Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Transition Metal Oxides as Hydrogen Evolution Electrocatalyst: Scientometric Analysis

Author(s): Lei Wu, Ming Li, Yun Zhou* and Hongyu Hu

Volume 19, Issue 4, 2023

Published on: 29 August, 2022

Page: [484 - 492] Pages: 9

DOI: 10.2174/1574362417666220513152540

Price: $65

conference banner
Abstract

Background: The development of cost-effective and high-activity hydrogen evolution reaction (HER) electrocatalysts is limiting the implementation of hydrogen production from electrochemical and photoelectrochemical water splitting, which is seen as a potential technology for clean energy production and long-term energy storage. Transition metal oxide catalysts, a large class of functional materials with variable elemental compositions and crystal shapes, have piqued the interest of scientists. Now, a scientific-based appraisal of the progress in this scientific field is required, as well as identification of the most promising materials and technologies, as well as present constraints and future commercialization chances.

Method: This article presents a scientometric analysis of transition metal oxides as hydrogen evolution electrocatalysts in the scientific field. 1421 publications from the Web of Science (WoS) database were extracted using a mix of relevant keywords and examined using multiple scientometric indexes utilizing Python and Anaconda Prompt, ScientoPy, and Citespace. It stated that the first point on this subject was in 1992 and that scientific progress has substantially increased since 2015.

Results: Articles and reviews account for 83.8 percent and 13.4 percent of all items published in this category, respectively.

Conclusion: The top two contributor countries were identified as China and the United States. The most active journal in this field is Journal of Materials Chemistry A.

Keywords: Hydrogen evolution, Photoelectrocatalysis, Oxides, Catalysts, Python

[1]
Ekanayake, U.G.M.; Seo, D.H.; Faershteyn, K.; O’Mullane, A.P.; Shon, H.; MacLeod, J.; Golberg, D.; Ostrikov, K. Atmospheric-pressure plasma seawater desalination: Clean energy, agriculture, and resource recovery nexus for a blue planet. Sustain. Mater. Technol., 2020, 25, e00181.
[http://dx.doi.org/10.1016/j.susmat.2020.e00181]
[2]
Alidusty, F.; Nezamzadeh-Ejhieh, A. Considerable decrease in overvoltage of electro-catalytic oxidation of methanol by modification of carbon paste electrode with Cobalt(II)-clinoptilolite nanoparticles. Int. J. Hydrogen Energy, 2016, 41(15), 6288-6299.
[http://dx.doi.org/10.1016/j.ijhydene.2016.02.149]
[3]
Han, N.; Shen, Z.; Zhao, X.; Chen, R.; Thakur, V.K. Perovskite oxides for oxygen transport: Chemistry and material horizons. Sci. Total Environ., 2022, 806(Pt 3), 151213.
[http://dx.doi.org/10.1016/j.scitotenv.2021.151213] [PMID: 34715221]
[4]
Liang, F.; Jiang, L.; Zhang, Z.; Wu, D.; Li, X.; Han, N.; Rui, Y.; Zhang, W.; Tang, B. Cobalt-doped TaOCl3 nanoparticles/carbon compounds with advanced specific capacity for lithium-ion batteries. J. Alloys Compd., 2022, 897, 163193.
[http://dx.doi.org/10.1016/j.jallcom.2021.163193]
[5]
Chai, J.; Du, J.; Li, Q.; Han, N.; Zhang, W.; Tang, B. Recent Breakthroughs in the Bottleneck of Cathode Materials for Li–S Batteries. Energy Fuels, 2021, 35(19), 15455-15471.
[http://dx.doi.org/10.1021/acs.energyfuels.1c02485]
[6]
Han, N.; Meng, B.; Yang, N.; Sunarso, J.; Zhu, Z.; Liu, S. Enhancement of oxygen permeation fluxes of La0.6Sr0.4CoO3−δ hollow fiber membrane via macrostructure modification and (La0.5Sr0.5)2CoO4+δ decoration. Chem. Eng. Res. Des., 2018, 134, 487-496.
[http://dx.doi.org/10.1016/j.cherd.2018.04.038]
[7]
Jiang, M.; Zhang, M.; Wang, L.; Fei, Y.; Wang, S.; Núñez-Delgado, A.; Bokhari, A.; Race, M.; Khataee, A.; Jaromír Klemeš, J.; Xing, L.; Han, N. Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites. Chem. Eng. J., 2022, 431, 134104.
[http://dx.doi.org/10.1016/j.cej.2021.134104]
[8]
Zhuang, S.; Han, N.; Chen, R.; Yao, Z.; Zou, Q.; Song, F. Perovskite oxide based composite hollow fiber membrane for CO2 transport. Ceram. Int., 2020, 46(2), 2538-2544.
[http://dx.doi.org/10.1016/j.ceramint.2019.09.059]
[9]
Zou, Q.; Dong, Z.; Yang, X.; Jie, J.; An, X.; Han, N.; Li, T. Electromagnetic self-encapsulation strategy to develop Al-matrix composite phase change material for thermal energy storage. Chem. Eng. J., 2021, 425, 131664.
[http://dx.doi.org/10.1016/j.cej.2021.131664]
[10]
Benck, J.D.; Hellstern, T.R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T.F. Catalyzing the Hydrogen Evolution Reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal., 2014, 4(11), 3957-3971.
[http://dx.doi.org/10.1021/cs500923c]
[11]
Tohidi, M.S.; Nezamzadeh-Ejhieh, A. A simple, cheap and effective methanol electrocatalyst based of Mn(II)-exchanged clinoptilolite nanoparticles. Int. J. Hydrogen Energy, 2016, 41(21), 8881-8892.
[http://dx.doi.org/10.1016/j.ijhydene.2016.03.106]
[12]
Ahmadi, A.; Nezamzadeh-Ejhieh, A. A comprehensive study on electrocatalytic current of urea oxidation by modified carbon paste electrode with Ni(II)-clinoptilolite nanoparticles: Experimental design by response surface methodology. J. Electroanal. Chem. (Lausanne), 2017, 801, 328-337.
[http://dx.doi.org/10.1016/j.jelechem.2017.08.009]
[13]
Tamiji, T.; Nezamzadeh-Ejhieh, A. Electrocatalytic behavior of AgBr NPs as modifier of carbon past electrode in the presence of methanol and ethanol in aqueous solution: A kinetic study. J. Taiwan Inst. Chem. Eng., 2019, 104, 130-138.
[http://dx.doi.org/10.1016/j.jtice.2019.08.021]
[14]
Han, N.; Liu, P.; Jiang, J.; Ai, L.; Shao, Z.; Liu, S. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(41), 19912-19933.
[http://dx.doi.org/10.1039/C8TA06529B]
[15]
Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B-J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(25), 14971-15005.
[http://dx.doi.org/10.1039/C9TA03220G]
[16]
Gutić, S.J.; Dobrota, A.S.; Fako, E.; Skorodumova, N.V.; López, N.; Pašti, I.A. Hydrogen evolution reaction-from single crystal to single atom catalysts. Catalysts, 2020, 10(3), 290.
[17]
Han, N.; Race, M.; Zhang, W.; Marotta, R.; Zhang, C.; Bokhari, A.; Klemeš, J.J. Perovskite and related oxide based electrodes for water splitting. J. Clean. Prod., 2021, 318, 128544.
[http://dx.doi.org/10.1016/j.jclepro.2021.128544]
[18]
Liu, S.; Huang, J.; Su, H.; Tang, G.; Liu, Q.; Sun, J.; Xu, J. Multiphase phosphide cocatalyst for boosting efficient photocatalytic H2 production and enhancing the stability. Ceram. Int., 2021, 47(1), 1414-1420.
[http://dx.doi.org/10.1016/j.ceramint.2020.08.265]
[19]
Liu, B.; Wang, J.; Mou, D.; Fu, J.; Chen, W.; Fu, Z.; Qiang, Q.; Peng, L.; Zhao, L.; Wei, J.; Qiu, J.; Ma, C. The mechanism and surface engineering of carbon encapsulate defects-rich molybdenum phosphide for the hydrogen evolution reaction in alkaline media. J. Alloys Compd., 2021, 850, 156737.
[http://dx.doi.org/10.1016/j.jallcom.2020.156737]
[20]
Huo, J.; Chen, Y.; Liu, Y.; Guo, J.; Lu, L.; Li, W.; Wang, Y.; Liu, H. Bifunctional iron nickel phosphide nanocatalysts supported on porous carbon for highly efficient overall water splitting. Sustain. Mater. Technol., 2019, 22, e00117.
[http://dx.doi.org/10.1016/j.susmat.2019.e00117]
[21]
Yu, B.; Meng, F.; Zhou, T.; Fan, A.; Khan, M.W.; Wu, H.; Liu, X. Construction of hollow TiO2/CuS nanoboxes for boosting full-spectrum driven photocatalytic hydrogen evolution and environmental remediation. Ceram. Int., 2020, 47(7), 8849-8858.
[22]
Zhou, X.; Zhang, N.; Yin, L.; Zhao, Y.; Zhang, B. Few-layered WS2 nanosheets onto 1D CdS@ZnCdS as efficient visible-light photocatalyst for hydrogen evolution. Ceram. Int., 2020, 46(16, Part A), 26100-26108.
[http://dx.doi.org/10.1016/j.ceramint.2020.07.105]
[23]
Wang, M.; Tang, W.; Liu, S.; Liu, X.; Chen, X.; Hu, X.; Qiao, L.; Sui, Y. Design of earth-abundant ternary Fe1−xCoxS2 on RGO as efficient electrocatalysts for hydrogen evolution reaction. J. Alloys Compd., 2021, 862, 158610.
[http://dx.doi.org/10.1016/j.jallcom.2021.158610]
[24]
Xu, Y.; Qu, J.; Li, Y.; Zhu, M.; Liu, Y.; Zheng, R.; Cairney, J.M.; Li, W. Bridging metal-ion induced vertical growth of MoS2 and overall fast electron transfer in (C,P)3N4-M (Ni2+, Co2+)-MoS2 electrocatalyst for efficient hydrogen evolution reaction. Sustain. Mater. Technol., 2020, 25, e00172.
[http://dx.doi.org/10.1016/j.susmat.2020.e00172]
[25]
Yuan, X.; Huang, W.; Zhao, D.; Wang, X.; Guo, S. Phase-pure ditungsten carbide nanoparticles covered by carbon as efficient electrocatalysts for hydrogen evolution reaction. Ceram. Int., 2021, 2021, 12228-12233.
[http://dx.doi.org/10.1016/j.ceramint.2021.01.071]
[26]
Jana, J.; Chung, J.S.; Hur, S.H. Carbon dot supported bimetallic nanocomposite for the hydrogen evolution reaction. J. Alloys Compd., 2021, 859, 157895.
[http://dx.doi.org/10.1016/j.jallcom.2020.157895]
[27]
Kumar, P.; Boukherroub, R.; Shankar, K. Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(27), 12876-12931.
[http://dx.doi.org/10.1039/C8TA02061B]
[28]
Chen, R.; Han, N.; Li, L.; Wang, S.; Ma, X.; Wang, C.; Li, H.; Li, H.; Zeng, L. Fundamental understanding of oxygen content in activated carbon on acetone adsorption desorption. Appl. Surf. Sci., 2020, 508, 145211.
[http://dx.doi.org/10.1016/j.apsusc.2019.145211]
[29]
Chen, R.; Yao, Z.; Han, N.; Ma, X.; Li, L.; Liu, S.; Sun, H.; Wang, S. Insights into the adsorption of VOCs on a Cobalt-Adeninate metal-organic framework (Bio-MOF-11). ACS Omega, 2020, 5(25), 15402-15408.
[http://dx.doi.org/10.1021/acsomega.0c01504] [PMID: 32637814]
[30]
Wu, A.; Gu, Y.; Xie, Y.; Yan, H.; Jiao, Y.; Wang, D.; Tian, C. Interfacial engineering of MoS2/MoN heterostructures as efficient electrocatalyst for pH-universal hydrogen evolution reaction. J. Alloys Compd., 2021, 867, 159066.
[http://dx.doi.org/10.1016/j.jallcom.2021.159066]
[31]
Vishwanath, R.S.; Kandaiah, S. Metal ion-containing C3N3S3 coordination polymers chemisorbed to a copper surface as acid stable hydrogen evolution electrocatalysts. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(5), 2052-2065.
[http://dx.doi.org/10.1039/C6TA08469A]
[32]
Liu, Y.; Han, N.; Jiang, J.; Ai, L. Boosting the oxygen evolution electrocatalysis of layered nickel hydroxidenitrate nanosheets by iron doping. Int. J. Hydrogen Energy, 2019, 44(21), 10627-10636.
[http://dx.doi.org/10.1016/j.ijhydene.2019.03.010]
[33]
Zhang, W.; Cui, L.; Liu, J. Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. J. Alloys Compd., 2020, 821, 153542.
[http://dx.doi.org/10.1016/j.jallcom.2019.153542]
[34]
Liu, X.; Chen, X.; Li, Y.; Wu, B.; Luo, X.; Ouyang, S.; Luo, S.; Al Kheraif, A.A.; Lin, J. A g-C3N4@Au@SrAl2O4:Eu2+,Dy3+ composite as an efficient plasmonic photocatalyst for round-the-clock environmental purification and hydrogen evolution. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(32), 19173-19186.
[http://dx.doi.org/10.1039/C9TA06423K]
[35]
Ding, R.; Wong, M-C.; Hao, J. Recent advances in hybrid perovskite nanogenerators. EcoMat, 2020, 2(4), e12057.
[http://dx.doi.org/10.1002/eom2.12057]
[36]
Chen, L.; Xu, Q. Metal-organic framework composites for catalysis. Matter, 2019, 1(1), 57-89.
[http://dx.doi.org/10.1016/j.matt.2019.05.018]
[37]
Sun, H.; Liu, H.; Nie, M.; Zhao, Z.; Xue, Z.; Liao, J.; Xue, F.; Zhang, S.; Wu, M.; Gao, T. Synthesis and hydrogen evolution reaction of nanosized Ag - ZnO coated MoS2. Ceram. Int., 2021, 2021, 13994-14000.
[http://dx.doi.org/10.1016/j.ceramint.2021.01.268]
[38]
Xu, X.; Chen, Y.; Zhou, W.; Zhong, Y.; Guan, D.; Shao, Z. Earth‐abundant silicon for facilitating water oxidation over iron‐based perovskite electrocatalyst. Adv. Mater. Interfaces, 2018, 5(11), 1701693.
[http://dx.doi.org/10.1002/admi.201701693]
[39]
Song, J.; Feng, B.; Chu, Y.; Tan, X.; Gao, J.; Han, N.; Liu, S. One-step thermal processing to prepare BaCo0. 95-xBi0. 05ZrxO3-δ membranes for oxygen separation. Ceram. Int., 2019, 45, 12579-12585.
[http://dx.doi.org/10.1016/j.ceramint.2019.03.087]
[40]
Zhang, M.; Qiu, B.; Gallardo-Amores, J.M.; Olguin, M.; Liu, H.; Li, Y.; Yin, C.; Jiang, S.; Yao, W.; Arroyo-de Dompablo, M.E.; Liu, Z.; Meng, Y.S. High pressure effect on structural and electrochemical properties of anionic redox-based lithium transition metal oxides. Matter, 2021, 4(1), 164-181.
[http://dx.doi.org/10.1016/j.matt.2020.10.026] [PMID: 33718863]
[41]
Parija, A.; Handy, J.V.; Andrews, J.L.; Wu, J.; Wangoh, L.; Singh, S.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Yang, W.; Fakra, S.C.; Al-Hashimi, M.; Sambandamurthy, G.; Piper, L.F.J.; Williams, R.S.; Prendergast, D.; Banerjee, S. Metal-insulator transitions in β′-Cu V2O5 mediated by polaron oscillation and cation shuttling. Matter, 2020, 2(5), 1166-1186.
[http://dx.doi.org/10.1016/j.matt.2020.01.027]
[42]
Hu, M.; Yang, W.; Tan, H.; Jin, L.; Zhang, L.; Kerns, P.; Dang, Y.; Dissanayake, S.; Schaefer, S.; Liu, B.; Zhu, Y.; Suib, S.L.; He, J. Template-free synthesis of mesoporous and crystalline transition metal oxide nanoplates with abundant surface defects. Matter, 2020, 2(5), 1244-1259.
[http://dx.doi.org/10.1016/j.matt.2020.02.002]
[43]
Chen, X.; Tang, Z.; Liu, P.; Gao, H.; Chang, Y.; Wang, G. Smart utilization of multifunctional metal oxides in phase change materials. Matter, 2020, 3(3), 708-741.
[http://dx.doi.org/10.1016/j.matt.2020.05.016]
[44]
Zhang, C.; Meng, X.; Sunarso, J.; Liu, L.; Xu, R.; Shao, Z.; Liu, S. Oxygen permeation behavior through Ce0.9Gd0.1O2−δmembranes electronically short-circuited by dual-phase Ce0.9Gd0.1O2−δ–Ag decoration. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(37), 19033-19041.
[http://dx.doi.org/10.1039/C5TA04345J]
[45]
Zhang, C.; Sunarso, J.; Liu, S. Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: Guidelines, recent advances, and forward directions. Chem. Soc. Rev., 2017, 46(10), 2941-3005.
[http://dx.doi.org/10.1039/C6CS00841K] [PMID: 28436504]
[46]
Han, N.; Zhang, C.; Tan, X.; Wang, Z.; Kawi, S.; Liu, S. Re-evaluation of La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fiber membranes for oxygen separation after long-term storage of five and ten years. J. Membr. Sci., 2019, 587, 117180.
[http://dx.doi.org/10.1016/j.memsci.2019.117180]
[47]
Zhu, J.; Zhang, G.; Liu, G.; Liu, Z.; Jin, W.; Xu, N. Perovskite hollow fibers with precisely controlled cation stoichiometry via one-step thermal processing. Adv. Mater., 2017, 29(18), 1606377.
[http://dx.doi.org/10.1002/adma.201606377] [PMID: 28262998]
[48]
Zhu, J.; Guo, S.; Chu, Z.; Jin, W. CO2-tolerant oxygen-permeable perovskite-type membranes with high permeability. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(45), 22564-22573.
[http://dx.doi.org/10.1039/C5TA04598C]
[49]
Song, J.; Feng, B.; Tan, X.; Han, N.; Sunarso, J.; Liu, S. Oxygen selective perovskite hollow fiber membrane bundles. J. Membr. Sci., 2019, 581, 393-400.
[http://dx.doi.org/10.1016/j.memsci.2019.03.078]
[50]
Han, N.; Guo, X.; Cheng, J.; Liu, P.; Zhang, S.; Huang, S.; Rowles, M.R.; Fransaer, J.; Liu, S. Inhibiting in situ phase transition in Ruddlesden-Popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter, 2021, 4(5), 1720-1734.
[http://dx.doi.org/10.1016/j.matt.2021.02.019]
[51]
Han, N.; Zhang, W.; Guo, W.; Xie, S.; Zhang, C.; Zhang, X.; Fransaer, J.; Liu, S. Novel oxygen permeable hollow fiber perovskite membrane with surface wrinkles. Separ. Purif. Tech., 2021, 261, 118295.
[http://dx.doi.org/10.1016/j.seppur.2020.118295]
[52]
Gao, J.; Lun, Y.; Han, N.; Tan, X.; Fan, C.; Liu, S. Influence of nitric oxide on the oxygen permeation behavior of La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite membranes. Separ. Purif. Tech., 2019, 210, 900-906.
[http://dx.doi.org/10.1016/j.seppur.2018.09.001]
[53]
Zhang, S.; Han, N.; Tan, X. Density functional theory calculations of atomic, electronic and thermodynamic properties of cubic LaCoO3 and La1-xSrxCoO3 surfaces. RSC Advances, 2015, 5(1), 760-769.
[http://dx.doi.org/10.1039/C4RA12563K]
[54]
Han, N.; Zhang, S.; Meng, B.; Tan, X. The effect of microstructure and surface decoration with K2NiF4-type oxide upon the oxygen permeability of perovskite-type La0.7Sr0.3FeO3-[small delta] hollow fiber membranes. RSC Advances, 2015, 5(108), 88602-88611.
[http://dx.doi.org/10.1039/C5RA14230J]
[55]
Wei, Q.; Zhang, S.; Meng, B.; Han, N.; Zhu, Z.; Liu, S. Enhancing O2-permeability and CO2-tolerance of La2NiO4+δ membrane via internal ionic-path. Mater. Lett., 2018, 230, 161-165.
[http://dx.doi.org/10.1016/j.matlet.2018.07.104]
[56]
Zhuang, S.; Han, N.; Xing, M.; Meng, B.; Liu, S. Perovskite oxide and carbonate composite membrane for carbon dioxide transport. Mater. Lett., 2019, 236, 329-333.
[http://dx.doi.org/10.1016/j.matlet.2018.10.135]
[57]
Ma, T.; Han, N.; Meng, B.; Yang, N.; Zhu, Z.; Liu, S. Enhancing oxygen permeation via the incorporation of silver inside perovskite oxide membranes. Processes (Basel), 2019, 7(4), 199.
[http://dx.doi.org/10.3390/pr7040199]
[58]
Zhuang, S.; Han, N.; Zou, Q.; Zhang, S.; Song, F. Insight into steam permeation through perovskite membrane via transient modeling. Membranes (Basel), 2020, 10(8), 164.
[http://dx.doi.org/10.3390/membranes10080164] [PMID: 32722396]
[59]
Han, N.; Zhang, S.; Meng, X.; Yang, N.; Meng, B.; Tan, X.; Liu, S. Effect of enhanced oxygen reduction activity on oxygen permeation of La0.6Sr0.4Co0.2Fe0.8O3−δ membrane decorated by K2NiF4-type oxide. J. Alloys Compd., 2016, 654, 280-289.
[http://dx.doi.org/10.1016/j.jallcom.2015.09.086]
[60]
Han, N.; Wei, Q.; Zhang, S.; Yang, N.; Liu, S. Rational design via tailoring Mo content in La2Ni1-xMoxO4+δ to improve oxygen permeation properties in CO2 atmosphere. J. Alloys Compd., 2019, 806, 153-162.
[http://dx.doi.org/10.1016/j.jallcom.2019.07.209]
[61]
Han, N.; Cheng, J.; Han, D.; Chen, G.; Zhang, S.; Wang, G.; Yang, N.; Liu, S. Novel La0.7Sr0.3FeO3 − δ/(La0.5Sr0.5)2CoO4 + δ composite hollow fiber membrane for O2 separation with high CO2 resistance. Int. J. Energy Res., 2019, 43(14), 8890-8897.
[http://dx.doi.org/10.1002/er.4872]
[62]
Han, N.; Wei, Q.; Tian, H.; Zhang, S.; Zhu, Z.; Liu, J.; Liu, S. Highly stable dual-phase membrane based on Ce0.9Gd0.1O2–δ—La2NiO4+δ for oxygen permeation under pure CO2 atmosphere. Energy Technol. (Weinheim), 2019, 7(5), 1800701.
[http://dx.doi.org/10.1002/ente.201800701]
[63]
Han, N.; Chen, R.; Chang, T.; Li, L.; Wang, H.; Zeng, L. A novel lanthanum strontium cobalt iron composite membrane synthesised through beneficial phase reaction for oxygen separation. Ceram. Int., 2019, 45(15), 18924-18930.
[http://dx.doi.org/10.1016/j.ceramint.2019.06.128]
[64]
Zhuang, S.; Han, N.; Wang, T.; Meng, X.; Meng, B.; Li, Y.; Sunarso, J.; Liu, S. Enhanced CO selectivity for reverse water-gas shift reaction using Ti4O7-doped SrCe0.9Y0.1O3-δ hollow fibre membrane reactor. Can. J. Chem. Eng., 2019, 97(S1), 1619-1626.
[http://dx.doi.org/10.1002/cjce.23384]
[65]
Han, N.; Wang, W.; Zhang, S.; Sunarso, J.; Zhu, Z.; Liu, S. A novel heterogeneous La0.8Sr0.2CoO3−δ/(La0.5Sr0.5)2CoO4+δ dual-phase membrane for oxygen separation. Asia-Pac. J. Chem. Eng., 2018, 13(5), e2239.
[66]
Han, N.; Wang, S.; Yao, Z.; Zhang, W.; Zhang, X.; Zeng, L.; Chen, R. Superior three-dimensional perovskite catalyst for catalytic oxidation. EcoMat, 2020, 2(3), e12044.
[http://dx.doi.org/10.1002/eom2.12044]
[67]
Xu, X.; Zhong, Y.; Shao, Z. Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends Chem., 2019, 1(4), 410-424.
[http://dx.doi.org/10.1016/j.trechm.2019.05.006]
[68]
Su, C.; Duan, X.; Miao, J.; Zhong, Y.; Zhou, W.; Wang, S.; Shao, Z. Mixed conducting perovskite materials as superior catalysts for fast aqueous-phase advanced oxidation: A mechanistic study. ACS Catal., 2016, 7(1), 388-397.
[http://dx.doi.org/10.1021/acscatal.6b02303]
[69]
Duan, X.; Su, C.; Miao, J.; Zhong, Y.; Shao, Z.; Wang, S.; Sun, H. Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. Appl. Catal. B, 2018, 220(Suppl. C), 626-634.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.088]
[70]
Han, N.; Yao, Z.; Ye, H.; Zhang, C.; Liang, P.; Sun, H.; Wang, S.; Liu, S. Efficient removal of organic pollutants by ceramic hollow fibre supported composite catalyst. Sustain. Mater. Technol., 2019, 20, e00108.
[http://dx.doi.org/10.1016/j.susmat.2019.e00108]
[71]
Rezaei, M.; Nezamzadeh-Ejhieha, A. The ZnO-NiO nano-composite: A brief characterization, kinetic and thermodynamic study and study the Arrhenius model on the sulfasalazine photodegradation. Int. J. Hydrogen Energy, 2020, 45(46), 24749-24764.
[http://dx.doi.org/10.1016/j.ijhydene.2020.06.258]
[72]
Ghattavi, S.; Nezamzadeh-Ejhieh, A. A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers. Compos., Part B Eng., 2020, 183, 107712.
[http://dx.doi.org/10.1016/j.compositesb.2019.107712]
[73]
Ejhieh, A.N.; Khorsandi, M. Photodecolorization of Eriochrome Black T using NiS-P zeolite as a heterogeneous catalyst. J. Hazard. Mater., 2010, 176(1-3), 629-637.
[http://dx.doi.org/10.1016/j.jhazmat.2009.11.077] [PMID: 20005035]
[74]
Nezamzadeh-Ejhieh, A.; Zabihi-Mobarakeh, H. Heterogeneous photodecolorization of mixture of methylene blue and bromophenol blue using CuO-nano-clinoptilolite. J. Ind. Eng. Chem., 2014, 20(4), 1421-1431.
[http://dx.doi.org/10.1016/j.jiec.2013.07.027]
[75]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater., 2017, 321, 629-638.
[http://dx.doi.org/10.1016/j.jhazmat.2016.09.056] [PMID: 27694027]
[76]
Chu, Y.; Tan, X.; Shen, Z.; Liu, P.; Han, N.; Kang, J.; Duan, X.; Wang, S.; Liu, L.; Liu, S. Efficient removal of organic and bacterial pollutants by Ag-La0.8Ca0.2Fe0.94O3-δ perovskite via catalytic peroxymonosulfate activation. J. Hazard. Mater., 2018, 356, 53-60.
[http://dx.doi.org/10.1016/j.jhazmat.2018.05.044] [PMID: 29807239]
[77]
Zhang, M.; Han, N.; Fei, Y.; Liu, J.; Xing, L.; Núñez-Delgado, A.; Jiang, M.; Liu, S. TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater. J. Environ. Manage., 2021, 297, 113311.
[http://dx.doi.org/10.1016/j.jenvman.2021.113311] [PMID: 34280862]
[78]
Wang, S.; Zhang, W.; Jia, F.; Fu, H.; Liu, T.; Zhang, X.; Liu, B.; Núñez-Delgado, A.; Han, N. Novel Ag3PO4/boron-carbon-nitrogen photocatalyst for highly efficient degradation of organic pollutants under visible-light irradiation. J. Environ. Manage., 2021, 292, 112763.
[http://dx.doi.org/10.1016/j.jenvman.2021.112763] [PMID: 34022648]
[79]
Liu, L.; Gao, J.; Liu, P.; Duan, X.; Han, N.; Li, F.; Sofianos, M.V.; Wang, S.; Tan, X.; Liu, S. Novel applications of perovskite oxide via catalytic peroxymonosulfate advanced oxidation in aqueous systems for trace L-cysteine detection. J. Colloid Interface Sci., 2019, 545, 311-316.
[http://dx.doi.org/10.1016/j.jcis.2019.03.045] [PMID: 30897427]
[80]
Wang, S.; Jia, F.; Wang, X.; Hu, L.; Sun, Y.; Yin, G.; Zhou, T.; Feng, Z.; Kumar, P.; Liu, B. Fabrication of ZnO nanoparticles modified by uniformly dispersed ag nanoparticles: Enhancement of gas sensing performance. ACS Omega, 2020, 5(10), 5209-5218.
[http://dx.doi.org/10.1021/acsomega.9b04243] [PMID: 32201809]
[81]
Xu, X.; Chen, Y.; Zhou, W.; Zhu, Z.; Su, C.; Liu, M.; Shao, Z. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater., 2016, 28(30), 6442-6448.
[http://dx.doi.org/10.1002/adma.201600005] [PMID: 27185219]
[82]
Zhu, Y.; Zhou, W.; Zhong, Y.; Bu, Y.; Chen, X.; Zhong, Q.; Liu, M.; Shao, Z. A perovskite nanorod as bifunctional electrocatalyst for overall water splitting. Adv. Energy Mater., 2017, 7(8), 1602122.
[http://dx.doi.org/10.1002/aenm.201602122]
[83]
Zhu, Y.; Tahini, H.A.; Hu, Z.; Yin, Y.; Lin, Q.; Sun, H.; Zhong, Y.; Chen, Y.; Zhang, F.; Lin, H-J.; Chen, C-T.; Zhou, W.; Zhang, X.; Smith, S.C.; Shao, Z.; Wang, H. Boosting oxygen evolution reaction by activation of lattice-oxygen sites in layered Ruddlesden-Popper oxide. EcoMat, 2020, 2(2), e12021.
[84]
Zhang, X.; Dong, C-L.; Diao, Z.; Lu, Y-R.; Shen, S. Identifying the crystal and electronic structure evolution in tri-component transition metal oxide nanosheets for efficient electrocatalytic oxygen evolution. EcoMat, 2019, 1(1), e12005.
[http://dx.doi.org/10.1002/eom2.12005]
[85]
Raeisi-Kheirabadi, N.; Nezamzadeh-Ejhieh, A. A Z-scheme g-C3N4/Ag3PO4 nanocomposite: Its photocatalytic activity and capability for water splitting. Int. J. Hydrogen Energy, 2020, 45(58), 33381-33395.
[http://dx.doi.org/10.1016/j.ijhydene.2020.09.028]
[86]
Li, M.; Han, N.; Zhang, X.; Wang, S.; Jiang, M.; Bokhari, A.; Zhang, W.; Race, M.; Shen, Z.; Chen, R.; Mubashir, M.; Khoo, K.S.; Teo, S.S.; Show, P.L. Perovskite oxide for emerging photo(electro)catalysis in energy and environment. Environ. Res., 2022, 205, 112544.
[http://dx.doi.org/10.1016/j.envres.2021.112544] [PMID: 34902376]
[87]
Sun, Y.; Zhang, W.; Wang, Q.; Han, N.; Núñez-Delgado, A.; Cao, Y.; Si, W.; Wang, F.; Liu, S.; Biomass-derived, N. Biomass-derived N,S co-doped 3D multichannel carbon supported Au@Pd@Pt catalysts for oxygen reduction. Environ. Res., 2021, 202, 111684.
[http://dx.doi.org/10.1016/j.envres.2021.111684] [PMID: 34260960]
[88]
Cao, Y.; Zhang, W.; Sun, Y.; Jiang, Y.; Han, N.; Zou, J.; Si, W.; Wang, F.; Núñez-Delgado, A.; Liu, S. Highly active iron-nitrogen-boron-carbon bifunctional electrocatalytic platform for hydrogen peroxide sensing and oxygen reduction. Environ. Res., 2021, 201, 111563.
[http://dx.doi.org/10.1016/j.envres.2021.111563] [PMID: 34171375]
[89]
Liang, Y.; Ye, D.; Han, N.; Liang, P.; Wang, J.; Yang, G.; Zhang, C.; He, X.; Chen, M.; Zhang, C. Nanoporous silver-modified LaCoO3-δ perovskite for oxygen reduction reaction. Electrochim. Acta, 2021, 391, 138908.
[http://dx.doi.org/10.1016/j.electacta.2021.138908]
[90]
Wang, Z.; Wang, L. Role of oxygen vacancy in metal oxide based photoelectrochemical water splitting. EcoMat, 2021, 3(1), e12075.
[http://dx.doi.org/10.1002/eom2.12075]
[91]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2. J. Colloid Interface Sci., 2017, 490, 314-327.
[http://dx.doi.org/10.1016/j.jcis.2016.11.069] [PMID: 27914330]
[92]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles. J. Mol. Catal. Chem., 2017, 426, 158-169.
[http://dx.doi.org/10.1016/j.molcata.2016.11.011]
[93]
Qian, X.; He, J.; Mastronardo, E.; Baldassarri, B.; Yuan, W.; Wolverton, C.; Haile, S.M. Outstanding properties and performance of CaTi0.5Mn0.5O3–δ for solar-driven thermochemical hydrogen production. Matter, 2021, 4(2), 688-708.
[http://dx.doi.org/10.1016/j.matt.2020.11.016]
[94]
Chen, S.; Huang, D.; Xu, P.; Xue, W.; Lei, L.; Cheng, M.; Wang, R.; Liu, X.; Deng, R. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: Will we stop with photocorrosion? J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(5), 2286-2322.
[http://dx.doi.org/10.1039/C9TA12799B]
[95]
Wang, G-B.; Li, S.; Yan, C-X.; Zhu, F-C.; Lin, Q-Q.; Xie, K-H.; Geng, Y.; Dong, Y-B. Covalent organic frameworks: Emerging high-performance platforms for efficient photocatalytic applications. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(15), 6957-6983.
[http://dx.doi.org/10.1039/D0TA00556H]
[96]
Wang, L.; Si, W.; Hou, X.; Wang, M.; Liu, X.; Ye, Y.; Hou, F.; Liang, J. Novel integrated strategies toward efficient and stable unassisted photoelectrochemical water splitting. Sustain. Mater. Technol., 2020, 25, e00209.
[http://dx.doi.org/10.1016/j.susmat.2020.e00209]
[97]
Omrani, N.; Nezamzadeh-Ejhieh, A. Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasalazine by Cu2O/CdS nanocomposite. Separ. Purif. Tech., 2020, 235, 116228.
[http://dx.doi.org/10.1016/j.seppur.2019.116228]
[98]
Omrani, N.; Nezamzadeh-Ejhieh, A. A ternary Cu2O/BiVO4/WO3 nano-composite: Scavenging agents and the mechanism pathways in the photodegradation of sulfasalazine. J. Mol. Liq., 2020, 315, 113701.
[http://dx.doi.org/10.1016/j.molliq.2020.113701]
[99]
Ghattavi, S.; Nezamzadeh-Ejhieh, A. GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C3N4: Experimental design, bandgap study, and characterization of the catalyst. Int. J. Hydrogen Energy, 2020, 45(46), 24636-24656.
[http://dx.doi.org/10.1016/j.ijhydene.2020.06.207]
[100]
Vijh, A.K.; Bélanger, G.; Jacques, R. Electrolysis of water on silicides of some transition metals in alkaline solutions. Int. J. Hydrogen Energy, 1992, 17(7), 479-483.
[http://dx.doi.org/10.1016/0360-3199(92)90146-N]
[101]
Przyłuski, J.; Kolbrecka, K. Voltametric behaviour of Ti n O 2n−1 ceramic electrodes close to the hydrogen evolution reaction. J. Appl. Electrochem., 1993, 23(10), 1063-1068.
[http://dx.doi.org/10.1007/BF00266130]
[102]
Chatti, R.V.; Dubey, N.; Joshi, M.V.; Labhsetwar, N.K.; Joshi, P.N.; Rayalu, S.S. Influence of zeolitic structure on photoreduction property and hydrogen evolution reaction. Int. J. Hydrogen Energy, 2010, 35(5), 1911-1920.
[http://dx.doi.org/10.1016/j.ijhydene.2009.12.172]
[103]
Sanchez, N.; Gallego, S.; Cerdá, J.; Muñoz, M.J.P.R.B. Tuning surface metallicity and ferromagnetism by hydrogen adsorption at the polar ZnO (0001) surface. Phys. Rev. B, 2010, 81(11), 115301.
[104]
Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar water splitting cells. Chem. Rev., 2010, 110(11), 6446-6473.
[http://dx.doi.org/10.1021/cr1002326] [PMID: 21062097]
[105]
Xu, Y.; Schoonen, M.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral., 2000, 85(3-4), 543-556.
[http://dx.doi.org/10.2138/am-2000-0416]
[106]
Stamenkovic, V.R.; Strmcnik, D.; Lopes, P.P.; Markovic, N.M. Energy and fuels from electrochemical interfaces. Nat. Mater., 2016, 16(1), 57-69.
[http://dx.doi.org/10.1038/nmat4738] [PMID: 27994237]
[107]
Chia, X.; Eng, A.Y.S.; Ambrosi, A.; Tan, S.M.; Pumera, M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev., 2015, 115(21), 11941-11966.
[http://dx.doi.org/10.1021/acs.chemrev.5b00287] [PMID: 26426313]
[108]
Vij, V.; Sultan, S.; Harzandi, A.M.; Meena, A.; Tiwari, J.N.; Lee, W-G.; Yoon, T.; Kim, K.S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal., 2017, 7(10), 7196-7225.
[http://dx.doi.org/10.1021/acscatal.7b01800]
[109]
Eftekhari, A. Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy, 2017, 42(16), 11053-11077.
[http://dx.doi.org/10.1016/j.ijhydene.2017.02.125]
[110]
Luo, B.; Liu, G.; Wang, L.J.N. Recent advances in 2D materials for photocatalysis. Nanoscale, 2016, 8(13), 6904-6920.
[111]
Kalantar-zadeh, K.; Ou, J.Z.; Daeneke, T.; Mitchell, A.; Sasaki, T.; Fuhrer, M.S. Two dimensional and layered transition metal oxides. Appl. Mater. Today, 2016, 5, 73-89.
[http://dx.doi.org/10.1016/j.apmt.2016.09.012]
[112]
Woodhouse, M.; Parkinson, B.A. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev., 2009, 38(1), 197-210.
[http://dx.doi.org/10.1039/B719545C]
[113]
Liao, P.; Carter, E.A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem. Soc. Rev., 2013, 42(6), 2401-2422.
[http://dx.doi.org/10.1039/C2CS35267B] [PMID: 23111395]
[114]
Concina, I.; Ibupoto, Z.H.; Vomiero, A. Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv. Energy Mater., 2017, 7(23), 1700706.
[http://dx.doi.org/10.1002/aenm.201700706]
[115]
Hou, Y.; Zhuang, X.; Feng, X. Recent advances in earth‐abundant heterogeneous electrocatalysts for photoelectrochemical water splitting. Small Methods, 2017, 1(6), 1700090.
[http://dx.doi.org/10.1002/smtd.201700090]
[116]
Wang, H.; Lee, H-W.; Deng, Y.; Lu, Z.; Hsu, P-C.; Liu, Y.; Lin, D.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun., 2015, 6(1), 1-8.
[http://dx.doi.org/10.1038/ncomms8261]
[117]
Zhu, Y.P.; Ma, T.Y.; Jaroniec, M.; Qiao, S.Z. Self‐templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. Engl., 2017, 56(5), 1324-1328.
[http://dx.doi.org/10.1002/anie.201610413] [PMID: 27900829]
[118]
Liu, X.; Liu, W.; Ko, M.; Park, M.; Kim, M.G.; Oh, P.; Chae, S.; Park, S.; Casimir, A.; Wu, G. Metal (Ni, Co)‐metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater., 2015, 25(36), 5799-5808.
[http://dx.doi.org/10.1002/adfm.201502217]
[119]
Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int. J. Hydrogen Energy, 2009, 34(13), 5337-5346.
[http://dx.doi.org/10.1016/j.ijhydene.2009.05.011]
[120]
Wu, R.; Zhang, J.; Shi, Y.; Liu, D.; Zhang, B. Metallic WO2-Carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc., 2015, 137(22), 6983-6986.
[http://dx.doi.org/10.1021/jacs.5b01330] [PMID: 25992910]
[121]
Li, J.; Wang, Y.; Zhou, T.; Zhang, H.; Sun, X.; Tang, J.; Zhang, L.; Al-Enizi, A.M.; Yang, Z.; Zheng, G. Nanoparticle superlattices as efficient bifunctional electrocatalysts for water splitting. J. Am. Chem. Soc., 2015, 137(45), 14305-14312.
[http://dx.doi.org/10.1021/jacs.5b07756] [PMID: 26496655]
[122]
Li, M.; Xiong, Y.; Liu, X.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale, 2015, 7(19), 8920-8930.
[http://dx.doi.org/10.1039/C4NR07243J] [PMID: 25917286]
[123]
Fang, Z.; Peng, L.; Qian, Y.; Zhang, X.; Xie, Y.; Cha, J.J.; Yu, G. Dual tuning of Ni–Co–A (A= P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc., 2018, 140(15), 5241-5247.
[http://dx.doi.org/10.1021/jacs.8b01548] [PMID: 29608305]
[124]
Zhang, T.; Wu, M-Y.; Yan, D-Y.; Mao, J.; Liu, H.; Hu, W-B.; Du, X-W.; Ling, T.; Qiao, S-Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy, 2018, 43, 103-109.
[http://dx.doi.org/10.1016/j.nanoen.2017.11.015]
[125]
Ling, T.; Yan, D-Y.; Wang, H.; Jiao, Y.; Hu, Z.; Zheng, Y.; Zheng, L.; Mao, J.; Liu, H.; Du, X-W.; Jaroniec, M.; Qiao, S-Z. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun., 2017, 8(1), 1509.
[http://dx.doi.org/10.1038/s41467-017-01872-y] [PMID: 29138406]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy