Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Therapeutic Potential of Naturally Occurring Lignans as Anticancer Agents

Author(s): Yumin Shi, Jun Wang and Heng Yan*

Volume 22, Issue 17, 2022

Published on: 14 June, 2022

Page: [1393 - 1405] Pages: 13

DOI: 10.2174/1568026622666220511155442

Price: $65

Abstract

Cancer is a long-term and deadly pandemic that affects nearly a third of the world's population. Chemotherapy is currently the most common therapeutic treatment, but it is difficult to achieve satisfactory efficacy due to drug resistance and adverse effects.Natural products are becoming increasingly popular in cancer therapy due to their potent broad-spectrum anticancer potency and slight side effects. Lignans are complex diphenolic compounds comprising a family of secondary metabolites existing widely in plants. Naturally occurring lignans have the potential to act on cancer cells by a range of mechanisms of action and could inhibit the colony formation, arrest the cell cycle in different phases, induce apoptosis, and suppress migration, providing privileged scaffolds for the discovery of novel anticancer agents. In recent five years, a variety of naturally occurring lignans have been isolated and screened for their in vitro and/or in vivo anticancer efficacy, and some of them exhibited promising potential. This review has systematically summarized the resources, anticancer activity, and mechanisms of action of naturally occurring lignans, covering articles published between January 2017 and January 2022.

Keywords: Lignans, Natural products, Antiproliferative activity, Anticancer efficacy, Drug resistance, Mechanisms of action.

Graphical Abstract

[1]
Nikas, I.P.; Themistocleous, S.C.; Paschou, S.A.; Tsamis, K.I.; Ryu, H.S. Serine-arginine protein kinase 1 (SRPK1) as a prognostic factor and potential therapeutic target in cancer: Current evidence and future perspectives. Cells, 2019, 9(1), e19.
[http://dx.doi.org/10.3390/cells9010019 ] [PMID: 31861708]
[2]
Williams, M.J.; Sottoriva, A.; Graham, T.A. Measuring clonal evolution in cancer with genomics. Annu. Rev. Genomics Hum. Genet., 2019, 20(1), 309-329.
[http://dx.doi.org/10.1146/annurev-genom-083117-021712 ] [PMID: 31059289]
[3]
Gupta, S.P.; Sharma, A.; Patil, V.M. Molecular processes exploited as drug targets for cancer chemotherapy. Anticancer. Agents Med. Chem., 2021, 21(13), 1638-1649.
[http://dx.doi.org/10.2174/1871520620999201117111139 ] [PMID: 33208079]
[4]
World Health Organization. Cancer: Key facts, 2022. Available from: www.who.int/news-room/fact-sheets/detail/cancer
[5]
Wu, G.; Yan, Y.; Zhou, Y.; Duan, Y.; Zeng, S.; Wang, X.; Lin, W.; Ou, C.; Zhou, J.; Xu, Z. Sulforaphane: Expected to become a novel antitumor compound. Oncol. Res., 2020, 28(4), 439-446.
[http://dx.doi.org/10.3727/096504020X15828892654385 ] [PMID: 32111265]
[6]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708 ] [PMID: 35020204]
[7]
Dallavalle, S.; Dobričić, V.; Lazzarato, L.; Gazzano, E.; Machuqueiro, M.; Pajeva, I.; Tsakovska, I.; Zidar, N.; Fruttero, R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Updat., 2020, 50, 100682.
[http://dx.doi.org/10.1016/j.drup.2020.100682 ] [PMID: 32087558]
[8]
Kumar, A.; Jaitak, V. Natural products as multidrug resistance modulators in cancer. Eur. J. Med. Chem., 2019, 176, 268-291.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.027 ] [PMID: 31103904]
[9]
Sauter, E.R. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev. Clin. Pharmacol., 2020, 13(3), 265-285.
[http://dx.doi.org/10.1080/17512433.2020.1738218 ] [PMID: 32154753]
[10]
Wang, X.J.; Chen, J.Y.; Fu, L.Q.; Yan, M.J. Recent advances in natural therapeutic approaches for the treatment of cancer. J. Chemother., 2020, 32(2), 53-65.
[http://dx.doi.org/10.1080/1120009X.2019.1707417 ] [PMID: 31928332]
[11]
Xu, W.H.; Zhao, P.; Wang, M.; Liang, Q. Naturally occurring furofuran lignans: Structural diversity and biological activities. Nat. Prod. Res., 2019, 33(9), 1357-1373.
[http://dx.doi.org/10.1080/14786419.2018.1474467 ] [PMID: 29768037]
[12]
Cui, Q.; Du, R.; Liu, M.; Rong, L. Lignans and their derivatives from plants as antivirals. Molecules, 2020, 25(1), e183.
[http://dx.doi.org/10.3390/molecules25010183 ] [PMID: 31906391]
[13]
Mottaghi, S.; Abbaszadeh, H. Natural lignans honokiol and magnolol as potential anticarcinogenic and anticancer agents. A comprehen-sive mechanistic review. Nutr. Cancer, 2022. Epub ahead of print
[http://dx.doi.org/10.1080/01635581.2021.1931364]
[14]
Hazafa, A.; Iqbal, M.O.; Javaid, U.; Tareen, M.B.K.; Amna, D.; Ramzan, A.; Piracha, S.; Naeem, M. Inhibitory effect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: A review. Clin. Transl. Oncol., 2022, 24(3), 432-445.
[http://dx.doi.org/10.1007/s12094-021-02709-3 ] [PMID: 34609675]
[15]
Wang, P.; Solorzano, W.; Diaz, T.; Magyar, C.E.; Henning, S.M.; Vadgama, J.V. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo. Clin. Nutr. Exp., 2017, 13, 1-11.
[http://dx.doi.org/10.1016/j.yclnex.2017.04.001 ] [PMID: 29062885]
[16]
Xu, Y.; Lou, Z.; Lee, S.H. Arctigenin represses TGF-β-induced epithelial mesenchymal transition in human lung cancer cells. Biochem. Biophys. Res. Commun., 2017, 493(2), 934-939.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.117 ] [PMID: 28951214]
[17]
Lee, Y.J.; Oh, J.E.; Lee, S.H. Arctigenin shows preferential cytotoxicity to acidity-tolerant prostate carcinoma PC-3 cells through ROS-mediated mitochondrial damage and the inhibition of PI3K/Akt/mTOR pathway. Biochem. Biophys. Res. Commun., 2018, 505(4), 1244-1250.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.045 ] [PMID: 30333093]
[18]
Al-Sayed, E.; Ke, T.Y.; Hwang, T.L.; Chen, S.R.; Korinek, M.; Chen, S.L.; Cheng, Y.B. Cytotoxic and anti-inflammatory effects of lignans and diterpenes from Cupressus macrocarpa. Bioorg. Med. Chem. Lett., 2020, 30(10), 127127.
[http://dx.doi.org/10.1016/j.bmcl.2020.127127 ] [PMID: 32223924]
[19]
Teixeira, R.S.; Carvalho, P.H.D.; Aguiar, J.A.K.; Medeiros, V.P.; Da Silva Filho, A.A.; Nascimento, J.W.L. Improved method for obtain-ing of arctigenin from Arctium lappa l. and its antiproliferative effect on human hepatocarcinoma HepG2 cells. Curr. Bioact. Compd., 2020, 16(3), 358-362.
[http://dx.doi.org/10.2174/1573407214666181115124223]
[20]
Hao, Q.; Diaz, T.; Verduzco, A.D.R.; Magyar, C.E.; Zhong, J.; Elshimali, Y.; Rettig, M.B.; Henning, S.M.; Vadgama, J.V.; Wang, P. Arcti-genin inhibits prostate tumor growth in high-fat diet fed mice through dual actions on adipose tissue and tumor. Sci. Rep., 2020, 10(1), 1403.
[http://dx.doi.org/10.1038/s41598-020-58354-3 ] [PMID: 31996731]
[21]
Feng, T.; Cao, W.; Shen, W.; Zhang, L.; Gu, X.; Guo, Y.; Tsai, H.I.; Liu, X.; Li, J.; Zhang, J.; Li, S.; Wu, F.; Liu, Y. Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget, 2017, 8(1), 329-344.
[http://dx.doi.org/10.18632/oncotarget.13393 ] [PMID: 27861147]
[22]
Lei, J.P.; Yuan, J.J.; Pi, S.H.; Wang, R.; Tan, R.; Ma, C.Y.; Zhang, T.; Jiang, H.Z. Flavones and lignans from the stems of Wikstroemia scytophylla diels. Pharmacogn. Mag., 2017, 13(51), 488-491.
[http://dx.doi.org/10.4103/pm.pm_275_16 ] [PMID: 28839377]
[23]
Dibwe, D.F.; Sun, S.; Ueda, J.Y.; Balachandran, C.; Matsumoto, K.; Awale, S. Discovery of potential antiausterity agents from the Japa-nese cypress Chamaecyparis obtusa. Bioorg. Med. Chem. Lett., 2017, 27(21), 4898-4903.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.034 ] [PMID: 28947153]
[24]
Chang, H.; Wang, Y.; Gao, X.; Song, Z.; Awale, S.; Han, N.; Liu, Z.; Yin, J. Lignans from the root of Wikstroemia indica and their cyto-toxic activity against PANC-1 human pancreatic cancer cells. Fitoterapia, 2017, 121, 31-37.
[http://dx.doi.org/10.1016/j.fitote.2017.06.012 ] [PMID: 28629933]
[25]
Liu, B.; Du, S.Z.; Kuang, F.; Liu, Y.; Tian, X.J.; Chen, Y.G.; Zhan, R. Two new lignans from Horsfieldia kingii. Nat. Prod. Res., 2019, 33(1), 95-100.
[http://dx.doi.org/10.1080/14786419.2018.1437429 ] [PMID: 29447479]
[26]
Hidayat, A.T.; Nurlelasari, S.; Abdullah, F.F.; Harneti, D.; Maharani, R.; Haikal, K.; Supratman, U.; Azmi, M.N. A new lignan derivative, lasiocarpone, from the stembark of Chisocheton iasiocarpus (meliaceae). Orient. J. Chem., 2018, 34(4), 1956-1960.
[http://dx.doi.org/10.13005/ojc/3404032]
[27]
Li, X.; Lin, Y.Y.; Tan, J.Y.; Liu, K.L.; Shen, X.L.; Hu, Y.J.; Yang, R.Y. Lappaol F, an anticancer agent, inhibits YAP via transcriptional and post-translational regulation. Pharm. Biol., 2021, 59(1), 619-628.
[http://dx.doi.org/10.1080/13880209.2021.1923759 ] [PMID: 34010589]
[28]
Ning, Y.; Fu, Y.L.; Zhang, Q.H.; Zhang, C.; Chen, Y. Inhibition of in vitro and in vivo ovarian cancer cell growth by pinoresinol occurs by way of inducing autophagy, inhibition of cell invasion, loss of mitochondrial membrane potential and inhibition Ras/MEK/ERK sig-nalling pathway. J. BUON, 2019, 24(2), 709-714.
[PMID: 31128027]
[29]
Mohamed, T.A.; Elshamy, A.I.; Abd-ElGawad, A.M.; Hussien, T.A.; El-Toumy, S.A.; Efferth, T.; Hegazy, M.E.F. Cytotoxic and chemo-taxonomic study of isolated metabolites from Centaurea aegyptiaca. J. Chin. Chem. Soc. (Taipei), 2021, 68(1), 159-168.
[http://dx.doi.org/10.1002/jccs.202000156]
[30]
Tanjung, M.; Sri Tjahjandarie, T.; Dewi Saputri, R.; Harsono, A.; Fajar Aldin, M. A new cinnamyl acid derivative from the roots of Willughbeia coriacea wall. Nat. Prod. Sci., 2020, 26(1), 79-82.
[31]
Çalış, İ.; Ayaz, F.; Emerce, E.; Gören, N.; Iqbal Choudhary, M.; Küçükboyacı, N.; Ur Rehman, M. Antiproliferative constituents from the aerial parts of Chrysophthalmum montanum (DC.). Boiss. Phytochem. Lett., 2020, 36, 173-182.
[http://dx.doi.org/10.1016/j.phytol.2020.01.003]
[32]
Zhang, H.; Wang, S.; Liu, Q.; Zheng, H.; Liu, X.; Wang, X.; Shen, T.; Ren, D. Dracomolphin A-E, new lignans from Dracocephalum moldavica. Fitoterapia, 2021, 150, 104841.
[http://dx.doi.org/10.1016/j.fitote.2021.104841 ] [PMID: 33539939]
[33]
Nguyen, K.D.H.; Dang, P.H.; Nguyen, H.X.; Nguyen, M.T.T.; Awale, S.; Nguyen, N.T. Phytochemical and cytotoxic studies on the leaves of Calotropis gigantea. Bioorg. Med. Chem. Lett., 2017, 27(13), 2902-2906.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.087 ] [PMID: 28495081]
[34]
Majdalawieh, A.F.; Massri, M.; Nasrallah, G.K. A comprehensive review on the anti-cancer properties and mechanisms of action of sesamin, a lignan in sesame seeds (Sesamum indicum). Eur. J. Pharm., 2017, 815, 512-521.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.020 ] [PMID: 29032105]
[35]
Rosalina, R.; Weerapreeyakul, N. An insight into sesamolin: Physicochemical properties, pharmacological activities, and future research prospects. Molecules, 2021, 26(19), e5849.
[http://dx.doi.org/10.3390/molecules26195849 ] [PMID: 34641392]
[36]
Dou, H.; Yang, S.; Hu, Y.; Xu, D.; Liu, L.; Li, X. Sesamin induces ER stress-mediated apoptosis and activates autophagy in cervical cancer cells. Life Sci., 2018, 200, 87-93.
[http://dx.doi.org/10.1016/j.lfs.2018.03.003 ] [PMID: 29505783]
[37]
Kuo, T.N.; Lin, C.S.; Li, G.D.; Kuo, C.Y.; Kao, S.H. Sesamin inhibits cervical cancer cell proliferation by promoting p53/PTEN-mediated apoptosis. Int. J. Med. Sci., 2020, 17(15), 2292-2298.
[http://dx.doi.org/10.7150/ijms.48955 ] [PMID: 32922194]
[38]
Chen, J.M.; Chen, P.Y.; Lin, C.C.; Hsieh, M.C.; Lin, J.T. Antimetastatic effects of sesamin on human head and neck squamous cell carci-noma through regulation of matrix metalloproteinase-2. Molecules, 2020, 25(9), e2248.
[http://dx.doi.org/10.3390/molecules25092248 ] [PMID: 32397656]
[39]
Sui, Y.; Li, S.; Zhao, Y.; Liu, Q.; Qiao, Y.; Feng, L.; Li, S. Identification of a natural compound, sesamin, as a novel TRPM8 antagonist with inhibitory effects on prostate adenocarcinoma. Fitoterapia, 2020, 145, 104631.
[http://dx.doi.org/10.1016/j.fitote.2020.104631 ] [PMID: 32439453]
[40]
Deesrisak, K.; Chatupheeraphat, C.; Roytrakul, S.; Anurathapan, U.; Tanyong, D. Autophagy and apoptosis induction by sesamin in MOLT-4 and NB4 leukemia cells. Oncol. Lett., 2021, 21(1), 32.
[PMID: 33262824]
[41]
Kim, E.; Kim, H.J.; Oh, H.N.; Kwak, A.W.; Kim, S.N.; Kang, B.Y.; Cho, S.S.; Shim, J.H.; Yoon, G. Cytotoxic constituents from the roots of Asarum sieboldii in human breast cancer cells. Nat. Prod. Sci., 2019, 25(1), 72-75.
[http://dx.doi.org/10.20307/nps.2019.25.1.72]
[42]
Christina, Y.I.; Nafisah, W.; Atho’Illah, M.F.; Rifa’I, M.; Widodo, N.; Djati, M.S. Anti-breast cancer potential activity of Phaleria macro-carpa (Scheff.) Boerl. leaf extract through in silico studies. J. Pharm. Pharmacogn. Res., 2021, 9(6), 824-845.
[43]
Guetchueng, S.T.; Nahar, L.; Ritchie, K.J.; Ismail, F.M.D.; Evans, A.R.; Sarker, S.D. Zanthoamides G-I: Three new alkamides from Zan-thoxylum zanthoxyloides. Phytochem. Lett., 2018, 26, 125-129.
[http://dx.doi.org/10.1016/j.phytol.2018.05.031]
[44]
Xiong, R.; Jiang, J.; Chen, Y. Cytotoxic lignans from Cryptocarya impressinervia. Nat. Prod. Res., 2021, 35(6), 1019-1023.
[http://dx.doi.org/10.1080/14786419.2019.1611808 ] [PMID: 31238722]
[45]
Omosa, L.K.; Mbogo, G.M.; Korir, E.; Omole, R.; Seo, E.J.; Yenesew, A.; Heydenreich, M.; Midiwo, J.O.; Efferth, T. Cytotoxicity of fagaramide derivative and canthin-6-one from Zanthoxylum (Rutaceae) species against multidrug resistant leukemia cells. Nat. Prod. Res., 2021, 35(4), 579-586.
[http://dx.doi.org/10.1080/14786419.2019.1587424 ] [PMID: 30896260]
[46]
Yang, S.; Li, X.; Dou, H.; Hu, Y.; Che, C.; Xu, D. Sesamin induces A549 cell mitophagy and mitochondrial apoptosis via a reactive oxy-gen species-mediated reduction in mitochondrial membrane potential. Korean J. Physiol. Pharmacol., 2020, 24(3), 223-232.
[http://dx.doi.org/10.4196/kjpp.2020.24.3.223]
[47]
Kaigongi, M.M.; Lukhoba, C.W.; Yaouba, S.; Makunga, N.P.; Githiomi, J.; Yenesew, A. In vitro antimicrobial and antiproliferative activi-ties of the root bark extract and isolated chemical constituents of Zanthoxylum paracanthum kokwaro (Rutaceae). Plants, 2020, 9(7), e920.
[http://dx.doi.org/10.3390/plants9070920 ] [PMID: 32708115]
[48]
Wen, L.; Mao, W.; Xu, L.; Cai, B.; Gu, L. Sesamin exerts anti-tumor activity in esophageal squamous cell carcinoma via inhibition of TRIM44 and NF-κB signaling. Chem. Biol. Drug Des., 2022, 99(1), 118-125.
[http://dx.doi.org/10.1111/cbdd.13937 ] [PMID: 34411455]
[49]
Chen, Y.; Li, H.; Zhang, W.; Qi, W.; Lu, C.; Huang, H.; Yang, Z.; Liu, B.; Zhang, L. Sesamin suppresses NSCLC cell proliferation and induces apoptosis via Akt/p53 pathway. Toxicol. Appl. Pharmacol., 2020, 387, 114848.
[http://dx.doi.org/10.1016/j.taap.2019.114848 ] [PMID: 31809756]
[50]
Wang, X.; Qiao, J.; Zou, C.; Zhao, Y.; Huang, Y. Sesamin induces cell cycle arrest and apoptosis through p38/C-Jun N-terminal kinase mitogen-activated protein kinase pathways in human colorectal cancer cells. Anticancer Drugs, 2021, 32(3), 248-256.
[http://dx.doi.org/10.1097/CAD.0000000000001031 ] [PMID: 33534411]
[51]
Tan, Y.P.; Savchenko, A.I.; Broit, N.; Boyle, G.M.; Parsons, P.G.; Williams, C.M. Furofuran lignans from the Simpson Desert species Eremophila macdonnellii. Fitoterapia, 2018, 126, 93-97.
[http://dx.doi.org/10.1016/j.fitote.2017.06.004 ] [PMID: 28596028]
[52]
Shehla, N.; Li, B.; Zhao, J.; Cao, L.; Jian, Y.; Khan, I.A.; Liao, D.F.; Rahman, A.U.; Choudhary, M.I.; Wang, W. New dibenzocycloocta-diene lignan from stems of Kadsura heteroclita. Nat. Prod. Res., 2022, 36(1), 8-17.
[http://dx.doi.org/10.1080/14786419.2020.1758378 ] [PMID: 32525748]
[53]
Huyen, C.T.T.; Luyen, B.T.T.; Khan, G.J.; Oanh, H.V.; Hung, T.M.; Li, H.J.; Li, P. Chemical constituents from Cimicifuga dahurica and their anti-proliferative effects on MCF-7 breast cancer cells. Molecules, 2018, 23(5), e1083.
[http://dx.doi.org/10.3390/molecules23051083 ] [PMID: 29734650]
[54]
Liu, T.; Liang, Q.; Zhang, X.M.; Huang, S.Y.; Xu, W.H. A new furofuran lignan from Piper terminaliflorum Tseng. Nat. Prod. Res., 2018, 32(3), 335-340.
[http://dx.doi.org/10.1080/14786419.2017.1350671 ] [PMID: 28691860]
[55]
Atabaki, V.; Pourahmad, J.; Hosseinabadi, T. Phytochemical compounds from Jurinea macrocephala subsp. elbursensis and their cyto-toxicity evaluation. S. Afr. J. Bot., 2021, 137, 399-405.
[http://dx.doi.org/10.1016/j.sajb.2020.11.011]
[56]
Pan, L.L.; Wang, X.L.; Luo, X.L.; Liu, S.Y.; Xu, P.; Hu, J.F.; Liu, X.H. Boehmenan, a lignan from the Chinese medicinal plant Clematis armandii, inhibits A431 cell growth via blocking p70S6/S6 kinase pathway. Integr. Cancer Ther., 2017, 16(3), 351-359.
[http://dx.doi.org/10.1177/1534735416669803 ] [PMID: 27698262]
[57]
Tong, C.; Chen, R.H.; Liu, D.C.; Zeng, D.S.; Liu, H. Chemical constituents from the fruits of Xanthium strumarium and their antitumor effects. Nat. Prod. Commun., 2020, 15(8), 1-5.
[http://dx.doi.org/10.1177/1934578X20945541]
[58]
Shu, J.; Liang, F.; Zhu, G.; Liu, X.; Yu, J.; Huang, H. Lignan glycosides from the Rhizomes of Smilax trinervula and their biological ac-tivities. Phytochem. Lett., 2017, 20, 1-8.
[http://dx.doi.org/10.1016/j.phytol.2017.03.002]
[59]
Al-Taweel, A.M.; Perveen, S.; Fawzy, G.A.; Rehman, A.U.; Khan, A.; Mehmood, R.; Fadda, L. Mohamed evaluation of antiulcer and cytotoxic potential of the leaf, flower, and fruit extracts of Calotropis procera and isolation of a new lignan glycoside. Evid. Based Compl. Alt. Med., 2017, 2017, e8086791.
[60]
Lee, T.K.; Lee, D.; Yu, J.S.; Jo, M.S.; Baek, S.C.; Shin, M.S.; Ko, Y.J.; Kang, K.S.; Kim, K.H. Biological evaluation of a new lignan from the roots of Rice (Oryza sativa). Chem. Biodivers., 2018, 15(11), e1800333.
[http://dx.doi.org/10.1002/cbdv.201800333 ] [PMID: 30207632]
[61]
Lin, K.H.; Shibu, M.A.; Kuo, Y.H.; Chen, Y.C.; Hsu, H.H.; Bau, D.T.; Chen, M.C.; Tu, C.C.; Viswanadha, V.P.; Huang, C.Y. Taiwanin C selectively inhibits arecoline and 4-NQO-induced oral cancer cell proliferation via ERK1/2 inactivation. Environ. Toxicol., 2017, 32(1), 62-69.
[http://dx.doi.org/10.1002/tox.22212 ] [PMID: 26537528]
[62]
Truong, L.H.; Cuong, N.H.; Dang, T.H.; Hanh, N.T.M.; Thi, V.L.; Tran Thi Hong, H.; Nguyen, H.D.; Nguyen Xuan, C.; Nguyen Hoai, N.; Minh, C.V. Cytotoxic constituents from Isotrema tadungense. J. Asian Nat. Prod. Res., 2021, 23(5), 491-497.
[http://dx.doi.org/10.1080/10286020.2020.1739661 ] [PMID: 32212861]
[63]
Xu, W.H.; Su, X.M.; Zhang, X.M.; Qi, J.; Wang, D.; Wang, M.; Liang, Q. Pleiocarpumlignan A, a new dineolignan from Piper pleio-carpum Chang ex Tseng. Nat. Prod. Res., 2020, 34(19), 2809-2815.
[http://dx.doi.org/10.1080/14786419.2019.1593167 ] [PMID: 30964332]
[64]
Han, Y.H.; Mun, J.G.; Jeon, H.D.; Park, J.; Kee, J.Y.; Hong, S.H. Gomisin A ameliorates metastatic melanoma by inhibiting AMPK and ERK/JNK-mediated cell survival and metastatic phenotypes. Phytomedicine, 2020, 68, 153147.
[http://dx.doi.org/10.1016/j.phymed.2019.153147 ] [PMID: 32028184]
[65]
Kee, J.Y.; Han, Y.H.; Mun, J.G.; Park, S.H.; Jeon, H.D.; Hong, S.H. Gomisin A suppresses colorectal lung metastasis by inducing AMPK/p38-mediated apoptosis and decreasing metastatic abilities of colorectal cancer cells. Front. Pharmacol., 2018, 9, 986.
[http://dx.doi.org/10.3389/fphar.2018.00986 ] [PMID: 30210348]
[66]
Choi, S.K.; Lee, Y.G.; Wang, R.B.; Kim, H.G.; Yoon, D.; Lee, D.Y.; Kim, Y.J.; Baek, N.I. Dibenzocyclooctadiene lignans from the fruits of Schisandra chinensis and their cytotoxicity on human cancer cell lines. Appl Biol Chem, 2020, 63(1), e39.
[http://dx.doi.org/10.1186/s13765-020-00524-y]
[67]
Liu, G.Z.; Liu, Y.; Sun, Y.P.; Li, X.M.; Xu, Z.P.; Jiang, P.; Rong, X.H.; Yang, B.Y.; Kuang, H.X. Lignans and terpenoids from the leaves of Schisandra chinensis. Chem. Biodivers., 2020, 17(4), e2000035.
[http://dx.doi.org/10.1002/cbdv.202000035 ] [PMID: 32141193]
[68]
Ying, Y.M.; Yu, H.F.; Rao, G.W.; Wang, J.W.; Shan, W.G.; Zhan, Z.J. Dibenzocyclooctadiene lignans from the stems of Schisandra sphaerandra. Nat. Prod. Res., 2022, 36(1), 287-294.
[http://dx.doi.org/10.1080/14786419.2020.1779268 ] [PMID: 32538675]
[69]
Li, R.; Yang, W. Gomisin J inhibits the glioma progression by inducing apoptosis and reducing HKII-regulated glycolysis. Biochem. Biophys. Res. Commun., 2020, 529(1), 15-22.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.109 ] [PMID: 32560813]
[70]
Jeong, M.; Kim, H.M.; Kim, H.J.; Choi, J.H.; Jang, D.S. Kudsuphilactone B, a nortriterpenoid isolated from Schisandra chinensis fruit, induces caspase-dependent apoptosis in human ovarian cancer A2780 cells. Arch. Pharm. Res., 2017, 40(4), 500-508.
[http://dx.doi.org/10.1007/s12272-017-0902-5 ] [PMID: 28229391]
[71]
Ko, Y.H.; Jeong, M.; Jang, D.S.; Choi, J.H. Gomisin l1, a lignan isolated from Schisandra berries, induces apoptosis by regulating nadph oxidase in human ovarian cancer cells. Life (Basel), 2021, 11(8), e858.
[http://dx.doi.org/10.3390/life11080858 ] [PMID: 34440602]
[72]
Shi, H.; Tang, H.; Ai, W.; Zeng, Q.; Yang, H.; Zhu, F.; Wei, Y.; Pu, P.; He, Q. Schisandrin B antagonizes cardiotoxicity induced by pi-rarubicin by inhibiting mitochondrial permeability transition pore (mPTP) opening and decreasing cardiomyocyte apoptosis. Front. Pharmacol., 2021, 12, e733805.
[http://dx.doi.org/10.3389/fphar.2021.733805]
[73]
Wang, X.; Liao, X.; Zhang, Y.; Wei, L.; Pang, Y. Schisandrin B regulates MC3T3-E1 subclone 14 cells proliferation and differentiation through BMP2-SMADs-RUNX2-SP7 signaling axis. Sci. Rep., 2020, 10(1), 14476.
[http://dx.doi.org/10.1038/s41598-020-71564-z ] [PMID: 32879393]
[74]
Dai, X.; Yin, C.; Guo, G.; Zhang, Y.; Zhao, C.; Qian, J.; Wang, O.; Zhang, X.; Liang, G. Schisandrin B exhibits potent anticancer activity in triple negative breast cancer by inhibiting STAT3. Toxicol. Appl. Pharmacol., 2018, 358, 110-119.
[http://dx.doi.org/10.1016/j.taap.2018.09.005 ] [PMID: 30195018]
[75]
Li, S.; Wang, H.; Ma, R.; Wang, L. Schisandrin B inhibits epithelial-mesenchymal transition and stemness of large-cell lung cancer cells and tumorigenesis in xenografts via inhibiting the NF-κB and p38 MAPK signaling pathways. Oncol. Rep., 2021, 45(6), e115.
[http://dx.doi.org/10.3892/or.2021.8066]
[76]
Yang, Y.; Liu, Y.; Daniyal, M.; Yu, H.; Xie, Q.; Li, B.; Jian, Y.; Man, R.; Wang, S.; Zhou, X.; Liu, B.; Wang, W. New Lignans from roots of Kadsura coccinea. Fitoterapia, 2019, 139, 104368.
[http://dx.doi.org/10.1016/j.fitote.2019.104368 ] [PMID: 31629046]
[77]
Huang, S.; Liu, Y.; Li, Y.; Fan, H.; Huang, W.; Deng, C.; Song, X.; Zhang, D.; Wang, W. Dibenzocyclooctadiene lignans from the root bark of Schisandra sphenanthera. Phytochem. Lett., 2021, 45, 137-141.
[http://dx.doi.org/10.1016/j.phytol.2021.08.015]
[78]
Mai, N.T.; Doan, V.V.; Lan, H.T.T.; Anh, B.T.M.; Hoang, N.H.; Tai, B.H.; Nhiem, N.X.; Yen, P.H.; Park, S.J.; Seo, Y.; Namkung, W.; Kim, S.H.; Kiem, P.V. Chemical constituents from Schisandra sphenanthera and their cytotoxic activity. Nat. Prod. Res., 2021, 35(20), 3360-3369.
[http://dx.doi.org/10.1080/14786419.2019.1700247 ] [PMID: 31829042]
[79]
Lee, K.; Ahn, J.H.; Lee, K.T.; Jang, D.S.; Choi, J.H. Deoxyschizandrin, isolated from schisandra berries, induces cell cycle arrest in ovar-ian cancer cells and inhibits the protumoural activation of tumour-associated macrophages. Nutrients, 2018, 10(1), e91.
[http://dx.doi.org/10.3390/nu10010091 ] [PMID: 29342940]
[80]
Feng, Z.C.; Wang, S.; Li, J.; Wang, J.S. New neo-lignan from Acanthopanax senticosus and the cytotoxic effects on human cancer cell lines. Nat. Prod. Commun., 2020, 15(7), 1-4.
[http://dx.doi.org/10.1177/1934578X20941299]
[81]
Zhu, Y.; Huang, R.Z.; Wang, C.G.; Ouyang, X.L.; Jing, X.T.; Liang, D.; Wang, H.S. New inhibitors of matrix metalloproteinases 9 (MMP-9): Lignans from Selaginella moellendorffii. Fitoterapia, 2018, 130, 281-289.
[http://dx.doi.org/10.1016/j.fitote.2018.09.008 ] [PMID: 30240842]
[82]
Cao, X.; Xing, X.; Wei, H.; Lu, W.; Wei, W. Extraction method and anti-cancer evaluation of two lignans from Phyllanthus niruri L. Med. Chem. Res., 2018, 27(8), 2034-2041.
[http://dx.doi.org/10.1007/s00044-018-2212-y]
[83]
Lee, D.; Lee, Y.H.; Lee, K.H.; Lee, B.S.; Alishir, A.; Ko, Y.J.; Kang, K.S.; Kim, K.H. Aviculin isolated from lespedeza cuneata induce apoptosis in breast cancer cells through mitochondria-mediated caspase activation pathway. Molecules, 2020, 25(7), e1708.
[http://dx.doi.org/10.3390/molecules25071708 ] [PMID: 32276430]
[84]
Shen, W.; Zhao, Y.; Chen, H.; Zhang, T.; Wu, S.; Liu, P. M3, a natural lignan xyloside, exhibits potent anticancer activity in HCT116 cells. Oncol. Lett., 2019, 17(2), 2117-2122.
[PMID: 30675278]
[85]
Sarkar, N.; Kacker, P.; Amin, H.; Narad, P.; Goswami, A.; Ghosal, S. Tetrahydronaphthalene lignan glucoside from Crataeva nurvala: Apoptotic induction, antimigration, and in silico analysis. Pharmacogn. Mag., 2019, 15(64), S307-S312.
[http://dx.doi.org/10.4103/pm.pm_624_18]
[86]
Kim, J.H.; Lee, J.; Jeong, H.; Bang, M.S.; Jeong, J.H.; Chang, M. Nordihydroguaiaretic acid as a novel substrate and inhibitor of catechol O-methyltransferase modulates 4-hydroxyestradiol-induced cyto-and genotoxicity in MCF-7 cells. Molecules, 2021, 26(7), e2060.
[http://dx.doi.org/10.3390/molecules26072060 ] [PMID: 33916785]
[87]
Baek, J.; Lee, T.K.; Song, J.H.; Choi, E.; Ko, H.J.; Lee, S.; Choi, S.U.; Lee, S.; Yoo, S.W.; Kim, S.H.; Kim, K.H. Lignan glycosides and flavonoid glycosides from the aerial portion of Lespedeza cuneata and their biological evaluations. Molecules, 2018, 23(8), e1920.
[http://dx.doi.org/10.3390/molecules23081920 ] [PMID: 30071639]
[88]
Le, T.V.T.; Nguyen, P.H.; Choi, H.S.; Yang, J.L.; Kang, K.W.; Ahn, S.G.; Oh, W.K. Diarylbutane-type lignans from Myristica fragrans (Nutmeg) show the cytotoxicity against breast cancer cells through activation of AMP-activated protein kinase. Nat. Prod. Sci., 2017, 23(1), 21-28.
[http://dx.doi.org/10.20307/nps.2017.23.1.21]
[89]
Dong, G.Z.; Jeong, J.H.; Lee, Y.I.; Han, Y.E.; Shin, J.S.; Kim, Y.J.; Jeon, R.; Kim, K.; Park, T.J.; Kim, K.I.; Ryu, J-H. Il; Ryu, J.H. A lignan induces lysosomal dependent degradation of FoxM1 protein to suppress β-catenin nuclear translocation. Sci. Rep., 2017, 7(1), e45951.
[http://dx.doi.org/10.1038/srep45951]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy