asad, M.H.H.B.; Rahimi, R.; Murtaza, G. Anti-cancerous potential of polyphenol-loaded polymeric nanotherapeutics. Molecules, 2018, 23(11), 2787.
[http://dx.doi.org/10.3390/molecules23112787] [PMID: 30373235]
[148]
Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr. Polym., 2020, 231, 115682.
[http://dx.doi.org/10.1016/j.carbpol.2019.115682] [PMID: 31888816]
[149]
Thakkar, A.; Chenreddy, S.; Wang, J.; Prabhu, S. Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid-lipid nanoparticles. Cell Biosci., 2015, 5(1), 46.
[http://dx.doi.org/10.1186/s13578-015-0041-y] [PMID: 26301084]
[150]
Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep., 2016, 43(2), 99-105.
[http://dx.doi.org/10.1007/s11033-016-3942-x] [PMID: 26748999]
[151]
Bhattacharya, S.; Mondal, L.; Mukherjee, B.; Dutta, L.; Ehsan, I.; Debnath, M.C.; Gaonkar, R.H.; Pal, M.M.; Majumdar, S. Apigenin load-ed nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomedicine, 2018, 14(6), 1905-1917.
[http://dx.doi.org/10.1016/j.nano.2018.05.011] [PMID: 29802937]
[152]
Oueslati, M.H.; Tahar, L.B.; Harrath, A.H. Catalytic, antioxidant and anticancer activities of gold nanoparticles synthesized by kaempferol glucoside from Lotus leguminosae. Arab. J. Chem., 2020, 13(1), 3112-3122.
[http://dx.doi.org/10.1016/j.arabjc.2018.09.003]
[153]
Zheng, Y.; You, X.; Guan, S.; Huang, J.; Wang, L.; Zhang, J.; Wu, J. Poly(ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy. Adv. Funct. Mater., 2019, 29(15), 1808646.
[http://dx.doi.org/10.1002/adfm.201808646]
[154]
Guan, Y.; Chen, H.; Zhong, Q. Nanoencapsulation of caffeic acid phenethyl ester in sucrose fatty acid esters to improve activities against cancer cells. J. Food Eng., 2019, 246, 125-133.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.11.008]
[155]
Williamson, G.; Holst, B. Dietary reference intake (DRI) value for dietary polyphenols: Are we heading in the right direction? Br. J. Nutr., 2008, 99(S3), S55-S58.
[http://dx.doi.org/10.1017/S0007114508006867] [PMID: 18598589]
[156]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 2018, 5, 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[157]
Wright, S.E.; Baron, D.A.; Heffner, J.E. Intravenous eugenol causes hemorrhagic lung edema in rats: Proposed oxidant mechanisms. J. Lab. Clin. Med., 1995, 125(2), 257-264.
[PMID: 7844474]
[158]
Escobar-García, M.; Rodríguez-Contreras, K.; Ruiz-Rodríguez, S.; Pierdant-Pérez, M.; Cerda-Cristerna, B.; Pozos-Guillén, A. Eugenol toxicity in human dental pulp fibroblasts of primary teeth. J. Clin. Pediatr. Dent., 2016, 40(4), 312-318.
[http://dx.doi.org/10.17796/1053-4628-40.4.312] [PMID: 27471810]
[159]
Okamoto, T. Safety of quercetin for clinical application. (Review) Int. J. Mol. Med., 2005, 16(2), 275-278.
[http://dx.doi.org/10.3892/ijmm.16.2.275] [PMID: 16012761]
[160]
Chen, R.; Lin, J.; Hong, J.; Han, D.; Zhang, A.D.; Lan, R.; Fu, L.; Wu, Z.; Lin, J.; Zhang, W.; Wang, Z.; Chen, W.; Chen, C.; Zhang, H. Potential toxicity of quercetin: The repression of mitochondrial copy number via decreased POLG expression and excessive TFAM ex-pression in irradiated murine bone marrow. Toxicol. Rep., 2014, 1, 450-458.
[http://dx.doi.org/10.1016/j.toxrep.2014.07.014] [PMID: 28962259]
[161]
Galati, G.; Sabzevari, O.; Wilson, J.X.; O’Brien, P.J. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology, 2002, 177(1), 91-104.
[http://dx.doi.org/10.1016/S0300-483X(02)00198-1] [PMID: 12126798]
[162]
Morrissey, C.; O’Neill, A.; Spengler, B.; Christoffel, V.; Fitzpatrick, J.M.; Watson, R.W.G. Apigenin drives the production of reactive oxy-gen species and initiates a mitochondrial mediated cell death pathway in prostate epithelial cells. Prostate, 2005, 63(2), 131-142.
[http://dx.doi.org/10.1002/pros.20167] [PMID: 15486995]
[163]
Miyoshi, N.; Naniwa, K.; Yamada, T.; Osawa, T.; Nakamura, Y. Dietary flavonoid apigenin is a potential inducer of intracellular oxidative stress: the role in the interruptive apoptotic signal. Arch. Biochem. Biophys., 2007, 466(2), 274-282.
[http://dx.doi.org/10.1016/j.abb.2007.07.026] [PMID: 17870050]
[164]
Singh, P.; Mishra, S.K.; Noel, S.; Sharma, S.; Rath, S.K. Acute exposure of apigenin induces hepatotoxicity in Swiss mice. PLoS One, 2012, 7(2), e31964.
[http://dx.doi.org/10.1371/journal.pone.0031964] [PMID: 22359648]
[165]
Mancuso, C.; Santangelo, R. Ferulic acid: pharmacological and toxicological aspects. Food Chem. Toxicol., 2014, 65, 185-195.
[http://dx.doi.org/10.1016/j.fct.2013.12.024] [PMID: 24373826]
[166]
Choi, J.H.; Park, J.K.; Kim, K.M.; Lee, H.J.; Kim, S. In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. J. Biochem. Mol. Toxicol., 2018, 32(1), e22004.
[http://dx.doi.org/10.1002/jbt.22004] [PMID: 29077251]
[167]
Liu, Y.; Qiu, S.; Wang, L.; Zhang, N.; Shi, Y.; Zhou, H.; Liu, X.; Shao, L.; Liu, X.; Chen, J.; Hou, M. Reproductive and developmental toxicity study of caffeic acid in mice. Food Chem. Toxicol., 2019, 123, 106-112.
[http://dx.doi.org/10.1016/j.fct.2018.10.040] [PMID: 30366071]
[168]
Somsak, V.; Damkaew, A.; Onrak, P. Antimalarial activity of kaempferol and its combination with chloroquine in Plasmodium berghei infection in mice. J. Pathogens, 2018, 2018, 3912090.
[http://dx.doi.org/10.1155/2018/3912090] [PMID: 30631601]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy