Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Recent Progress on Catalyst Supports for Propane Dehydrogenation

Author(s): Guangjian Wang, Chaoqun Yin, Fushan Feng, Qinqin Zhang, Haitao Fu, Liancheng Bing, Fang Wang and Dezhi Han*

Volume 19, Issue 4, 2023

Published on: 29 August, 2022

Page: [473 - 483] Pages: 11

DOI: 10.2174/1573413718666220616090013

Price: $65

Abstract

Background: Propane dehydrogenation (PDH) is the most potential propylene production technology, which can make up the large gap in downstream products of propylene. The catalyst supports lay the foundation for the catalytic activity and stability of the prepared catalysts in PDH reactions. Therefore, we focus on the discussion of single oxides, composite oxides, zeolites, and carbon materials as supports to demonstrate the improvement of the catalytic performance of the PDH catalysts.

Methods: Recent studies on catalyst supports are reviewed, including the preparation, characterization, and PDH performance.

Results: The supports with different morphologies and crystal structures have been reported for PDH. The enhanced strong interaction between the support and metal components is responsible for the superior PDH performance.

Conclusion: The PDH catalysts mainly depend on the development of the support with specific physicochemical properties for the corresponding PDH processes. Therefore, it is crucial to develop the optimal supports to improve the PDH performance in the area of nanoscience materials.

Keywords: Propane dehydrogenation, catalysts, supports, catalytic activity.

Graphical Abstract

[1]
Martino, M.; Meloni, E.; Festa, G.; Palma, V. Propylene synthesis: Recent advances in the use of Pt-based catalysts for propane dehydrogenation reaction. Catalysts, 2021, 11(9), 1070.
[http://dx.doi.org/10.3390/catal11091070]
[2]
Natarajan, P.; Khan, H.A.; Jaleel, A.; Park, D.S.; Kang, D-C.; Yoon, S.; Jung, K-D. The pronounced effect of Sn on RhSn catalysts for propane dehydrogenation. J. Catal., 2020, 392, 8-20.
[http://dx.doi.org/10.1016/j.jcat.2020.09.016]
[3]
Sattler, J.J.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic dehydrogena-tion of light alkanes on metals and metal oxides. Chem. Rev., 2014, 114(20), 10613-10653.
[http://dx.doi.org/10.1021/cr5002436] [PMID: 25163050]
[4]
Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycling, 2022, 176, 105959.
[http://dx.doi.org/10.1016/j.resconrec.2021.105959]
[5]
Global propylene demand and capcity 2015-2022. Available from: http://www.statista.com/statistics/1246689/propylen-e-demand-capacity-forecast world-wide/#statisticContainer (Accessed June 25, 2021).
[6]
Nawaz, Z. Light alkane dehydrogenation to light olefin technologies: A comprehensive review. Rev. Chem. Eng., 2015, 31(5), 413-436.
[http://dx.doi.org/10.1515/revce-2015-0012]
[7]
Gomez, E.; Nie, X.; Lee, J.H.; Xie, Z.; Chen, J.G. Tandem reactions of CO2 reduction and ethane aromatization. J. Am. Chem. Soc., 2019, 141(44), 17771-17782.
[http://dx.doi.org/10.1021/jacs.9b08538] [PMID: 31615202]
[8]
Hu, Z-P.; Yang, D.; Wang, Z.; Yuan, Z-Y. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. J. Catal., 2019, 40(9), 1233-1254.
[9]
Li, C.; Wang, G. Dehydrogenation of light alkanes to mono-olefins. Chem. Soc. Rev., 2021, 50(7), 4359-4381.
[http://dx.doi.org/10.1039/D0CS00983K] [PMID: 33598671]
[10]
James, O.O.; Mandal, S.; Alele, N.; Chowdhury, B.; Maity, S. Lower alkanes dehydrogenation: Strategies and reaction routes to corresponding alkenes. Fuel Process. Technol., 2016, 149, 239-255.
[http://dx.doi.org/10.1016/j.fuproc.2016.04.016]
[11]
Monai, M.; Gambino, M.; Wannakao, S.; Weckhuysen, B.M. Propane to olefins tandem catalysis: A selective route towards light olefins production. Chem. Soc. Rev., 2021, 50(20), 11503-11529.
[http://dx.doi.org/10.1039/D1CS00357G] [PMID: 34661210]
[12]
Dai, Y.; Gao, X.; Wang, Q.; Wan, X.; Zhou, C.; Yang, Y. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem. Soc. Rev., 2021, 50(9), 5590-5630.
[http://dx.doi.org/10.1039/D0CS01260B] [PMID: 33690780]
[13]
Liu, X.Y.; Wang, A.Q.; Zhang, T.; Mou, C.Y. Catalysis by gold: New insights into the support ef-fect. Nano Today, 2013, 8(4), 403-416.
[http://dx.doi.org/10.1016/j.nantod.2013.07.005]
[14]
Sui, X.; Zhang, L.; Li, J.; Doyle-Davis, K.; Li, R.; Wang, Z.; Sun, X. Advanced support materials and interactions for atomically dispersed noble-metal catalysts: From support effects to design strategies. Adv. Energy Mater., 2021, 12(1), 2102556.
[http://dx.doi.org/10.1002/aenm.202102556]
[15]
Zhang, W.; Zhu, K.; Ren, W.; He, H.; Liang, H.; Zhai, Y.; Li, W. Recent advances in the marriage of catalyst nanoparticles and mesoporous supports. Adv. Mater. Interfaces, 2022, 9(3), 2101528.
[http://dx.doi.org/10.1002/admi.202101528]
[16]
Chotigkrai, N.; Hochin, Y.; Panpranot, J.; Praserthdam, P. Tuning Pt dispersion and oxygen mo-bility of Pt/γ-Al2O3 by Si addition for CO oxidation. React. Kinet. Mech. Catal., 2016, 117(2), 565-581.
[http://dx.doi.org/10.1007/s11144-015-0969-2]
[17]
Chen, S.; Pei, C.; Sun, G.; Zhao, Z-J.; Gong, J. Nanostructured catalysts toward efficient propane dehydrogenation. Acc. Mater. Res., 2020, 1(1), 30-40.
[http://dx.doi.org/10.1021/accountsmr.0c00012]
[18]
Ingale, P.; Knemeyer, K.; Preikschas, P.; Ye, M.; Geske, M.; Naumann d’Alnoncourt, R.; Rosowski, F. Design of PtZn nanoalloy catalysts for propane dehydrogenation through interface tailoring via atomic layer deposition. Catal. Sci. Technol., 2021, 11(2), 484-493.
[http://dx.doi.org/10.1039/D0CY01528H]
[19]
Llorca, J.; Homs, N.; León, J.; Sales, J.; Fierro, J.L.G.; Ramirez de la Piscina, P. Supported Pt-Sn catalysts highly selective for isobutane dehydrogenation: Preparation, characterization and cata-lytic behavior. Appl. Catal., 1999, 189(1), 77-86.
[20]
Wang, G.; Lu, K.; Yin, C.; Meng, F.; Zhang, Q.; Yan, X.; Han, D. One-step fabrication of PtSn/γ-Al2O3 catalysts with La post-modification for propane dehydrogenation. Catalysts, 2020, 10(9), 1042.
[http://dx.doi.org/10.3390/catal10091042]
[21]
Xu, Z-K.H.J-L.; Wang, T-H.; Yue, Y-Y.; Bai, Z-S.; Bao, X-J.; Zhu, H-B. Advances in catalysts for propane dehydrogenation to propylene. Huagong Jinzhan, 2021, 40(4), 1893-1916.
[22]
He, S.B.; Lai, Y.L.; Bi, W.J.; Yang, X.; Rong, X.; Sun, C.L. Effect of K promoter on the perfor-mance of Pt-Sn-K/γ-Al2O3 catalyst for n-Hexadecane dehydrogenation. Chin. J. Catal., 2010, 31(4), 435-440.
[23]
Xie, Y.; Kocaefe, D.; Kocaefe, Y.; Cheng, J.; Liu, W. The effect of novel synthetic methods and parameters control on morphology of nano-alumina particles. Nanoscale Res. Lett., 2016, 11(1), 259.
[http://dx.doi.org/10.1186/s11671-016-1472-z] [PMID: 27206644]
[24]
Liu, J.; Liu, C.; Ma, A.; Rong, J.; Da, Z.; Zheng, A.; Qin, L. Effects of Al2O3 phase and Cl compo-nent on dehydrogenation of propane. Appl. Surf. Sci., 2016, 368, 233-240.
[http://dx.doi.org/10.1016/j.apsusc.2016.01.282]
[25]
Shi, Y.; Li, X.; Rong, X.; Gu, B.; Wei, H.; Sun, C. Influence of support on the catalytic properties of Pt-Sn-K/θ-Al2O3 for propane dehydrogenation. RSC Advances, 2017, 7(32), 19841-19848.
[http://dx.doi.org/10.1039/C7RA02141K]
[26]
Kovarik, L.; Bowden, M.; Szanyi, J. High temperature transition aluminas in δ-Al2O3/θ-Al2O3 stability range. J. Catal., 2021, 393, 357-368.
[http://dx.doi.org/10.1016/j.jcat.2020.10.009]
[27]
Kwak, J.H.; Hu, J.; Lukaski, A.; Kim, D.H.; Szanyi, J.; Peden, C.H.F. Role of pentacoordinated Al3+ ions in the high temperature phase transformation of γ-Al2O3. J. Phys. Chem. C, 2008, 112(25), 9486-9492.
[http://dx.doi.org/10.1021/jp802631u]
[28]
Lu, J.; Liu, S.; Deng, C. Facile synthesis of alumina hollow spheres for on-plate-selective en-richment of phosphopeptides. Chem. Commun. (Camb.), 2011, 47(18), 5334-5336.
[http://dx.doi.org/10.1039/c0cc05524g] [PMID: 21451814]
[29]
Dai, Y.; Gu, J.; Tian, S.; Wu, Y.; Chen, J.; Li, F.; Yang, Y. γ-Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation. J. Catal., 2020, 381, 482-492.
[http://dx.doi.org/10.1016/j.jcat.2019.11.026]
[30]
Wang, T.H.; Qi, L.; Lu, H.Y.; Ji, M. Flower-like Al2O3-supported iron oxides as an efficient catalyst for oxidative dehydrogenation of ethlybenzene with CO2. J. CO2 Util., 2017, 17, 162-169.
[31]
Li, L.; Liu, X.; Wang, G.; Liu, Y.; Kang, W.; Deng, N.; Zhou, X. Research progress of ultrafine alumina fiber prepared by sol-gel method: A review. Chem. Eng. J., 2021, 421, 127744.
[http://dx.doi.org/10.1016/j.cej.2020.127744]
[32]
Shi, L.; Deng, G.M.; Li, W.C.; Miao, S.; Wang, Q.N.; Zhang, W.P.; Lu, A.H. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem. Int. Ed. Engl., 2015, 54(47), 13994-13998.
[http://dx.doi.org/10.1002/anie.201507119] [PMID: 26332348]
[33]
Gao, X-Q.; Lu, W-D.; Hu, S-Z.; Li, W-C.; Lu, A-H. Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation. Chin. J. Catal., 2019, 40(2), 184-191.
[http://dx.doi.org/10.1016/S1872-2067(18)63202-4]
[34]
Gong, N.; Zhao, Z. Peony-like pentahedral Al(III)-enriched alumina nanosheets for the dehydro-genation of propane. ACS Appl. Nano Mater., 2019, 2(9), 5833-5840.
[http://dx.doi.org/10.1021/acsanm.9b01293]
[35]
Wang, P.; Yao, J.; Jiang, Q.; Gao, X.; Lin, D.; Yang, H.; Tan, L. Stabilizing the isolated Pt sites on PtGa/Al2O3 catalyst via silica coating layers for propane dehydrogenation at low temperature. Appl. Catal. B, 2022, 300, 120731.
[http://dx.doi.org/10.1016/j.apcatb.2021.120731]
[36]
Hu, P.; Lang, W-Z.; Yan, X.; Chen, X-F.; Guo, Y-J. Vanadium-doped porous silica materials with high catalytic activity and stability for propane dehydrogenation reaction. Appl. Catal., 2018, 553, 63-73.
[37]
Deng, L.D.; Miura, H.; Shishido, T.; Wang, Z.; Hosokawa, S.; Teramura, K.; Tanaka, T. Elucidat-ing strong metal-support interactions in Pt-Sn/SiO2 catalyst and its consequences for dehydro-genation of lower alkanes. J. Catal., 2018, 365, 277-291.
[http://dx.doi.org/10.1016/j.jcat.2018.06.028]
[38]
Li, Y.; Shi, J. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Adv. Mater., 2014, 26(20), 3176-3205.
[http://dx.doi.org/10.1002/adma.201305319] [PMID: 24687906]
[39]
Chen, Y.; Shi, J. Chemistry of mesoporous organosilica in nanotechnology: Molecularly organ-ic–inorganic hybridization into frameworks. Adv. Mater., 2016, 28(17), 3235-3272.
[http://dx.doi.org/10.1002/adma.201505147] [PMID: 26936391]
[40]
Wang, Y.; Hu, Z.; Lv, X.; Chen, L.; Yuan, Z. Ultrasmall PtZn bimetallic nanoclusters encapsulat-ed in silicalite-1 zeolite with superior performance for propane dehydrogenation. J. Catal., 2020, 385, 61-69.
[http://dx.doi.org/10.1016/j.jcat.2020.02.019]
[41]
Zhang, B.; Li, G.; Zhai, Z.; Chen, D.; Tian, Y.; Yang, R.; Liu, G. PtZn intermetallic nanoalloy en-capsulated in silicalite-1 for propane dehydrogenation. AIChE J., 2021, 67(7), e17295.
[http://dx.doi.org/10.1002/aic.17295]
[42]
Kankala, R.K.; Zhang, H.B.; Liu, C.G.; Kanubaddi, K.R.; Lee, C.H.; Wang, S.B.; Chen, A.Z. Metal Species-Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs. Adv. Funct. Mater., 2019, 29(43), 1902652.
[http://dx.doi.org/10.1002/adfm.201902652]
[43]
DeBenedetti, W.J.I.; Chabal, Y.J. Functionalization of oxide-free silicon surfaces. J. Vac. Sci. Technol. A, 2013, 31(5), 050826.
[http://dx.doi.org/10.1116/1.4819406]
[44]
Motagamwala, A.H.; Almallahi, R.; Wortman, J.; Igenegbai, V.O.; Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science, 2021, 373(6551), 217-222.
[http://dx.doi.org/10.1126/science.abg7894] [PMID: 34244414]
[45]
Zhang, C.; Liu, G.; Geng, X.; Wu, K.; Debliquy, M. Metal oxide semiconductors with highly con-centrated oxygen vacancies for gas sensing materials: A review. Sens. Actuators A Phys., 2020, 309, 112026.
[http://dx.doi.org/10.1016/j.sna.2020.112026]
[46]
Li, C-F.; Guo, X.; Shang, Q-H.; Yan, X.; Ren, C.; Lang, W-Z.; Guo, Y-J. Defective TiO2 for Pro-pane Dehydrogenation. Ind. Eng. Chem. Res., 2020, 59(10), 4377-4387.
[http://dx.doi.org/10.1021/acs.iecr.9b06759]
[47]
Otroshchenko, T.; Kondratenko, V.A.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. ZrO2-based unconventional catalysts for non-oxidative propane dehydrogenation: Factors determining cata-lytic activity. J. Catal., 2017, 348, 282-290.
[http://dx.doi.org/10.1016/j.jcat.2017.02.016]
[48]
Otroshchenko, T.; Sokolov, S.; Stoyanova, M.; Kondratenko, V.A.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. ZrO2-Based alternatives to conventional propane dehydrogenation catalysts: Active sites, design, and performance. Angew. Chem. Int. Ed. Engl., 2015, 54(52), 15880-15883.
[http://dx.doi.org/10.1002/anie.201508731] [PMID: 26566072]
[49]
Otroshchenko, T.P.; Kondratenko, V.A.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Non-oxidative dehydrogenation of propane, n-butane, and isobutane over bulk ZrO2-based catalysts: Effect of dopant on the active site and pathways of product formation. Catal. Sci. Technol., 2017, 7(19), 4499-4510.
[http://dx.doi.org/10.1039/C7CY01583F]
[50]
Zhang, Y.; Zhao, Y.; Otroshchenko, T.; Han, S.; Lund, H.; Rodemerck, U.; Kondratenko, E.V. The effect of phase composition and crystallite size on activity and selectivity of ZrO2 in non-oxidative propane dehydrogenation. J. Catal., 2019, 371, 313-324.
[http://dx.doi.org/10.1016/j.jcat.2019.02.012]
[51]
Otroshchenko, T.; Bulavchenko, O.; Thanh, H. V.; Rabeah, J.; Bentrup, U.; Matvienko, A.; Kon-dratenko, E. V. Controlling activity and selectivity of bare ZrO2 in non-oxidative propane dehy-drogenation. Appl. Catal., A,, 2019, 585, 117189.
[52]
Perechodjuk, A.; Zhang, Y.; Kondratenko, V.A.; Rodemerck, U.; Linke, D.; Bartling, S.; Kon-dratenko, E.V. The effect of supported Rh, Ru, Pt or Ir nanoparticles on activity and selectivity of ZrO2- based catalysts in non-oxidative dehydrogenation of propane. Appl. Catal., A, 2020, 602, 117731.
[53]
Larese, C.; Campos-Martin, J.M.; Calvino, J.J.; Blanco, G.; Fierro, J.L.G.; Kang, Z.C. Alumina- and alumina-zirconia-supported PtSn bimetallics: Microstructure and performance for the n-Butane ODH reaction. J. Catal., 2002, 208(2), 467-478.
[http://dx.doi.org/10.1006/jcat.2002.3609]
[54]
Larese, C.; Campos-Martin, J.M.; Fierro, J.L.G. Alumina and zirconia-alumina loaded tin-platinum. Surface features and performance for butane dehydrogenation. Langmuir, 2000, 16(26), 10294-10300.
[http://dx.doi.org/10.1021/la0009644]
[55]
Wang, G.; Zhu, X.; Li, C. Recent progress in commercial and novel catalysts for catalytic dehy-drogenation of light alkanes. Chem. Rec., 2020, 20(6), 604-616.
[http://dx.doi.org/10.1002/tcr.201900090] [PMID: 31805219]
[56]
Akporiaye, D.; Jensen, S.F.; Olsbye, U.; Rohr, F.; Rytter, E.; Rønnekleiv, M.; Spjelkavik, A.I. A novel, highly efficient catalyst for propane dehydrogenation. Ind. Eng. Chem. Res., 2001, 40(22), 4741-4748.
[http://dx.doi.org/10.1021/ie010299+]
[57]
Xie, J.; Jiang, H.; Qian, Y.; Wang, H.; An, N.; Chen, S.; Guo, S. Fine tuning the morphology of spinel as ultra-stable catalyst support in propane dehydrogenation. Adv. Mater. Interfaces, 2021, 8(22), 2101325.
[http://dx.doi.org/10.1002/admi.202101325]
[58]
Shan, Y-L.; Wang, T.; Sui, Z-J.; Zhu, Y-A.; Zhou, X-G. Hierarchical MgAl2O4 supported Pt-Sn as a highly thermostable catalyst for propane dehydrogenation. Catal. Commun., 2016, 84, 85-88.
[http://dx.doi.org/10.1016/j.catcom.2016.06.005]
[59]
Siddiqi, G.; Sun, P.P.; Galvita, V.; Bell, A.T. Catalyst performance of novel Pt/Mg(Ga)(Al)O cata-lysts for alkane dehydrogenation. J. Catal., 2010, 274(2), 200-206.
[http://dx.doi.org/10.1016/j.jcat.2010.06.016]
[60]
Sun, P.P.; Siddiqi, G.; Vining, W.C.; Chi, M.F.; Bell, A.T. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation. J. Catal., 2011, 282(1), 165-174.
[http://dx.doi.org/10.1016/j.jcat.2011.06.008]
[61]
Belskaya, O.B.; Stepanova, L.N.; Nizovskii, A.I.; Kalinkin, A.V.; Erenburg, S.B.; Trubina, S.V.; Likholobov, V.A. The effect of tin on the formation and properties of Pt/MgAl(Sn)Ox catalysts for dehydrogenation of alkanes. Catal. Today, 2019, 329, 187-196.
[http://dx.doi.org/10.1016/j.cattod.2018.11.081]
[62]
Wu, X.P.; Zhang, Q.; Chen, L.G.; Liu, Q.Y.; Zhang, X.H.; Zhang, Q.; Wang, C.G. Enhanced cata-lytic performance of PtSn catalysts for propane dehydrogenation by a Zn-modified Mg(Al)O support. Fuel Process. Technol., 2020, 198, 106222.
[http://dx.doi.org/10.1016/j.fuproc.2019.106222]
[63]
Vu, B.K.; Song, M.B.; Ahn, I.Y.; Suh, Y.-W.; Suh, D.J.; Kim, W.-I.; Shin, E.W. Pt-Sn alloy phases and coke mobility over PtSn/Al2O3 and Pt-Sn/ZnAl2O4 catalysts for propane dehydrogenation. Appl. Catal., A, 2011, 400(1-2), 25-33.
[64]
Jiang, F.; Zeng, L.; Li, S.; Liu, G.; Wang, S.; Gong, J. Propane dehydrogenation over Pt/TiO2-Al2O3 catalysts. ACS Catal., 2015, 5(1), 438-447.
[http://dx.doi.org/10.1021/cs501279v]
[65]
Wang, X.; Hu, H.; Zhang, N.; Song, J.; Fan, X.; Zhao, Z.; Xie, Z. One-pot synthesis of MgAlO support for PtSn catalysts over propane dehydrogenation. ChemistrySelect, 2022, 7(7), e202104367.
[http://dx.doi.org/10.1002/slct.202104367]
[66]
Long, L-L.; Xia, K.; Lang, W-Z.; Shen, L-L.; Yang, Q.; Yan, X.; Guo, Y-J. The comparison and optimization of zirconia, alumina, and zirconia-alumina supported PtSnIn trimetallic catalysts for propane dehydrogenation reaction. J. Ind. Eng. Chem., 2017, 51, 271-280.
[http://dx.doi.org/10.1016/j.jiec.2017.03.012]
[67]
Wang, T.; Jiang, F.; Liu, G.; Zeng, L.; Zhao, Z.J.; Gong, J.L. Effects of Ga doping on Pt/CeO2-Al2O3 catalysts for propane dehydrogenation. AIChE J., 2016, 62(12), 4365-4376.
[http://dx.doi.org/10.1002/aic.15339]
[68]
Fan, X.Q.; Li, J.M.; Zhao, Z.; Wei, Y.C.; Liu, J.; Duan, A.J.; Jiang, G.Y. Dehydrogenation of pro-pane over PtSn/SBA-15 catalysts: Effect of the amount of metal loading and state. RSC Advances, 2015, 5(36), 28305-28315.
[http://dx.doi.org/10.1039/C5RA01480H]
[69]
Li, J.C.; Li, J.M.; Zhao, Z.; Fan, X.Q.; Liu, J.; Wei, Y.C.; Liu, Q.L. Size effect of TS-1 supports on the catalytic performance of PtSn/TS-1 catalysts for propane dehydrogenation. J. Catal., 2017, 352, 361-370.
[http://dx.doi.org/10.1016/j.jcat.2017.05.024]
[70]
Nawaz, Z.S.; Tang, X.P.; Zhang, Q.; Wang, D.Z.; Fei, W. SAPO-34 supported Pt-Sn-based novel catalyst for propane dehydrogenation to propylene. Catal. Commun., 2009, 10(14), 1925-1930.
[http://dx.doi.org/10.1016/j.catcom.2009.07.008]
[71]
Zhang, Y.W.; Zhou, Y.M.; Huang, L.; Xue, M.W.; Zhang, S.B. Sn-Modified ZSM-5 As Support for Platinum Catalyst in Propane Dehydrogenation. Ind. Eng. Chem. Res., 2011, 50(13), 7896-7902.
[http://dx.doi.org/10.1021/ie1024694]
[72]
Zhang, Y.W.; Xue, M.W.; Zhou, Y.M.; Zhang, H.X.; Wang, W.; Wang, Q.L.; Sheng, X.L. Propane dehydrogenation over Ce-containing ZSM-5 supported platinum-tin catalysts: Ce concentration effect and reaction performance analysis. RSC Advances, 2016, 6(35), 29410-29422.
[http://dx.doi.org/10.1039/C6RA04173F]
[73]
Zhang, Y.W.; Zhou, Y.M.; Huang, L.; Zhou, S.J.; Sheng, X.L.; Wang, Q.L.; Zhang, C. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydro-genation. Chem. Eng. J., 2015, 270, 352-361.
[http://dx.doi.org/10.1016/j.cej.2015.01.008]
[74]
Chen, C.; Hu, Z-P.; Ren, J-T.; Zhang, S.; Wang, Z.; Yuan, Z-Y. ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene. Mol. Catal., 2019, 476, 110508.
[http://dx.doi.org/10.1016/j.mcat.2019.110508]
[75]
Xie, L.J.; Chai, Y.C.; Sun, L.L.; Dai, W.L.; Wu, G.J.; Guan, N.J.; Li, L.D. Optimizing zeolite stabi-lized Pt-Zn catalysts for propane dehydrogenation[J] J. Energy Chem., 2021, 57, 92-98.
[http://dx.doi.org/10.1016/j.jechem.2020.08.058]
[76]
Park, H.; Park, H.; Kim, J-C.; Choi, M.; Park, J.Y.; Ryoo, R. Sodium-free synthesis of mesoporous zeolite to support Pt-Y alloy nanoparticles exhibiting high catalytic performance in propane de-hydrogenation. J. Catal., 2021, 404, 760-770.
[http://dx.doi.org/10.1016/j.jcat.2021.09.011]
[77]
Huang, C.; Han, D.; Guan, L.; Zhu, L.; Mei, Y.; He, D.; Zu, Y. Bimetallic Ni-Zn site anchored in siliceous zeolite framework for synergistically boosting propane dehydrogenation. Fuel, 2022, 307, 121790.
[http://dx.doi.org/10.1016/j.fuel.2021.121790]
[78]
Sun, Q.; Wang, N.; Fan, Q.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R.; Jiang, Z.; Zhou, W.; Zhang, J.; Zhang, T.; Xu, J.; Zhang, P.; Cheng, J.; Yang, D.C.; Jia, R.; Li, L.; Zhang, Q.; Wang, Y.; Terasa-ki, O.; Yu, J. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydro-genation. Angew. Chem. Int. Ed. Engl., 2020, 59(44), 19450-19459.
[http://dx.doi.org/10.1002/anie.202003349] [PMID: 32259339]
[79]
Zhang, B.; Li, G.; Liu, S.; Qin, Y.; Song, L.; Wang, L.; Liu, G. Boosting propane dehydrogenation over PtZn encapsulated in an epitaxial high-crystallized zeolite with a low surface barrier. ACS Catal., 2022, 12(2), 1310-1314.
[http://dx.doi.org/10.1021/acscatal.1c04092]
[80]
Chen, D.; Holmen, A.; Sui, Z.; Zhou, X. Carbon mediated catalysis: A review on oxidative dehy-drogenation. Chin. J. Catal., 2014, 35(6), 824-841.
[http://dx.doi.org/10.1016/S1872-2067(14)60120-0]
[81]
Zhao, Z.; Ge, G.; Li, W.; Guo, X.; Wang, G. Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: A review. Chin. J. Catal., 2016, 37(5), 644-670.
[http://dx.doi.org/10.1016/S1872-2067(15)61065-8]
[82]
Volynkin, A.; Rønning, M.; Blekkan, E.A. The role of carbon support for propane dehydrogena-tion over platinum catalysts. Top. Catal., 2015, 58(14-17), 854-865.
[http://dx.doi.org/10.1007/s11244-015-0452-3]
[83]
Cao, T.; Dai, X.; Li, F.; Liu, W.; Bai, Y.; Fu, Y.; Qi, W. Efficient non-precious metal catalyst for propane dehydrogenation: Atomically dispersed cobalt-nitrogen compounds on carbon nano-tubes. ChemCatChem, 2021, 13(13), 3067-3073.
[http://dx.doi.org/10.1002/cctc.202100410]
[84]
Liu, J.; Li, J.Q.; Rong, J.F.; Liu, C.C.; Dai, Z.Y.; Bao, J.; Zheng, H.D. Defect-driven unique stabil-ity of Pt/carbon nanotubes for propane dehydrogenation. Appl. Surf. Sci., 2019, 464, 146-152.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.260]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy