Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Molecular Docking, In vitro Antioxidant, and In vivo Hepatoprotective Activity of Methanolic Extract of Calotropis gigantea leaves in Carbon Tetrachloride-induced Liver Injury in Rats

Author(s): Shripad Bairagi*, Prashant Ghule and Ritu Gilhotra

Volume 18, Issue 2, 2022

Published on: 22 June, 2022

Page: [110 - 126] Pages: 17

DOI: 10.2174/1573408018666220511170125

Price: $65

Abstract

Background: Calotropis gigantea (Asclepiadaceae), a wildly growing plant, has several purported therapeutic characteristics and treats toothache and earache, sprains, anxiety, pain, epilepsy, and mental disorders.

Objective: The purpose of this study was to determine the in vitro antioxidant and in vivo hepatoprotective capabilities of a methanolic extract of Calotropis gigantea leaves (CGL) against carbon tetrachloride-induced liver injury in rats.

Methods: The Sprague Dawley rats (180-250 g) were used for the current study. The hepatoprotective activity of CGL was determined by estimating the different biochemical parameters like SGOT, SGPT, ALP, bilirubin, and in vivo antioxidant parameters like LPO, GSH, SOD, and CAT in different animal groups. We have also investigated the inhibitory potential of some significant chemical constituents of CGL on CYP2E1 through molecular docking.

Results: In vivo hepatoprotective studies indicate that the CGL extract administration caused a significant reduction [at 200 mg, SGOT (110.16 IU/L), SGPT (101.33 IU/L), ALP (186.66 IU/L), bilirubin (1.1 mg/dl), and LPO (6.933 M/mg protein)] and elevation [GSH (14.051 M/mg protein), SOD (257.5%), and CAT (15.975 μM)] in enzyme activity in a dose-dependent manner. Unfortunately, CGL extract has not shown a more potent activity than the standard drug Silymarin. All the phytoconstituents have shown potent binding affinity with CYP2E1 compared to the native ligand. Amongst all the phytoconstituents, Medioresinol was the most active and potent molecule that has developed compelling interactions with CYP2E1.

Conclusion: From free radical scavenging activity, it was concluded that CGL extract exerts more scavenging activity than ascorbic acid, which indicates a high level of polyphenols and tocopherols and also exhibited in vivo hepatoprotective activity. From the molecular docking, it has been concluded that Calotropis gigantea can potentially inhibit CYP2E1 and prevent the generation of free radicals, which will ultimately reduce oxidative stress and associated diseases.

Keywords: Calotropis gigantea, CYP2E1, methanolic extract, SGOT, SGPT, 3CL4, molecular docking, carbon tetrachloride.

Graphical Abstract

[1]
Gowda S, Desai PB, Hull VV, Math AAK, Vernekar SN, Kulkarni SS. A review on laboratory liver function tests. Pan Afr Med J 2009; 3: 17.
[http://dx.doi.org/10.11604/pamj.2009.3.17.125] [PMID: 21532726]
[2]
Lindor KD, Sanynal AJ, Boyer TD, Terault N. Zakim and Boyer’s Hepatology A Textbook Liver Disease. 7th ed. Elsevier Health Seience 2018.
[http://dx.doi.org/10.1016/C2013-0-19055-1]
[3]
Astegiano M, Sapone N, Demarchi B, Rossetti S, Bonardi R, Rizzetto M. Laboratory evaluation of the patient with liver disease. Eur Rev Med Pharmacol Sci 2004; 8(1): 3-9.
[PMID: 15209149]
[4]
Drechsel DA, Patel M. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med 2008; 44(11): 1873-86.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.02.008] [PMID: 18342017]
[5]
Woolley JF, Stanicka J, Cotter TG. Recent advances in reactive oxygen species measurement in biological systems. Trends Biochem Sci 2013; 38(11): 556-65.
[http://dx.doi.org/10.1016/j.tibs.2013.08.009] [PMID: 24120034]
[6]
Schmitt FJ, Renger G, Friedrich T, et al. Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim Biophys Acta 2014; 1837(6): 835-48.
[http://dx.doi.org/10.1016/j.bbabio.2014.02.005] [PMID: 24530357]
[7]
Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006; 440(7086): 944-8.
[http://dx.doi.org/10.1038/nature04634] [PMID: 16612386]
[8]
Schiffer TA, Friederich-Persson M. Mitochondrial reactive oxygen species and kidney hypoxia in the development of diabetic nephropathy. Front Physiol 2017; 8: 211.
[http://dx.doi.org/10.3389/fphys.2017.00211] [PMID: 28443030]
[9]
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13: 757-72.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[10]
Maritim AC, Sanders RA, Watkins JB III. Diabetes, oxidative stress, and antioxidants: A review. J Biochem Mol Toxicol 2003; 17(1): 24-38.
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[11]
Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016; 20163164734
[http://dx.doi.org/10.1155/2016/3164734] [PMID: 26881021]
[12]
Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot (Egypt) 2012; 2012: 1-26.
[http://dx.doi.org/10.1155/2012/217037]
[13]
Masuda Y. Learning toxicology from carbon tetrachloride-induced hepatotoxicity. Yakugaku Zasshi 2006; 126(10): 885-99.
[http://dx.doi.org/10.1248/yakushi.126.885] [PMID: 17016019]
[14]
Boll M, Weber LWD, Becker E, Stampfl A. Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. Z Naturforsch C J Biosci 2001; 56(7-8): 649-59.
[http://dx.doi.org/10.1515/znc-2001-7-826] [PMID: 11531102]
[15]
Unsal V, Cicek M. Sabancilar &#304. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev Environ Health 2020; 36(2): 279-95.
[http://dx.doi.org/10.1515/reveh-2020-0048] [PMID: 32970608]
[16]
Weber LWD, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit Rev Toxicol 2003; 33(2): 105-36.
[http://dx.doi.org/10.1080/713611034] [PMID: 12708612]
[17]
Skupnevskii SV. To the mechanism of seasonal variations in carbon tetrachloride toxicity. Gig Sanit 2019; 98(3): 328-31.
[http://dx.doi.org/10.18821/0016-9900-2019-98-3-328-331]
[18]
Mathew S, Victório CP, Sidhi MS, Baby BT. Biosynthesis of silver nanoparticle using flowers of Calotropis gigantea (L.) W.T. aiton and activity against pathogenic bacteria. Arab J Chem 2020; 13(12): 9139-44.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.038]
[19]
Narayanasamy P, Balasundar P, Senthil S, et al. Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. Int J Biol Macromol 2020; 150: 793-801.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.134] [PMID: 32068059]
[20]
Bairagi SM, Ghule P, Gilhotra R. Pharmacology of natural products: A recent approach on Calotropis gigantea and Calotropis procera. Ars Pharm 2018; 59(1): 37-44.
[21]
Suresh E, Sureshkumar P. Antimicrofouling activity of Calotropis gigantea (L). R. Br. Indian J Geo-Mar Sci 2019; 48(12): 1843-8.
[22]
Ahmad W. Preliminary phytochemical, antimicrobial and photochemical study of Calotropis gigantea leaf extract. Curr Chem Lett 2020; 9(3): 105-12.
[http://dx.doi.org/10.5267/j.ccl.2019.10.001]
[23]
Murti PBR, Seshadri TR. Chemical composition of Calotropis gigantea - Part II. Wax and resin components of the stem bark. Proc Indian Acad Sci Sect A Phys Sci 1945; 21(1): 8-18.
[http://dx.doi.org/10.1007/BF03046937]
[24]
Murti PBR, Seshadri TR. Wax and resin components of Calotropis gigantea - Part III. Root Bark. Proc Indian Acad Sci Sect A Phys Sci 1945; 21(4): 147-54.
[http://dx.doi.org/10.1007/BF03050876]
[25]
Pattnaik PK, Kar D, Chhatoi H, Shahbazi S, Ghosh G, Kuanar A. Chemometric profile & antimicrobial activities of leaf extract of Calotropis procera and Calotropis gigantea. Nat Prod Res 2017; 31(16): 1954-7.
[http://dx.doi.org/10.1080/14786419.2016.1266349] [PMID: 27936921]
[26]
Kiruthiga B, Suresh Kumar P. Disparities and similarities in the phytochemical profiling of white Calotropis gigantea leaves amassed from six coastal locales across Coleroon delta. Plant Arch 2019; 19(2): 3393-403.
[27]
Sethi P. Morphological, microscopical, physico-chemical and antimicrobial investigations on leaves of Calotropis gigantea Linn. Int J Res Ayurveda Pharm 2014; 5(2): 193-7.
[http://dx.doi.org/10.7897/2277-4343.05238]
[28]
Radhakrishnan S, Alarfaj A, Annadurai G. Estimation of phytochemical analysis and in vitro antioxidant activity of Calotropis gigantea extract: Wound healing activity and its biomedical application. Int J Pharm Sci Res 2015; 6(7): 3053-60.
[29]
Amunom I, Dieter LJ, Tamasi V, et al. Cytochromes P450 catalyze the reduction of αβ-unsaturated aldehydes. Chem Res Toxicol 2011; 24(8): 1223-30.
[http://dx.doi.org/10.1021/tx200080b] [PMID: 21766881]
[30]
Guengerich FP. Cytochrome P450 2E1 and its roles in disease. Chem Biol Interact 2020; 322109056
[http://dx.doi.org/10.1016/j.cbi.2020.109056] [PMID: 32198084]
[31]
Linhart K, Bartsch H, Seitz HK. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts. Redox Biol 2014; 3: 56-62.
[http://dx.doi.org/10.1016/j.redox.2014.08.009] [PMID: 25462066]
[32]
Seitz HK, Mueller S. Alcohol and cancer: An overview with special emphasis on the role of acetaldehyde and cytochrome P450 2E1. Adv Exp Med Biol 2015; 815: 59-70.
[http://dx.doi.org/10.1007/978-3-319-09614-8_4] [PMID: 25427901]
[33]
Chen J, Jiang S, Wang J, Renukuntla J, Sirimulla S, Chen J. A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metab Rev 2019; 51(2): 178-95.
[http://dx.doi.org/10.1080/03602532.2019.1632889] [PMID: 31203697]
[34]
Porubsky PR, Battaile KP, Scott EE. Human cytochrome P450 2E1 structures with fatty acid analogs reveal a previously unobserved binding mode. J Biol Chem 2010; 285(29): 22282-90.
[http://dx.doi.org/10.1074/jbc.M110.109017] [PMID: 20463018]
[35]
Kim NH, Lee S, Kang MJ, Jeong HG, Kang W, Jeong TC. Protective effects of diallyl sulfide against thioacetamide-induced toxicity: A possible role of Cytochrome P450 2E1. Biomol Ther (Seoul) 2014; 22(2): 149-54.
[http://dx.doi.org/10.4062/biomolther.2014.016] [PMID: 24753821]
[36]
Chaudhari RN, Khan SL, Chaudhary RS, Jain SP, Siddiqui FA. B-Sitosterol: Isolation from Muntingia calabura Linn. bark extract, structural elucidation and molecular docking studies as potential inhibitor of SARS-CoV-2 Mpro (COVID-19). Asian J Pharm Clin Res 2020; 13(5): 204-9.
[http://dx.doi.org/10.22159/ajpcr.2020.v13i5.37909]
[37]
Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 2011; 48(4): 412-22.
[http://dx.doi.org/10.1007/s13197-011-0251-1] [PMID: 23572765]
[38]
Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 2000; 48(8): 3597-604.
[http://dx.doi.org/10.1021/jf000220w] [PMID: 10956156]
[39]
Rahman MM, Islam MB, Biswas M, Khurshid Alam AHM. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes 2015; 8(1): 621.
[http://dx.doi.org/10.1186/s13104-015-1618-6] [PMID: 26518275]
[40]
Aiyalu R, Ramasamy A. Acute and sub-acute toxicity study of aqueous extracts of Canscora heteroclita (l) Gilg in rodents. Pharmacogn J 2016; 8(4): 399-410.
[http://dx.doi.org/10.5530/pj.2016.4.15]
[41]
Patel SB, Rao NJ, Hingorani LL. Safety assessment of Withania somnifera extract standardized for Withaferin A: Acute and sub-acute toxicity study. J Ayurveda Integr Med 2016; 7(1): 30-7.
[http://dx.doi.org/10.1016/j.jaim.2015.08.001] [PMID: 27297507]
[42]
Ganie SA, Haq E, Hamid A, et al. Carbon tetrachloride induced kidney and lung tissue damages and antioxidant activities of the aqueous rhizome extract of Podophyllum hexandrum. BMC Complement Altern Med 2011; 11(1): 17.
[http://dx.doi.org/10.1186/1472-6882-11-17] [PMID: 21356055]
[43]
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol 2015; 1263: 243-50.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[44]
Diego S. Accelrys Software Inc Discovery Studio Modeling Environment, Release 35. Accelrys Softw. Inc. 2012.
[45]
Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 1992; 114(25): 10024-35.
[http://dx.doi.org/10.1021/ja00051a040]
[46]
Khan SL, Siddiui FA. As immunostimulant, antioxidant and inhibitor of SARS-CoV-2 spike glycoprotein Arch Pharmacol Ther 2020; 2(1)
[http://dx.doi.org/10.33696/Pharmacol.2.014]
[47]
Siddiqui FA, Khan SL, Marathe RP, Nemac NV. Design, synthesis and in silico studies of novel N-(2-aminophenyl)-2,3-diphenylquinoxaline-6-sulfonamide derivatives targeting receptor-binding domain (RBD) of SARS-CoV-2 spike glycoprotein and evaluation as antimicrobial and antimalarial agents. Lett Drug Des Discov 2021; 18(1): 915-31.
[http://dx.doi.org/10.2174/1570180818666210427095203]
[48]
Khan SL, Siddiqui FA, Shaikh MS, Nema NV, Shaikh AA. Discovery of potential inhibitors of the Receptor-Binding Domain (RBD) of pandemic disease-causing SARS-CoV-2 spike glycoprotein from Triphala through molecular docking. Curr Chinese Chem 2022; 2(1): 1-11.
[http://dx.doi.org/10.2174/2666001601666210322121802]
[49]
Khan SL, Sonwane GM, Siddiqui FA, Jain SP, Kale MA, Borkar VS. Discovery of naturally occurring flavonoids as human Cytochrome P450 (CYP3A4) inhibitors with the aid of computational chemistry. Indo Glob J Pharm Sci 2020; 10(04): 58-69.
[http://dx.doi.org/10.35652/IGJPS.2020.10409]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy