Generic placeholder image

Current Women`s Health Reviews

Editor-in-Chief

ISSN (Print): 1573-4048
ISSN (Online): 1875-6581

Review Article

A Review of Salivary Biomarkers in Breast Cancer

Author(s): Maryam Koopaie*, Mahnaz Fatahzadeh, Sajad Kolahdooz and Reza Mousavi

Volume 19, Issue 2, 2023

Published on: 27 July, 2022

Article ID: e120522204681 Pages: 20

DOI: 10.2174/1573404818666220512152015

Price: $65

Abstract

Objectives: This study aimed to review the literature related to salivary biomarkers used to diagnose breast cancer or predict responses to therapy and its prognosis.

Methods: Studies were eligible for inclusion if they had compared salivary diagnostics for breast cancer with the gold standard or other biomarkers. Six databases (PubMed, EMBASE, ScienceDirect, Scopus, Web of Science, and Ovid) and Google Scholar search engine searched for pertinent literature using specific search terms: breast cancer, diagnosis, prognosis saliva, and salivary biomarker. Of the 513 studies screened, 110 were selected for inclusion in this review. Different salivary biomarkers were classified and discussed.

Results: Our analysis indicated that the sensitivity and specificity of salivary biomarkers, such as cerb- B2 and sialic acid in BC detection are comparable with serum values. Salivary levels of autoantibodies against MUC1, CA 15-3, and adiponectin had a better correlation with breast cancer than serum levels. Assessment of biomarkers, such as HER-2, helps develop a treatment plan and evaluates response to treatment.

Conclusion: Our study confirms that salivary biomarkers are becoming increasingly important in breast cancer diagnosis and treatment planning, as well as in predicting therapeutic response and prognosis. Salivary biomarkers such as c-erb-B2 in association with traditional criteria offer the promise of use as a noninvasive screening method for breast cancer. Additional studies are warranted to determine the most sensitive and specific salivary biomarkers for this purpose.

Keywords: Saliva, biomarker, breast cancer, diagnosis, prognosis, early diagnosis, neoplasms, proteins.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[3]
Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Benbrahim-Tallaa, L.; Bouvard, V.; Bianchini, F.; Straif, K. Breast-cancer screening--viewpoint of the IARC Working Group. N. Engl. J. Med., 2015, 372(24), 2353-2358.
[http://dx.doi.org/10.1056/NEJMsr1504363] [PMID: 26039523]
[4]
Sempere, L.F.; Keto, J.; Fabbri, M. Exosomal microRNAs in breast cancer towards diagnostic and therapeutic applications. Cancers (Basel), 2017, 9(7), 71.
[http://dx.doi.org/10.3390/cancers9070071] [PMID: 28672799]
[5]
van den Ende, C.; Oordt-Speets, A.M.; Vroling, H.; van Agt, H.M.E. Benefits and harms of breast cancer screening with mammography in women aged 40-49 years: A systematic review. Int. J. Cancer, 2017, 141(7), 1295-1306.
[http://dx.doi.org/10.1002/ijc.30794] [PMID: 28542784]
[6]
Bleyer, A.; Welch, H.G. Effect of three decades of screening mammography on breast-cancer incidence. N. Engl. J. Med., 2012, 367(21), 1998-2005.
[http://dx.doi.org/10.1056/NEJMoa1206809] [PMID: 23171096]
[7]
Laidi, F.; Bouziane, A.; Errachid, A.; Zaoui, F. Usefulness of salivary and serum auto-antibodies against tumor biomarkers HER2 and MUC1 in breast cancer screening. Asian Pac. J. Cancer Prev., 2016, 17(1), 335-339.
[http://dx.doi.org/10.7314/APJCP.2016.17.1.335] [PMID: 26838233]
[8]
Welch, H.G.; Prorok, P.C.; O’Malley, A.J.; Kramer, B.S. Breast-cancer tumor size, overdiagnosis, and mammography screening effectiveness. N. Engl. J. Med., 2016, 375(15), 1438-1447.
[http://dx.doi.org/10.1056/NEJMoa1600249] [PMID: 27732805]
[9]
Brawley, O.W. Accepting the existence of breast cancer overdiagnosis. Ann. Intern. Med., 2017, 166(5), 364-365.
[http://dx.doi.org/10.7326/M16-2850] [PMID: 28114628]
[10]
Gøtzsche, P.C. Mammography screening is harmful and should be abandoned. J. R. Soc. Med., 2015, 108(9), 341-345.
[http://dx.doi.org/10.1177/0141076815602452] [PMID: 26359135]
[11]
Løberg, M.; Lousdal, M.L.; Bretthauer, M.; Kalager, M. Benefits and harms of mammography screening. Breast Cancer Res., 2015, 17(1), 63.
[http://dx.doi.org/10.1186/s13058-015-0525-z] [PMID: 25928287]
[12]
Klarenbach, S.; Sims-Jones, N.; Lewin, G.; Singh, H.; Thériault, G.; Tonelli, M.; Doull, M.; Courage, S.; Garcia, A.J.; Thombs, B.D. Recommendations on screening for breast cancer in women aged 40-74 years who are not at increased risk for breast cancer. CMAJ, 2018, 190(49), E1441-E1451.
[http://dx.doi.org/10.1503/cmaj.180463] [PMID: 30530611]
[13]
Force, U.P.S.T. Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med., 2009, 151(10), 716-726. W-236.
[http://dx.doi.org/10.7326/0003-4819-151-10-200911170-00008] [PMID: 19920272]
[14]
Miglioretti, D.L.; Lange, J.; van den Broek, J.J.; Lee, C.I.; van Ravesteyn, N.T.; Ritley, D.; Kerlikowske, K.; Fenton, J.J.; Melnikow, J.; de Koning, H.J.; Hubbard, R.A. Radiation-induced breast cancer incidence and mortality from digital mammography screening: A modeling study. Ann. Intern. Med., 2016, 164(4), 205-214.
[http://dx.doi.org/10.7326/M15-1241] [PMID: 26756460]
[15]
Mariscotti, G.; Houssami, N.; Durando, M.; Bergamasco, L.; Campanino, P.P.; Ruggieri, C.; Regini, E.; Luparia, A.; Bussone, R.; Sapino, A.; Fonio, P.; Gandini, G. Accuracy of mammography, digital breast tomosynthesis, ultrasound and MR imaging in preoperative assessment of breast cancer. Anticancer Res., 2014, 34(3), 1219-1225.
[PMID: 24596363]
[16]
Myers, E.R.; Moorman, P.; Gierisch, J.M.; Havrilesky, L.J.; Grimm, L.J.; Ghate, S.; Davidson, B.; Mongtomery, R.C.; Crowley, M.J.; McCrory, D.C.; Kendrick, A.; Sanders, G.D. Benefits and harms of breast cancer screening: A systematic review. JAMA, 2015, 314(15), 1615-1634.
[http://dx.doi.org/10.1001/jama.2015.13183] [PMID: 26501537]
[17]
Cho, N.; Han, W.; Han, B-K.; Bae, M.S.; Ko, E.S.; Nam, S.J.; Chae, E.Y.; Lee, J.W.; Kim, S.H.; Kang, B.J.; Song, B.J.; Kim, E.K.; Moon, H.J.; Kim, S.I.; Kim, S.M.; Kang, E.; Choi, Y.; Kim, H.H.; Moon, W.K. Breast cancer screening with mammography plus ultrasonography or magnetic resonance imaging in women 50 years or younger at diagnosis and treated with breast conservation therapy. JAMA Oncol., 2017, 3(11), 1495-1502.
[http://dx.doi.org/10.1001/jamaoncol.2017.1256] [PMID: 28655029]
[18]
Xie, T.; Sun, W.; Chen, D.; Liu, N.; Wang, X.; Zhang, W. Self-efficacy and its influencing factors of breast cancer screening for female college students in China. J. Obstet. Gynaecol. Res., 2019, 45(5), 1026-1034.
[http://dx.doi.org/10.1111/jog.13931] [PMID: 30815938]
[19]
Oeffinger, K.C.; Fontham, E.T.; Wender, R.C. Clinical breast examination and breast cancer screening guideline--reply. JAMA, 2016, 315(13), 1404.
[http://dx.doi.org/10.1001/jama.2016.0689] [PMID: 27046374]
[20]
Porto-Mascarenhas, E.C.; Assad, D.X.; Chardin, H.; Gozal, D.; De Luca Canto, G.; Acevedo, A.C.; Guerra, E.N. Salivary biomarkers in the diagnosis of breast cancer: A review. Crit. Rev. Oncol. Hematol., 2017, 110, 62-73.
[http://dx.doi.org/10.1016/j.critrevonc.2016.12.009] [PMID: 28109406]
[21]
Jeschke, U. Can we find breast cancer via salivary fluid glycosylation analyses? EBioMedicine, 2018, 28, 4.
[http://dx.doi.org/10.1016/j.ebiom.2018.01.034] [PMID: 29397367]
[22]
Murata, T.; Yanagisawa, T.; Kurihara, T.; Kaneko, M.; Ota, S.; Enomoto, A.; Tomita, M.; Sugimoto, M.; Sunamura, M.; Hayashida, T.; Kitagawa, Y.; Jinno, H. Salivary metabolomics with alternative decision tree-based machine learning methods for breast cancer discrimination. Breast Cancer Res. Treat., 2019, 177(3), 591-601.
[http://dx.doi.org/10.1007/s10549-019-05330-9] [PMID: 31286302]
[23]
Streckfus, C.F.; Bigler, L. A catalogue of altered salivary proteins secondary to invasive ductal carcinoma: A novel in vivo paradigm to assess breast cancer progression. Sci. Rep., 2016, 6(1), 30800.
[http://dx.doi.org/10.1038/srep30800] [PMID: 27477923]
[24]
Guo, Y.; Yu, P.; Liu, Z.; Maimaiti, Y.; Wang, S.; Yin, X.; Liu, C.; Huang, T. Prognostic and clinicopathological value of programmed death ligand-1 in breast cancer: A meta-analysis. PLoS One, 2016, 11(5), e0156323.
[http://dx.doi.org/10.1371/journal.pone.0156323] [PMID: 27227453]
[25]
Shao, Y.B.; Sun, X.F.; He, Y.N.; Liu, C.J.; Liu, H. Clinicopathological features of thirty patients with primary breast lymphoma and review of the literature. Med. Oncol., 2015, 32(2), 448.
[http://dx.doi.org/10.1007/s12032-014-0448-z] [PMID: 25572809]
[26]
Hosseini, M.; Khatamianfar, S.; Hassanian, S.M.; Nedaeinia, R.; Shafiee, M.; Maftouh, M.; Ghayour-Mobarhan, M. ShahidSales, S.; Avan, A. Exosome-encapsulated microRNAs as potential circulating biomarkers in colon cancer. Curr. Pharm. Des., 2017, 23(11), 1705-1709.
[http://dx.doi.org/10.2174/1381612822666161201144634] [PMID: 27908272]
[27]
Nedaeinia, R.; Manian, M.; Jazayeri, M.H.; Ranjbar, M.; Salehi, R.; Sharifi, M.; Mohaghegh, F.; Goli, M.; Jahednia, S.H.; Avan, A.; Ghayour-Mobarhan, M. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther., 2017, 24(2), 48-56.
[http://dx.doi.org/10.1038/cgt.2016.77] [PMID: 27982021]
[28]
Zhang, Y-C.; Xu, Z.; Zhang, T-F.; Wang, Y-L. Circulating microRNAs as diagnostic and prognostic tools for hepatocellular carcinoma. World J. Gastroenterol., 2015, 21(34), 9853-9862.
[http://dx.doi.org/10.3748/wjg.v21.i34.9853] [PMID: 26379392]
[29]
Joyce, D.P.; Kerin, M.J.; Dwyer, R.M. Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer. Int. J. Cancer, 2016, 139(7), 1443-1448.
[http://dx.doi.org/10.1002/ijc.30179] [PMID: 27170104]
[30]
Sheervalilou, R.; Shahraki, O.; Hasanifard, L.; Shirvaliloo, M.; Mehranfar, S.; Lotfi, H.; Pilehvar-Soltanahmadi, Y.; Bahmanpour, Z.; Zadeh, S.S.; Nazarlou, Z.; Kangarlou, H.; Ghaznavi, H.; Zarghami, N. Electrochemical nano-biosensors as novel approach for the detection of lung cancer-related microRNAs. Curr. Mol. Med., 2019, 20(1), 13-35.
[http://dx.doi.org/10.2174/1566524019666191001114941] [PMID: 31573884]
[31]
Bahmanpour, Z.; Sheervalilou, R.; Choupani, J.; Shekari Khaniani, M.; Montazeri, V.; Mansoori Derakhshan, S. A new insight on serum microRNA expression as novel biomarkers in breast cancer patients. J. Cell. Physiol., 2019, 234(11), 19199-19211.
[http://dx.doi.org/10.1002/jcp.28656] [PMID: 31026062]
[32]
Delmonico, L.; Bravo, M.; Silvestre, R.T.; Ornellas, M.H.F.; De Azevedo, C.M.; Alves, G. Proteomic profile of saliva and plasma from women with impalpable breast lesions. Oncol. Lett., 2016, 12(3), 2145-2152.
[http://dx.doi.org/10.3892/ol.2016.4828] [PMID: 27602154]
[33]
Yuan, B.; Schafferer, S.; Tang, Q.; Scheffler, M.; Nees, J.; Heil, J.; Schott, S.; Golatta, M.; Wallwiener, M.; Sohn, C.; Koal, T.; Wolf, B. Schneeweiß, A.; Burwinkel, B. A plasma metabolite panel as biomarkers for early primary breast cancer detection. Int. J. Cancer, 2019, 144(11), 2833-2842.
[http://dx.doi.org/10.1002/ijc.31996] [PMID: 30426507]
[34]
Alimirzaie, S.; Bagherzadeh, M.; Akbari, M.R. Liquid biopsy in breast cancer: A comprehensive review. Clin. Genet., 2019, 95(6), 643-660.
[http://dx.doi.org/10.1111/cge.13514] [PMID: 30671931]
[35]
Vila, T.; Rizk, A.M.; Sultan, A.S.; Jabra-Rizk, M.A. The power of saliva: Antimicrobial and beyond. PLoS Pathog., 2019, 15(11), e1008058.
[http://dx.doi.org/10.1371/journal.ppat.1008058] [PMID: 31725797]
[36]
Pedersen, A. Sørensen, C.E.; Proctor, G.B.; Carpenter, G.H. Salivary functions in mastication, taste and textural perception, swallowing and initial digestion. Oral Dis., 2018, 24(8), 1399-1416.
[http://dx.doi.org/10.1111/odi.12867] [PMID: 29645367]
[37]
Yan, W.; Apweiler, R.; Balgley, B.M.; Boontheung, P.; Bundy, J.L.; Cargile, B.J.; Cole, S.; Fang, X.; Gonzalez-Begne, M.; Griffin, T.J.; Hagen, F.; Hu, S.; Wolinsky, L.E.; Lee, C.S.; Malamud, D.; Melvin, J.E.; Menon, R.; Mueller, M.; Qiao, R.; Rhodus, N.L.; Sevinsky, J.R.; States, D.; Stephenson, J.L., Jr; Than, S.; Yates, J.R., III; Yu, W.; Xie, H.; Xie, Y.; Omenn, G.S.; Loo, J.A.; Wong, D.T. Systematic comparison of the human saliva and plasma proteomes. Proteomics Clin. Appl., 2009, 3(1), 116-134.
[http://dx.doi.org/10.1002/prca.200800140] [PMID: 19898684]
[38]
Rathnayake, N. Åkerman, S.; Klinge, B.; Lundegren, N.; Jansson, H.; Tryselius, Y.; Sorsa, T.; Gustafsson, A. Salivary biomarkers for detection of systemic diseases. PLoS One, 2013, 8(4), e61356.
[http://dx.doi.org/10.1371/journal.pone.0061356] [PMID: 23637817]
[39]
Zhang, A.; Sun, H.; Wang, P.; Wang, X. Salivary proteomics in biomedical research. Clin. Chim. Acta, 2013, 415, 261-265.
[http://dx.doi.org/10.1016/j.cca.2012.11.001] [PMID: 23146870]
[40]
Zhang, C-Z.; Cheng, X-Q.; Li, J-Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.D. Saliva in the diagnosis of diseases. Int. J. Oral Sci., 2016, 8(3), 133-137.
[http://dx.doi.org/10.1038/ijos.2016.38] [PMID: 27585820]
[41]
Sawczuk, B.; Maciejczyk, M.; Sawczuk-Siemieniuk, M.; Posmyk, R.; Zalewska, A.; Car, H. Salivary gland function, antioxidant defence and oxidative damage in the saliva of patients with breast cancer: Does the BRCA1 mutation disturb the salivary redox profile? Cancers (Basel), 2019, 11(10), E1501.
[http://dx.doi.org/10.3390/cancers11101501] [PMID: 31597313]
[42]
Zhang, Y.; Sun, J.; Lin, C.C.; Abemayor, E.; Wang, M.B.; Wong, D.T. The emerging landscape of salivary diagnostics. Periodontol. 2000, 2016, 70(1), 38-52.
[http://dx.doi.org/10.1111/prd.12099] [PMID: 26662481]
[43]
Khanna, P.; Walt, D.R. Salivary diagnostics using a portable point-of-service platform: A review. Clin. Ther., 2015, 37(3), 498-504.
[http://dx.doi.org/10.1016/j.clinthera.2015.02.004] [PMID: 25732629]
[44]
Yoshizawa, J.M.; Schafer, C.A.; Schafer, J.J.; Farrell, J.J.; Paster, B.J.; Wong, D.T. Salivary biomarkers: Toward future clinical and diagnostic utilities. Clin. Microbiol. Rev., 2013, 26(4), 781-791.
[http://dx.doi.org/10.1128/CMR.00021-13] [PMID: 24092855]
[45]
Corstjens, P.L.; Abrams, W.R.; Malamud, D. Saliva and viral infections. Periodontol. 2000, 2016, 70(1), 93-110.
[http://dx.doi.org/10.1111/prd.12112] [PMID: 26662485]
[46]
Streckfus, C.F.; Bigler, L.R. Saliva as a diagnostic fluid. Oral Dis., 2002, 8(2), 69-76.
[http://dx.doi.org/10.1034/j.1601-0825.2002.1o834.x] [PMID: 11991307]
[47]
Vahedi, M.; Abdollahzadeh, S.; Vaziri, P-B.; Mortazavi, H. Oral contraceptive use and salivary C-erbB-2, CEA and CA15-3 in healthy women: A case-control study. Med. Oral Patol. Oral Cir. Bucal, 2011, 16(1), e29-e32.
[http://dx.doi.org/10.4317/medoral.16.e29] [PMID: 20711149]
[48]
Laidi, F.; Bouziane, A.; Lakhdar, A.; Khabouze, S.; Amrani, M.; Rhrab, B.; Zaoui, F. Significant correlation between salivary and serum Ca 15-3 in healthy women and breast cancer patients. Asian Pac. J. Cancer Prev., 2014, 15(11), 4659-4662.
[http://dx.doi.org/10.7314/APJCP.2014.15.11.4659] [PMID: 24969900]
[49]
Laidi, F.; Bouziane, A.; Lakhdar, A.; Khabouze, S.; Rhrab, B.; Zaoui, F. Salivary expression of soluble HER2 in breast cancer patients with positive and negative HER2 status. OncoTargets Ther., 2014, 7, 1285-1289.
[http://dx.doi.org/10.2147/OTT.S64230] [PMID: 25053886]
[50]
Furrer, D.; Paquet, C.; Jacob, S.; Diorio, C. The Human Epidermal Growth Factor Receptor 2 (HER2) as a prognostic and predictive biomarker: Molecular insights into HER2 activation and diagnostic implications.In: Cancer Prognosis; Lemamy, G.-J., Ed.; IntechOpen: London, 2018.
[http://dx.doi.org/10.5772/intechopen.78271]
[51]
Yan, M.; Schwaederle, M.; Arguello, D.; Millis, S.Z.; Gatalica, Z.; Kurzrock, R. HER2 expression status in diverse cancers: Review of results from 37,992 patients. Cancer Metastasis Rev., 2015, 34(1), 157-164.
[http://dx.doi.org/10.1007/s10555-015-9552-6] [PMID: 25712293]
[52]
Nahta, R.; Yu, D.; Hung, M.-C.; Hortobagyi, G.N.; Esteva, F.J. Mechanisms of disease: Understanding resistance to HER2-targeted therapy in human breast cancer. Nat. Clin. Pract. Oncol., 2006, 3(5), 269-280.
[http://dx.doi.org/10.1038/ncponc0509] [PMID: 16683005]
[53]
Miligy, I.M.; Toss, M.S.; Gorringe, K.L.; Lee, A.H.S.; Ellis, I.O.; Green, A.R.; Rakha, E.A. The clinical and biological significance of HER2 over-expression in breast ductal carcinoma in situ: A large study from a single institution. Br. J. Cancer, 2019, 120(11), 1075-1082.
[http://dx.doi.org/10.1038/s41416-019-0436-3] [PMID: 31065110]
[54]
Bigler, L.R.; Streckfus, C.F.; Dubinsky, W.P. Salivary biomarkers for the detection of malignant tumors that are remote from the oral cavity. Clin. Lab. Med., 2009, 29(1), 71-85.
[http://dx.doi.org/10.1016/j.cll.2009.01.004] [PMID: 19389552]
[55]
Streckfus, C.; Bigler, L. The use of soluble, salivary c-erbB-2 for the detection and post-operative follow-up of breast cancer in women: The results of a five-year translational research study. Adv. Dent. Res., 2005, 18(1), 17-24.
[http://dx.doi.org/10.1177/154407370501800105] [PMID: 15998939]
[56]
Streckfus, C.; Bigler, L.; Dellinger, T.; Dai, X.; Cox, W.J.; McArthur, A.; Kingman, A.; Thigpen, J.T. Reliability assessment of soluble c-erbB-2 concentrations in the saliva of healthy women and men. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2001, 91(2), 174-179.
[http://dx.doi.org/10.1067/moe.2001.111758] [PMID: 11174594]
[57]
Streckfus, C.F.; Storthz, K.A.; Bigler, L.; Dubinsky, W.P. A comparison of the proteomic expression in pooled saliva specimens from individuals diagnosed with ductal carcinoma of the breast with and without lymph node involvement. J. Oncol., 2009, 2009, 737619.
[http://dx.doi.org/10.1155/2009/737619] [PMID: 20052393]
[58]
Streckfus, C.; Bigler, L.; Tucci, M.; Thigpen, J.T. A preliminary study of CA15-3, c-erbB-2, epidermal growth factor receptor, cathepsin-D, and p53 in saliva among women with breast carcinoma. Cancer Invest., 2000, 18(2), 101-109.
[http://dx.doi.org/10.3109/07357900009038240] [PMID: 10705871]
[59]
Streckfus, C.; Bigler, L.; Dellinger, T.; Pfeifer, M.; Rose, A.; Thigpen, J.T. CA 15-3 and c-erbB-2 presence in the saliva of women. Clin. Oral Investig., 1999, 3(3), 138-143.
[http://dx.doi.org/10.1007/s007840050092] [PMID: 10803125]
[60]
Skálová A.; Stárek, I.; Vanecek, T.; Kucerová, V.; Plank, L.; Szépe, P.; Di Palma, S.; Leivo, I. Expression of HER-2/neu gene and protein in salivary duct carcinomas of parotid gland as revealed by fluorescence in-situ hybridization and immunohistochemistry. Histopathology, 2003, 42(4), 348-356.
[http://dx.doi.org/10.1046/j.1365-2559.2003.01600.x] [PMID: 12653946]
[61]
Streckfus, C.; Bigler, L.; Dellinger, T.; Dai, X.; Kingman, A.; Thigpen, J.T. The presence of soluble c-erbB-2 in saliva and serum among women with breast carcinoma: A preliminary study. Clin. Cancer Res., 2000, 6(6), 2363-2370.
[PMID: 10873088]
[62]
Bigler, L.R.; Streckfus, C.F.; Copeland, L.; Burns, R.; Dai, X.; Kuhn, M.; Martin, P.; Bigler, S.A. The potential use of saliva to detect recurrence of disease in women with breast carcinoma. J. Oral Pathol. Med., 2002, 31(7), 421-431.
[http://dx.doi.org/10.1034/j.1600-0714.2002.00123.x] [PMID: 12165061]
[63]
Paige, S.Z.; Streckfus, C.F. Salivary analysis in the diagnosis and treatment of breast cancer: A role for the general dentist. Gen. Dent., 2007, 55(2), 156-157.
[PMID: 17333991]
[64]
Haddon, L.; Hugh, J. MUC1-mediated motility in breast cancer: A review highlighting the role of the MUC1/ICAM-1/Src signaling triad. Clin. Exp. Metastasis, 2015, 32(4), 393-403.
[http://dx.doi.org/10.1007/s10585-015-9711-8] [PMID: 25759211]
[65]
Jing, X.; Liang, H.; Hao, C.; Yang, X.; Cui, X. Overexpression of MUC1 predicts poor prognosis in patients with breast cancer. Oncol. Rep., 2019, 41(2), 801-810.
[PMID: 30483806]
[66]
Geng, B.; Liang, M-M.; Ye, X-B.; Zhao, W-Y. Association of CA 15-3 and CEA with clinicopathological parameters in patients with metastatic breast cancer. Mol. Clin. Oncol., 2015, 3(1), 232-236.
[http://dx.doi.org/10.3892/mco.2014.419] [PMID: 25469301]
[67]
Liang, Y-H.; Chang, C-C.; Chen, C-C.; Chu-Su, Y.; Lin, C-W. Development of an Au/ZnO thin film surface plasmon resonance-based biosensor immunoassay for the detection of carbohydrate antigen 15-3 in human saliva. Clin. Biochem., 2012, 45(18), 1689-1693.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.09.001] [PMID: 22981930]
[68]
Ghosh, S.K.; Pantazopoulos, P.; Medarova, Z.; Moore, A. Expression of underglycosylated MUC1 antigen in cancerous and adjacent normal breast tissues. Clin. Breast Cancer, 2013, 13(2), 109-118.
[http://dx.doi.org/10.1016/j.clbc.2012.09.016] [PMID: 23122537]
[69]
Kufe, D.W. MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene, 2013, 32(9), 1073-1081.
[http://dx.doi.org/10.1038/onc.2012.158] [PMID: 22580612]
[70]
Wang, W-J.; Lei, Y-Y.; Mei, J-H.; Wang, C-L. Recent progress in HER2 associated breast cancer. Asian Pac. J. Cancer Prev., 2015, 16(7), 2591-2600.
[http://dx.doi.org/10.7314/APJCP.2015.16.7.2591] [PMID: 25854334]
[71]
Mitri, Z.; Constantine, T.; O’Regan, R. The HER2 receptor in breast cancer: Pathophysiology, clinical use, and new advances in therapy. Chemother. Res. Pract., 2012, 2012, 743193.
[http://dx.doi.org/10.1155/2012/743193] [PMID: 23320171]
[72]
López-Jornet, P.; Aznar, C.; Ceron, J.; Asta, T. Salivary biomarkers in breast cancer: A cross-sectional study. Support. Care Cancer, 2021, 29(2), 889-896.
[PMID: 32529492]
[73]
Morigny, P.; Houssier, M.; Mouisel, E.; Langin, D. Adipocyte lipolysis and insulin resistance. Biochimie, 2016, 125, 259-266.
[http://dx.doi.org/10.1016/j.biochi.2015.10.024] [PMID: 26542285]
[74]
Georgiou, G.P.; Provatopoulou, X.; Kalogera, E.; Siasos, G.; Menenakos, E.; Zografos, G.C.; Gounaris, A. Serum resistin is inversely related to breast cancer risk in premenopausal women. Breast, 2016, 29, 163-169.
[http://dx.doi.org/10.1016/j.breast.2016.07.025] [PMID: 27521488]
[75]
Yu, Z.; Tang, S.; Ma, H.; Duan, H.; Zeng, Y. Association of serum adiponectin with breast cancer: A meta-analysis of 27 case-control studies. Medicine (Baltimore), 2019, 98(6), e14359.
[http://dx.doi.org/10.1097/MD.0000000000014359] [PMID: 30732167]
[76]
Nagaraju, G.P.; Rajitha, B.; Aliya, S.; Kotipatruni, R.P.; Madanraj, A.S.; Hammond, A.; Park, D.; Chigurupati, S.; Alam, A.; Pattnaik, S. The role of adiponectin in obesity-associated female-specific carcinogenesis. Cytokine Growth Factor Rev., 2016, 31, 37-48.
[http://dx.doi.org/10.1016/j.cytogfr.2016.03.014] [PMID: 27079372]
[77]
Minatoya, M.; Kutomi, G.; Shima, H.; Asakura, S.; Otokozawa, S.; Ohnishi, H.; Akasaka, H.; Miura, T.; Mori, M.; Hirata, K. Relation of serum adiponectin levels and obesity with breast cancer: A Japanese case-control study. Asian Pac. J. Cancer Prev., 2014, 15(19), 8325-8330.
[http://dx.doi.org/10.7314/APJCP.2014.15.19.8325] [PMID: 25339024]
[78]
Yakar, S.; Adamo, M.L. Insulin-like growth factor 1 physiology: Lessons from mouse models. Endocrinol. Metab. Clin. North Am., 2012, 41(2), 231-247.v.
[http://dx.doi.org/10.1016/j.ecl.2012.04.008] [PMID: 22682628]
[79]
Streckfus, C.F. Relationship between salivary adiponectin, IGF-1, obesity and breast cancer. J. Solid Tumors, 2018, 8(1), 1-9.
[http://dx.doi.org/10.5430/jst.v8n1p1]
[80]
Zhou, H.; Song, X.; Briggs, M.; Violand, B.; Salsgiver, W.; Gulve, E.A.; Luo, Y. Adiponectin represses gluconeogenesis independent of insulin in hepatocytes. Biochem. Biophys. Res. Commun., 2005, 338(2), 793-799.
[http://dx.doi.org/10.1016/j.bbrc.2005.10.007] [PMID: 16236252]
[81]
Phoonsawat, W.; Aoki-Yoshida, A.; Tsuruta, T.; Sonoyama, K. Adiponectin is partially associated with exosomes in mouse serum. Biochem. Biophys. Res. Commun., 2014, 448(3), 261-266.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.114] [PMID: 24792183]
[82]
Yang, Y.; Hong, Y.; Cho, E.; Kim, G.B.; Kim, I-S. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. J. Extracell. Vesicles, 2018, 7(1), 1440131.
[http://dx.doi.org/10.1080/20013078.2018.1440131] [PMID: 29535849]
[83]
Foschini, M.P.; Morandi, L.; Asioli, S.; Giove, G.; Corradini, A.G.; Eusebi, V. The morphological spectrum of salivary gland type tumours of the breast. Pathology, 2017, 49(2), 215-227.
[http://dx.doi.org/10.1016/j.pathol.2016.10.011] [PMID: 28043647]
[84]
Piscuoglio, S.; Hodi, Z.; Katabi, N.; Guerini-Rocco, E.; Macedo, G.S.; Ng, C.K.; Edelweiss, M.; De Mattos-Arruda, L.; Wen, H.Y.; Rakha, E.A.; Ellis, I.O.; Rubin, B.P.; Weigelt, B.; Reis-Filho, J.S. Are acinic cell carcinomas of the breast and salivary glands distinct diseases? Histopathology, 2015, 67(4), 529-537.
[http://dx.doi.org/10.1111/his.12673] [PMID: 25688711]
[85]
Panno, M.L.; Naimo, G.D.; Spina, E.; Andò, S.; Mauro, L. Different molecular signaling sustaining adiponectin action in breast cancer. Curr. Opin. Pharmacol., 2016, 31, 1-7.
[http://dx.doi.org/10.1016/j.coph.2016.08.001] [PMID: 27552697]
[86]
Halvaei, S.; Daryani, S.; Eslami-S, Z.; Samadi, T.; Jafarbeik-Iravani, N.; Bakhshayesh, T.O.; Majidzadeh-A, K.; Esmaeili, R. Exosomes in cancer liquid biopsy: A focus on breast cancer. Mol. Ther. Nucleic Acids, 2018, 10, 131-141.
[http://dx.doi.org/10.1016/j.omtn.2017.11.014] [PMID: 29499928]
[87]
Esquivel-Velázquez, M.; Ostoa-Saloma, P.; Palacios-Arreola, M.I.; Nava-Castro, K.E.; Castro, J.I.; Morales-Montor, J. The role of cytokines in breast cancer development and progression. J. Interferon Cytokine Res., 2015, 35(1), 1-16.
[http://dx.doi.org/10.1089/jir.2014.0026] [PMID: 25068787]
[88]
Gorges, T.M.; Kuske, A. Röck, K.; Mauermann, O.; Müller, V.; Peine, S.; Verpoort, K.; Novosadova, V.; Kubista, M.; Riethdorf, S.; Pantel, K. Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin. Chem., 2016, 62(11), 1504-1515.
[http://dx.doi.org/10.1373/clinchem.2016.260299] [PMID: 27630154]
[89]
Bahrami, A.; Hassanian, S.M.; Khazaei, M.; Hasanzadeh, M.; Shahidsales, S.; Maftouh, M.; Ferns, G.A.; Avan, A. The therapeutic potential of targeting tumor microenvironment in breast cancer: Rational strategies and recent progress. J. Cell. Biochem., 2018, 119(1), 111-122.
[http://dx.doi.org/10.1002/jcb.26183] [PMID: 28574616]
[90]
Streckfus, C.; Nwizu, N.; Streckfus, C.; Arreola, D. Profile of tumor-associated cytokines among breast cancer patients: A preliminary study. J. Cancer Sci. Clin. Oncol., 2018, 5(2), 206.
[91]
Navarro, M.A. Mesía, R.; Díez-Gibert, O.; Rueda, A.; Ojeda, B.; Alonso, M.C. Epidermal growth factor in plasma and saliva of patients with active breast cancer and breast cancer patients in follow-up compared with healthy women. Breast Cancer Res. Treat., 1997, 42(1), 83-86.
[http://dx.doi.org/10.1023/A:1005755928831] [PMID: 9116322]
[92]
Wang, W.; Xu, X.; Tian, B.; Wang, Y.; Du, L.; Sun, T.; Shi, Y.; Zhao, X.; Jing, J. The diagnostic value of serum tumor markers CEA, CA19-9, CA125, CA15-3, and TPS in metastatic breast cancer. Clin. Chim. Acta, 2017, 470, 51-55.
[http://dx.doi.org/10.1016/j.cca.2017.04.023] [PMID: 28457854]
[93]
Simon, T.; Gagliano, T.; Giamas, G. Direct effects of anti-angiogenic therapies on tumor cells: VEGF signaling. Trends Mol. Med., 2017, 23(3), 282-292.
[http://dx.doi.org/10.1016/j.molmed.2017.01.002] [PMID: 28162910]
[94]
Brooks, M.N.; Wang, J.; Li, Y.; Zhang, R.; Elashoff, D.; Wong, D.T. Salivary protein factors are elevated in breast cancer patients. Mol. Med. Rep., 2008, 1(3), 375-378.
[http://dx.doi.org/10.3892/mmr.1.3.375] [PMID: 19844594]
[95]
García J.; Marisol, D.; Landero Hernández, R.; González Ramírez, M.T.; Jaime Bernal, L. Diurnal cortisol variation and its relationship with stress, optimism and coping strategies in women with breast cancer. Acta Colomb. Psicol., 2016, 19(1), 113-122.
[96]
Hutchins, A.P.; Takahashi, Y.; Miranda-Saavedra, D. Genomic analysis of LPS-stimulated myeloid cells identifies a common pro-inflammatory response but divergent IL-10 anti-inflammatory responses. Sci. Rep., 2015, 5(1), 9100.
[http://dx.doi.org/10.1038/srep09100] [PMID: 25765318]
[97]
Abercrombie, H.C.; Giese-Davis, J.; Sephton, S.; Epel, E.S.; Turner-Cobb, J.M.; Spiegel, D. Flattened cortisol rhythms in metastatic breast cancer patients. Psychoneuroendocrinology, 2004, 29(8), 1082-1092.
[http://dx.doi.org/10.1016/j.psyneuen.2003.11.003] [PMID: 15219660]
[98]
Zeitzer, J.M.; Nouriani, B.; Neri, E.; Spiegel, D. Correspondence of plasma and salivary cortisol patterns in women with breast cancer. Neuroendocrinology, 2014, 100(2-3), 153-161.
[http://dx.doi.org/10.1159/000367925] [PMID: 25228297]
[99]
Lambert, M.; Couture-Lalande, M. È.; Brennan, K.; Basic, A.; Lebel, S.; Bielajew, C. Salivary secretory immunoglobulin A reactivity: A comparison to cortisol and α-amylase patterns in the same breast cancer survivors. Contemp. Oncol. (Pozn.), 2018, 22(3), 191-201.
[http://dx.doi.org/10.5114/wo.2018.78946] [PMID: 30455592]
[100]
Wan, C.; Boileau, K.; D’Amico, D.; Huang, V.; Fiocco, A.J.; Clément, R.; Bielajew, C. A cross-cultural analysis of salivary cortisol patterns in breast cancer survivors. Breast Cancer Manag., 2019, 8(1), BMT24.
[http://dx.doi.org/10.2217/bmt-2019-0004]
[101]
Bower, J.E.; Ganz, P.A.; Dickerson, S.S.; Petersen, L.; Aziz, N.; Fahey, J.L. Diurnal cortisol rhythm and fatigue in breast cancer survivors. Psychoneuroendocrinology, 2005, 30(1), 92-100.
[http://dx.doi.org/10.1016/j.psyneuen.2004.06.003] [PMID: 15358446]
[102]
Porter, L.S.; Mishel, M.; Neelon, V.; Belyea, M.; Pisano, E.; Soo, M.S. Cortisol levels and responses to mammography screening in breast cancer survivors: A pilot study. Psychosom. Med., 2003, 65(5), 842-848.
[http://dx.doi.org/10.1097/01.PSY.0000088595.91705.C5] [PMID: 14508030]
[103]
Sephton, S.E.; Sapolsky, R.M.; Kraemer, H.C.; Spiegel, D. Diurnal cortisol rhythm as a predictor of breast cancer survival. J. Natl. Cancer Inst., 2000, 92(12), 994-1000.
[http://dx.doi.org/10.1093/jnci/92.12.994] [PMID: 10861311]
[104]
Naderi, A. Prolactin-induced protein in breast cancer. Adv. Exp. Med. Biol., 2015, 846, 189-200.
[http://dx.doi.org/10.1007/978-3-319-12114-7_8] [PMID: 25472539]
[105]
Gangadharan, A.; Nyirenda, T.; Patel, K.; Jaimes-Delgadillo, N.; Coletta, D.; Tanaka, T.; Walland, A.C.; Jameel, Z.; Vedantam, S.; Tang, S.; Mannion, C.; Lee, G.Y.; Goy, A.; Pecora, A.; Suh, K.S. Prolactin Induced Protein (PIP) is a potential biomarker for early stage and malignant breast cancer. Breast, 2018, 39, 101-109.
[http://dx.doi.org/10.1016/j.breast.2018.03.015] [PMID: 29656222]
[106]
Manconi, B.; Castagnola, M.; Cabras, T.; Olianas, A.; Vitali, A.; Desiderio, C.; Sanna, M.T.; Messana, I. The intriguing heterogeneity of human salivary proline-rich proteins: Short title: Salivary proline-rich protein species. J. Proteomics, 2016, 134, 47-56.
[http://dx.doi.org/10.1016/j.jprot.2015.09.009] [PMID: 26375204]
[107]
Wan, C.; Couture-Lalande, M. È.; Narain, T.A.; Lebel, S.; Bielajew, C. Salivary alpha-amylase reactivity in breast cancer survivors. Int. J. Environ. Res. Public Health, 2016, 13(4), 353.
[http://dx.doi.org/10.3390/ijerph13040353] [PMID: 27023572]
[108]
Fedrowitz, M.; Hass, R.; Bertram, C. Löscher, W. Salivary α-amylase exhibits antiproliferative effects in primary cell cultures of rat mammary epithelial cells and human breast cancer cells. J. Exp. Clin. Cancer Res., 2011, 30(1), 102.
[http://dx.doi.org/10.1186/1756-9966-30-102] [PMID: 22027017]
[109]
Leicht, C.A.; Goosey-Tolfrey, V.L.; Bishop, N.C. Exercise intensity and its impact on relationships between salivary immunoglobulin A, saliva flow rate and plasma cortisol concentration. Eur. J. Appl. Physiol., 2018, 118(6), 1179-1187.
[http://dx.doi.org/10.1007/s00421-018-3847-6] [PMID: 29627864]
[110]
Plomp, R.; de Haan, N.; Bondt, A.; Murli, J.; Dotz, V.; Wuhrer, M. Comparative glycomics of immunoglobulin A and G from saliva and plasma reveals biomarker potential. Front. Immunol., 2018, 9, 2436.
[http://dx.doi.org/10.3389/fimmu.2018.02436] [PMID: 30405629]
[111]
Harrison, T.; Bigler, L.; Tucci, M.; Pratt, L.; Malamud, F.; Thigpen, J.T.; Streckfus, C.; Younger, H. Salivary sIgA concentrations and stimulated whole saliva flow rates among women undergoing chemotherapy for breast cancer: An exploratory study. Spec. Care Dentist., 1998, 18(3), 109-112.
[http://dx.doi.org/10.1111/j.1754-4505.1998.tb00914.x] [PMID: 9680920]
[112]
Hofling, M.; Hirschberg, A.L.; Skoog, L.; Tani, E. Hägerström, T.; von Schoultz, B. Testosterone inhibits estrogen/progestogen-induced breast cell proliferation in postmenopausal women. Menopause, 2007, 14(2), 183-190.
[http://dx.doi.org/10.1097/01.gme.0000232033.92411.51] [PMID: 17108847]
[113]
Dimitrakakis, C.; Zava, D.; Marinopoulos, S.; Tsigginou, A.; Antsaklis, A.; Glaser, R. Low salivary testosterone levels in patients with breast cancer. BMC Cancer, 2010, 10(1), 547.
[http://dx.doi.org/10.1186/1471-2407-10-547] [PMID: 20937135]
[114]
Barrabés, S.; Sarrats, A.; Fort, E.; De Llorens, R.; Rudd, P.M.; Peracaula, R. Effect of sialic acid content on glycoprotein pI analyzed by two-dimensional electrophoresis. Electrophoresis, 2010, 31(17), 2903-2912.
[http://dx.doi.org/10.1002/elps.200900764] [PMID: 20690144]
[115]
Cazet, A.; Julien, S.; Bobowski, M.; Krzewinski-Recchi, M-A.; Harduin-Lepers, A.; Groux-Degroote, S.; Delannoy, P. Consequences of the expression of sialylated antigens in breast cancer. Carbohydr. Res., 2010, 345(10), 1377-1383.
[http://dx.doi.org/10.1016/j.carres.2010.01.024] [PMID: 20231016]
[116]
Oztürk, L.K.; Emekli-Alturfan, E. Kaşikci, E.; Demir, G.; Yarat, A. Salivary total sialic acid levels increase in breast cancer patients: A preliminary study. Med. Chem., 2011, 7(5), 443-447.
[http://dx.doi.org/10.2174/157340611796799230] [PMID: 21801151]
[117]
Hernández-Arteaga A.C.; de Jesús Zermeño-Nava, J.; Martínez-Martínez, M.U.; Hernández-Cedillo, A.; Ojeda-Galván, H.J.; José-Yacamán, M.; Navarro-Contreras, H.R. Determination of salivary sialic acid through nanotechnology: A useful biomarker for the screening of breast cancer. Arch. Med. Res., 2019, 50(3), 105-110.
[http://dx.doi.org/10.1016/j.arcmed.2019.05.013] [PMID: 31495386]
[118]
Hernández-Arteaga A.; de Jesús Zermeño Nava, J.; Kolosovas-Machuca, E.S.; Velázquez-Salazar, J.J.; Vinogradova, E.; José-Yacamán, M.; Navarro-Contreras, H.R. Diagnosis of breast cancer by analysis of sialic acid concentrations in human saliva by surface-enhanced Raman spectroscopy of silver nanoparticles. Nano Res., 2017, 10(11), 3662-3670.
[http://dx.doi.org/10.1007/s12274-017-1576-5]
[119]
Streckfus, C.F.; Arreola, D.; Streckfus, C.G.; Bigler, L.R. Salivary proline rich peptide decreases cell growth in HCC38 triple negative breast cancer cell line. J. Solid Tumors, 2017, 7(2), 38-44.
[http://dx.doi.org/10.5430/jst.v7n2p38]
[120]
Yang, J.; Liu, X.; Shu, J.; Hou, Y.; Chen, M.; Yu, H.; Ma, T.; Du, H.; Zhang, J.; Qiao, Y.; He, J.; Niu, L.; Yang, F.; Li, Z. Abnormal galactosylated-glycans recognized by bandeiraea simplicifolia lectin I in saliva of patients with breast cancer. Glycoconj. J., 2020, 37(3), 373-394.
[http://dx.doi.org/10.1007/s10719-020-09910-6] [PMID: 32103424]
[121]
Hecht, F.; Pessoa, C.F.; Gentile, L.B.; Rosenthal, D.; Carvalho, D.P.; Fortunato, R.S. The role of oxidative stress on breast cancer development and therapy. Tumour Biol., 2016, 37(4), 4281-4291.
[http://dx.doi.org/10.1007/s13277-016-4873-9] [PMID: 26815507]
[122]
Gornitsky, M.; Velly, A.M.; Mohit, S.; Almajed, M.; Su, H.; Panasci, L.; Schipper, H.M. Altered levels of salivary 8-oxo-7-hydrodeoxyguanosine in breast cancer. JDR Clin. Trans. Res., 2016, 1(2), 171-177.
[http://dx.doi.org/10.1177/2380084416642197] [PMID: 30931794]
[123]
Cheng, F.; Wang, Z.; Huang, Y.; Duan, Y.; Wang, X. Investigation of salivary free amino acid profile for early diagnosis of breast cancer with ultra performance liquid chromatography-mass spectrometry. Clin. Chim. Acta, 2015, 447, 23-31.
[http://dx.doi.org/10.1016/j.cca.2015.05.008] [PMID: 25987308]
[124]
Zhang, L.; Xiao, H.; Karlan, S.; Zhou, H.; Gross, J.; Elashoff, D.; Akin, D.; Yan, X.; Chia, D.; Karlan, B.; Wong, D.T. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS One, 2010, 5(12), e15573.
[http://dx.doi.org/10.1371/journal.pone.0015573] [PMID: 21217834]
[125]
Karni, R.; de Stanchina, E.; Lowe, S.W.; Sinha, R.; Mu, D.; Krainer, A.R. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol., 2007, 14(3), 185-193.
[http://dx.doi.org/10.1038/nsmb1209] [PMID: 17310252]
[126]
Salton, M.; Kasprzak, W.K.; Voss, T.; Shapiro, B.A.; Poulikakos, P.I.; Misteli, T. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing. Nat. Commun., 2015, 6(1), 7103.
[http://dx.doi.org/10.1038/ncomms8103] [PMID: 25971842]
[127]
Bentata, M.; Morgenstern, G.; Nevo, Y.; Kay, G.; Granit Mizrahi, A.; Temper, M.; Maimon, O.; Monas, L.; Basheer, R.; Ben-Hur, A.; Peretz, T.; Salton, M. Splicing factor transcript abundance in saliva as a diagnostic tool for breast cancer. Genes (Basel), 2020, 11(8), 880.
[http://dx.doi.org/10.3390/genes11080880] [PMID: 32756364]
[128]
Takayama, T.; Tsutsui, H.; Shimizu, I.; Toyama, T.; Yoshimoto, N.; Endo, Y.; Inoue, K.; Todoroki, K.; Min, J.Z.; Mizuno, H.; Toyo’oka, T. Diagnostic approach to breast cancer patients based on target metabolomics in saliva by liquid chromatography with tandem mass spectrometry. Clin. Chim. Acta, 2016, 452, 18-26.
[http://dx.doi.org/10.1016/j.cca.2015.10.032] [PMID: 26523874]
[129]
Liu, X.; Yu, H.; Qiao, Y.; Yang, J.; Shu, J.; Zhang, J.; Zhang, Z.; He, J.; Li, Z. Salivary glycopatterns as potential biomarkers for screening of early-stage breast cancer. EBioMedicine, 2018, 28, 70-79.
[http://dx.doi.org/10.1016/j.ebiom.2018.01.026] [PMID: 29402727]
[130]
Tsutsui, H.; Mochizuki, T.; Inoue, K.; Toyama, T.; Yoshimoto, N.; Endo, Y.; Todoroki, K.; Min, J.Z.; Toyo’oka, T. High-throughput LC-MS/MS based simultaneous determination of polyamines including N-acetylated forms in human saliva and the diagnostic approach to breast cancer patients. Anal. Chem., 2013, 85(24), 11835-11842.
[http://dx.doi.org/10.1021/ac402526c] [PMID: 24274257]
[131]
Fekete, J.T. Győrffy, B. ROCplot.org: Validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy using transcriptomic data of 3,104 breast cancer patients. Int. J. Cancer, 2019, 145(11), 3140-3151.
[http://dx.doi.org/10.1002/ijc.32369] [PMID: 31020993]
[132]
Yao, M.; Fu, P. Advances in anti-HER2 therapy in metastatic breast cancer. Chin. Clin. Oncol, 2018, 7(3), 27.
[http://dx.doi.org/10.21037/cco.2018.05.04] [PMID: 30056729]
[133]
Swain, S.M.; Ewer, M.S.; Viale, G.; Delaloge, S.; Ferrero, J-M.; Verrill, M.; Colomer, R.; Vieira, C.; Werner, T.L.; Douthwaite, H.; Bradley, D.; Waldron-Lynch, M.; Kiermaier, A.; Eng-Wong, J.; Dang, C. Pertuzumab, trastuzumab, and standard anthracycline- and taxane-based chemotherapy for the neoadjuvant treatment of patients with HER2-positive localized breast cancer (BERENICE): A phase II, open-label, multicenter, multinational cardiac safety study. Ann. Oncol., 2018, 29(3), 646-653.
[http://dx.doi.org/10.1093/annonc/mdx773] [PMID: 29253081]
[134]
Teoh, S.T.; Ogrodzinski, M.P.; Ross, C.; Hunter, K.W.; Lunt, S.Y. Sialic acid metabolism: A key player in breast cancer metastasis revealed by metabolomics. Front. Oncol., 2018, 8, 174.
[http://dx.doi.org/10.3389/fonc.2018.00174] [PMID: 29892572]
[135]
Elgohary, M.M.; Helmy, M.W.; Abdelfattah, E.A.; Ragab, D.M.; Mortada, S.M.; Fang, J-Y.; Elzoghby, A.O. Targeting sialic acid residues on lung cancer cells by inhalable boronic acid-decorated albumin nanocomposites for combined chemo/herbal therapy. J. Control. Release, 2018, 285, 230-243.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.014] [PMID: 30009892]
[136]
Shah, F.D.; Begum, R.; Vajaria, B.N.; Patel, K.R.; Patel, J.B.; Shukla, S.N.; Patel, P.S. A review on salivary genomics and proteomics biomarkers in oral cancer. Indian J. Clin. Biochem., 2011, 26(4), 326-334.
[http://dx.doi.org/10.1007/s12291-011-0149-8] [PMID: 23024467]
[137]
Pearce, O.M. Läubli, H. Sialic acids in cancer biology and immunity. Glycobiology, 2016, 26(2), 111-128.
[http://dx.doi.org/10.1093/glycob/cwv097] [PMID: 26518624]
[138]
Duffy, M.J.; Evoy, D.; McDermott, E.W. CA 15-3: uses and limitation as a biomarker for breast cancer. Clin. Chim. Acta, 2010, 411(23-24), 1869-1874.
[http://dx.doi.org/10.1016/j.cca.2010.08.039] [PMID: 20816948]
[139]
Minowa, C.; Koitabashi, K. The effect of autogenic training on salivary immunoglobulin A in surgical patients with breast cancer: A randomized pilot trial. Complement. Ther. Clin. Pract., 2014, 20(4), 193-196.
[http://dx.doi.org/10.1016/j.ctcp.2014.07.001] [PMID: 25085757]
[140]
Feng, S.; Huang, S.; Lin, D.; Chen, G.; Xu, Y.; Li, Y.; Huang, Z.; Pan, J.; Chen, R.; Zeng, H. Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors. Int. J. Nanomedicine, 2015, 10, 537-547.
[http://dx.doi.org/10.2147/IJN.S71811] [PMID: 25609959]
[141]
Cavaco, C.; Pereira, J.A.M.; Taunk, K.; Taware, R.; Rapole, S.; Nagarajaram, H.; Câmara, J.S. Screening of salivary volatiles for putative breast cancer discrimination: An exploratory study involving geographically distant populations. Anal. Bioanal. Chem., 2018, 410(18), 4459-4468.
[http://dx.doi.org/10.1007/s00216-018-1103-x] [PMID: 29732495]
[142]
Zhong, L.; Cheng, F.; Lu, X.; Duan, Y.; Wang, X. Untargeted saliva metabonomics study of breast cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Talanta, 2016, 158, 351-360.
[http://dx.doi.org/10.1016/j.talanta.2016.04.049] [PMID: 27343615]
[143]
Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics, 2010, 6(1), 78-95.
[http://dx.doi.org/10.1007/s11306-009-0178-y] [PMID: 20300169]
[144]
Al-Muhtaseb, S.I. Serum and saliva protein levels in females with breast cancer. Oncol. Lett., 2014, 8(6), 2752-2756.
[http://dx.doi.org/10.3892/ol.2014.2535] [PMID: 25364460]
[145]
Kaczor-Urbanowicz, K.E.; Martin Carreras-Presas, C.; Aro, K.; Tu, M.; Garcia-Godoy, F.; Wong, D.T. Saliva diagnostics - Current views and directions. Exp. Biol. Med. (Maywood), 2017, 242(5), 459-472.
[http://dx.doi.org/10.1177/1535370216681550] [PMID: 27903834]
[146]
Streckfus, C.F.; Mayorga-Wark, O.; Arreola, D.; Edwards, C.; Bigler, L.; Dubinsky, W.P. Breast cancer related proteins are present in saliva and are modulated secondary to ductal carcinoma in situ of the breast. Cancer Invest., 2008, 26(2), 159-167.
[http://dx.doi.org/10.1080/07357900701783883] [PMID: 18259946]
[147]
Giri, K.; Mehta, A.; Ambatipudi, K. In search of the altering salivary proteome in metastatic breast and ovarian cancers. FASEB Bioadv., 2019, 1(3), 191-207.
[http://dx.doi.org/10.1096/fba.2018-00029] [PMID: 32123828]
[148]
Salivary Proteome as an In Vivo Model to Study Breast Cancer Progression. In: Proc. SPIE 8723, Sensing Technologies for Global Health, Military Medicine, and Environmental Monitoring III; International Society for Optics and Photonics; 2013 May 29; Baltimore, Maryland, USA
[149]
de Abreu Pereira, D.; Areias, V.R.; Franco, M.F.; Benitez, M.C.M.; do Nascimento, C.M.; de Azevedo, C.M.; Alves, G. Measurement of HER2 in saliva of women in risk of breast cancer. Pathol. Oncol. Res., 2013, 19(3), 509-513.
[http://dx.doi.org/10.1007/s12253-013-9610-8] [PMID: 23479082]
[150]
Arif, S.; Qudsia, S.; Urooj, S.; Chaudry, N.; Arshad, A.; Andleeb, S. Blueprint of quartz crystal microbalance biosensor for early detection of breast cancer through salivary autoantibodies against ATP6AP1. Biosens. Bioelectron., 2015, 65, 62-70.
[http://dx.doi.org/10.1016/j.bios.2014.09.088] [PMID: 25461139]
[151]
Lang, E.V.; Berbaum, K.S.; Lutgendorf, S.K. Large-core breast biopsy: Abnormal salivary cortisol profiles associated with uncertainty of diagnosis. Radiology, 2009, 250(3), 631-637.
[http://dx.doi.org/10.1148/radiol.2503081087] [PMID: 19244038]
[152]
Fernández-de-Las-Peñas, C.; Cantarero-Villanueva, I.; Fernández-Lao, C.; Ambite-Quesada, S.; Díaz-Rodríguez, L.; Rivas-Martínez, I.; del Moral-Avila, R.; Arroyo-Morales, M. Influence of catechol-o-methyltransferase genotype (Val158Met) on endocrine, sympathetic nervous and mucosal immune systems in breast cancer survivors. Breast, 2012, 21(2), 199-203.
[http://dx.doi.org/10.1016/j.breast.2011.09.012] [PMID: 21974969]
[153]
Wan, C. Couture-Lalande, M-È.; Lebel, S.; Bielajew, C. The role of stressful life events on the cortisol reactivity patterns of breast cancer survivors. Psychol. Health, 2017, 32(12), 1485-1501.
[http://dx.doi.org/10.1080/08870446.2017.1346194] [PMID: 28691519]
[154]
Ramirez, J.; Elmofty, M.; Castillo, E.; DeRouen, M.; Shariff-Marco, S.; Allen, L.; Gomez, S.L. Nápoles, A.M.; Márquez-Magaña, L. Evaluation of cortisol and telomere length measurements in ethnically diverse women with breast cancer using culturally sensitive methods. J. Community Genet., 2017, 8(2), 75-86.
[http://dx.doi.org/10.1007/s12687-016-0288-y] [PMID: 28050886]
[155]
Lengacher, C.A.; Reich, R.R.; Paterson, C.L.; Shelton, M.; Shivers, S.; Ramesar, S.; Pleasant, M.L.; Budhrani-Shani, P.; Groer, M.; Post-White, J.; Johnson-Mallard, V.; Kane, B.; Cousin, L.; Moscoso, M.S.; Romershausen, T.A.; Park, J.Y. A large randomized trial: Effects of Mindfulness-Based Stress Reduction (MBSR) for Breast Cancer (BC) survivors on salivary cortisol and IL-6. Biol. Res. Nurs., 2019, 21(1), 39-49.
[http://dx.doi.org/10.1177/1099800418789777] [PMID: 30079756]
[156]
Lambert, M.; Brunet, J.; Couture-Lalande, M.E.; Bielajew, C. Aerobic physical activity and salivary cortisol levels among women with a history of breast cancer. Complement. Ther. Med., 2019, 42, 12-18.
[http://dx.doi.org/10.1016/j.ctim.2018.10.018] [PMID: 30670229]
[157]
Sultan, A.; Pati, A.K.; Chaudhary, V.; Parganiha, A. Circadian rhythm characteristics of salivary alpha-amylase-a potential stress marker, in breast cancer in- and out-patients: A follow-up study. Biol. Rhythm Res., 2018, 49(5), 680-696.
[http://dx.doi.org/10.1080/09291016.2017.1410016]
[158]
Miranda, T.P.S.; Caldeira, S.; de Oliveira, H.F.; Iunes, D.H.; Nogueira, D.A.; Chaves, E.C.L. Intercessory prayer on spiritual distress, spiritual coping, anxiety, depression and salivary amylase in breast cancer patients during radiotherapy: Randomized clinical trial. J. Relig. Health, 2019.
[PMID: 31054062]
[159]
Wang, J.; Liang, Y.; Wang, Y.; Cui, J.; Liu, M.; Du, W.; Xu, Y. Computational prediction of human salivary proteins from blood circulation and application to diagnostic biomarker identification. PLoS One, 2013, 8(11), e80211.
[http://dx.doi.org/10.1371/journal.pone.0080211] [PMID: 24324552]
[160]
Salivary Diagnostics A New Solution for an Old Problem Breast Cancer Detection. In: Proc. SPIE 7306, Optics and Photonics in Global Homeland Security V and Biometric Technology for Human Identification VI;, 2009. May 4
[http://dx.doi.org/10.1117/12.820117]
[161]
Wu, W.; Gong, H.; Liu, M.; Chen, G.; Chen, R. Noninvasive Breast Tumors Detection Based on Saliva Protein Surface Enhanced Raman Spectroscopy and Regularized Multinomial Regression. In: 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI); 2015. Oct 14-16; Shenyang, China

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy