Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Potential of Phytomolecules in Alliance with Nanotechnology to Surmount the Limitations of Current Treatment Options in the Management of Osteoarthritis

Author(s): Atul Mourya, Shubhra, Neha Bajwa, Ashish Baldi, Kamalinder K Singh, Manisha Pandey, Shashi Bala Singh and Jitender Madan*

Volume 23, Issue 9, 2023

Published on: 06 October, 2022

Page: [992 - 1032] Pages: 41

DOI: 10.2174/1389557522666220511140527

Price: $65

Abstract

Osteoarthritis (OA), a chronic degenerative musculoskeletal disorder, progressively increases with age. It is characterized by progressive loss of hyaline cartilage followed by subchondral bone remodeling and inflammaging. To counteract the inflammation, synovium releases various inflammatory and immune mediators along with metabolic intermediates, which further worsens the condition. However, even after recognizing the key molecular and cellular factors involved in the progression of OA, only disease-modifying therapies are available such as oral and topical NSAIDs, opioids, SNRIs, etc., providing symptomatic treatment and functional improvement instead of suppressing OA progression. Long-term use of these therapies leads to various life-threatening complications. Interestingly, mother nature has numerous medicinal plants containing active phytochemicals that can act on various targets involved in the development and progression of OA. Phytochemicals have been used for millennia in traditional medicine and are promising alternatives to conventional drugs with a lower rate of adverse events and efficiency frequently comparable to synthetic molecules. Nevertheless, their mechanism of action in many cases is elusive and uncertain. Even though many in vitro and in vivo studies show promising results, clinical evidence is scarce. Studies suggest that the presence of carbonyl group in the 2nd position, chloro in the 6th and an electron- withdrawing group at the 7th position exhibit enhanced COX-2 inhibition activity in OA. On the other hand, the presence of a double bond at the C2-C3 position of C ring in flavonoids plays an important role in Nrf2 activation. Moreover, with the advancements in the understanding of OA progression, SARs (structure-activity relationships) of phytochemicals and integration with nanotechnology have provided great opportunities for developing phytopharmaceuticals. Therefore, in the present review, we have discussed various promising phytomolecules, SAR as well as their nano-based delivery systems for the treatment of OA to motivate the future investigation of phytochemical-based drug therapy.

Keywords: Phytochemicals, osteoarthritis, phytopharmaceuticals, natural products, structure-activity relationship, topical delivery, antioxidants, anti-inflammatory

Graphical Abstract

[1]
Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, M.B.; Goldring, S.R.; Jones, G.; Teichtahl, A.J.; Pelletier, J.P. Osteoarthritis. Nat. Rev. Dis. Primers, 2016, 2(1), 16072.
[http://dx.doi.org/10.1038/nrdp.2016.72] [PMID: 27734845]
[2]
Kloppenburg, M.; Berenbaum, F. Osteoarthritis year in review 2019: Epidemiology and therapy. Osteoarthritis Cartilage, 2020, 28(3), 242-248.
[http://dx.doi.org/10.1016/j.joca.2020.01.002] [PMID: 31945457]
[3]
Maudens, P.; Jordan, O.; Allémann, E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discov. Today, 2018, 23(10), 1761-1775.
[http://dx.doi.org/10.1016/j.drudis.2018.05.023] [PMID: 29792929]
[4]
Buckwalter, J.A.; Martin, J.A. Osteoarthritis. Adv. Drug Deliv. Rev., 2006, 58(2), 150-167.
[http://dx.doi.org/10.1016/j.addr.2006.01.006] [PMID: 16530881]
[5]
Dieppe, P.A.; Lohmander, L.S. Pathogenesis and management of pain in osteoarthritis. Lancet, 2005, 365(9463), 965-973.
[http://dx.doi.org/10.1016/S0140-6736(05)71086-2] [PMID: 15766999]
[6]
Ling, S.M.; Patel, D.D.; Garnero, P.; Zhan, M.; Vaduganathan, M.; Muller, D.; Taub, D.; Bathon, J.M.; Hochberg, M.; Abernethy, D.R.; Metter, E.J.; Ferrucci, L. Serum protein signatures detect early radiographic osteoarthritis. Osteoarthritis Cartilage, 2009, 17(1), 43-48.
[http://dx.doi.org/10.1016/j.joca.2008.05.004] [PMID: 18571442]
[7]
Mohammadabadi, M.; Masoudzadeh, S.H.; Khezri, A.; Kalashnyk, O.; Stavetska, R.V.; Klopenko, N.I.; Oleshko, V.P.; Tkachenko, S.V. Fennel (Foeniculum vulgare) seed powder increases delta-like non-canonical notch ligand 1 gene expression in testis, liver, and humeral muscle tissues of growing lambs. Heliyon, 2021, 7(12), e08542.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08542] [PMID: 34917815]
[8]
Hajalizadeh, Z.; Dayani, O.; Khezri, A.; Tahmasbi, R.; Mohammadabadi, M.R. The effect of adding fennel (Foeniculum vulgare) seed powder to the diet of fattening lambs on performance, carcass characteristics and liver enzymes. Small Rumin. Res., 2019, 175, 72-77.
[http://dx.doi.org/10.1016/j.smallrumres.2019.04.011]
[9]
Shahsavari, M.; Mohammadabadi, M.; Khezri, A.; Asadi Fozi, M.; Babenko, O.; Kalashnyk, O.; Oleshko, V.; Tkachenko, S. Correlation between insulin-like growth factor 1 gene expression and fennel (Foeniculum vulgare) seed powder consumption in muscle of sheep. Anim. Biotechnol., 2021, 16, 1-11.
[http://dx.doi.org/10.1080/10495398.2021.2000997] [PMID: 34783639]
[10]
Amirteymoori, E.; Khezri, A.; Dayani, O.; Mohammadabadi, M.; Khorasani, S.; Mousaie, A.; Kazemi-Bonchenari, M. Effects of linseed processing method (ground versus extruded) and dietary crude protein content on performance, digestibility, ruminal fermentation pattern, and rumen protozoa population in growing lambs. Ital. J. Anim. Sci., 2021, 20(1), 1506-1517.
[http://dx.doi.org/10.1080/1828051X.2021.1984324]
[11]
Masoudzadeh, S.H.; Mohammadabadi, M.; Khezri, A.; Stavetska, R.V.; Oleshko, V.P.; Babenko, O.I.; Yemets, Z.; Kalashnik, O.M. Effects of diets with different levels of fennel (Foeniculum vulgare) seed powder on DLK1 gene expression in brain, adipose tissue, femur muscle and rumen of kermani lambs. Small Rumin. Res., 2020, 193, 106276.
[http://dx.doi.org/10.1016/j.smallrumres.2020.106276]
[12]
Vahabzadeh, M.; Chamani, M.; Dayani, O.; Sadeghi, A.A.; Mohammadabadi, M.R. Effect of Origanum majorana leaf (sweet Marjoram) feeding on Lamb’s growth, carcass characteristics and blood biochemical parameters. Small Rumin. Res., 2020, 192, 192.
[http://dx.doi.org/10.1016/j.smallrumres.2020.106233]
[13]
Fu, K.; Robbins, S.R.; McDougall, J.J. Osteoarthritis: The genesis of pain. Rheumatology (Oxford), 2018, 57(Suppl. 4), iv43-iv50.
[http://dx.doi.org/10.1093/rheumatology/kex419] [PMID: 29267879]
[14]
Burr, D.B.; Gallant, M.A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol., 2012, 8(11), 665-673.
[http://dx.doi.org/10.1038/nrrheum.2012.130] [PMID: 22868925]
[15]
Michael, J.W-P.; Schlüter-Brust, K.U.; Eysel, P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Dtsch. Arztebl. Int., 2010, 107(9), 152-162.
[http://dx.doi.org/10.3238/arztebl.2010.0152] [PMID: 20305774]
[16]
Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health, 2009, 1(6), 461-468.
[http://dx.doi.org/10.1177/1941738109350438] [PMID: 23015907]
[17]
Jiang, Y.; Tuan, R.S. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat. Rev. Rheumatol., 2015, 11(4), 206-212.
[http://dx.doi.org/10.1038/nrrheum.2014.200] [PMID: 25536487]
[18]
Nelson, F.; Billinghurst, R.C.; Pidoux, I.; Reiner, A.; Langworthy, M.; McDermott, M.; Malogne, T.; Sitler, D.F.; Kilambi, N.R.; Lenczner, E.; Poole, A.R. Early post-traumatic osteoarthritis-like changes in human articular cartilage following rupture of the anterior cruciate ligament. Osteoarthritis Cartilage, 2006, 14(2), 114-119.
[http://dx.doi.org/10.1016/j.joca.2005.08.005] [PMID: 16242972]
[19]
Wojdasiewicz, P. Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm., 2014, 2014, 561459.
[http://dx.doi.org/10.1155/2014/561459] [PMID: 24876674]
[20]
Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol., 2011, 7(1), 33-42.
[http://dx.doi.org/10.1038/nrrheum.2010.196] [PMID: 21119608]
[21]
Fan, Z.; Bau, B.; Yang, H.; Soeder, S.; Aigner, T. Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic stimulation with interleukin-1β. Arthritis Rheum., 2005, 52(1), 136-143.
[http://dx.doi.org/10.1002/art.20725] [PMID: 15641077]
[22]
Pérez-García, S.; Gutiérrez-Cañas, I.; Seoane, I.V.; Fernández, J.; Mellado, M.; Leceta, J.; Tío, L.; Villanueva-Romero, R.; Juarranz, Y.; Gomariz, R.P. Healthy and osteoarthritic synovial fibroblasts produce a disintegrin and metalloproteinase with thrombospondin Motifs 4, 5, 7, and 12: Induction by IL-1β and fibronectin and contribution to cartilage damage. Am. J. Pathol., 2016, 186(9), 2449-2461.
[http://dx.doi.org/10.1016/j.ajpath.2016.05.017] [PMID: 27449198]
[23]
Vincenti, M.P.; Brinckerhoff, C.E. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: Integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res., 2002, 4(3), 157-164.
[http://dx.doi.org/10.1186/ar401] [PMID: 12010565]
[24]
Séguin, C.A.; Bernier, S.M. TNFalpha suppresses link protein and type II collagen expression in chondrocytes: Role of MEK1/2 and NF-kappaB signaling pathways. J. Cell. Physiol., 2003, 197(3), 356-369.
[http://dx.doi.org/10.1002/jcp.10371] [PMID: 14566965]
[25]
Davidson, R.K.; Waters, J.G.; Kevorkian, L.; Darrah, C.; Cooper, A.; Donell, S.T.; Clark, I.M. Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage. Arthritis Res. Ther., 2006, 8(4), R124.
[http://dx.doi.org/10.1186/ar2013] [PMID: 16859525]
[26]
Nagase, H. Substrate Specificity of MMPs.Matrix Metalloproteinase Inhibitors in Cancer Therapy; Clendeninn, N.J.; Appelt, K., Eds.; Humana Press: Totowa, NJ, 2003, pp. 39-66.
[27]
Clockaerts, S.; Bastiaansen-Jenniskens, Y.M.; Runhaar, J.; Van Osch, G.J.V.M.; Van Offel, J.F.; Verhaar, J.A.N.; De Clerck, L.S.; Somville, J. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: A narrative review. Osteoarthritis Cartilage, 2010, 18(7), 876-882.
[http://dx.doi.org/10.1016/j.joca.2010.03.014] [PMID: 20417297]
[28]
Zeng, N.; Yan, Z.P.; Chen, X.Y.; Ni, G.X. Infrapatellar fat pad and knee osteoarthritis. Aging Dis., 2020, 11(5), 1317-1328.
[http://dx.doi.org/10.14336/AD.2019.1116] [PMID: 33014539]
[29]
Vane, J.R.; Botting, R.M. Anti-inflammatory drugs and their mechanism of action. Inflamm. Res., 1998, 47(0)(Suppl. 2), S78-S87.
[http://dx.doi.org/10.1007/s000110050284] [PMID: 9831328]
[30]
Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. J. Lipid Res., 2009, 50(Suppl.), S29-S34.
[http://dx.doi.org/10.1194/jlr.R800042-JLR200] [PMID: 18952571]
[31]
Ramey, D.R.; Watson, D.J.; Yu, C.; Bolognese, J.A.; Curtis, S.P.; Reicin, A.S. The incidence of upper gastrointestinal adverse events in clinical trials of etoricoxib vs. non-selective NSAIDs: An updated combined analysis. Curr. Med. Res. Opin., 2005, 21(5), 715-722.
[http://dx.doi.org/10.1185/030079905X43686] [PMID: 15974563]
[32]
Bakhriansyah, M.; Meyboom, R.H.B.; Souverein, P.C.; de Boer, A.; Klungel, O.H. Cyclo-oxygenase selectivity and chemical groups of nonsteroidal anti-inflammatory drugs and the frequency of reporting hypersensitivity reactions: A case/noncase study in VigiBase. Fundam. Clin. Pharmacol., 2019, 33(5), 589-600.
[http://dx.doi.org/10.1111/fcp.12463] [PMID: 30860620]
[33]
Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): Cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci., 2008, 11(2), 81s-110s.
[http://dx.doi.org/10.18433/J3T886] [PMID: 19203472]
[34]
Zhang, W.; Moskowitz, R.W.; Nuki, G.; Abramson, S.; Altman, R.D.; Arden, N.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Doherty, M.; Dougados, M.; Hochberg, M.; Hunter, D.J.; Kwoh, K.; Lohmander, L.S.; Tugwell, P. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage, 2008, 16(2), 137-162.
[http://dx.doi.org/10.1016/j.joca.2007.12.013] [PMID: 18279766]
[35]
Beaulieu, A.D.; Peloso, P.M.; Haraoui, B.; Bensen, W.; Thomson, G.; Wade, J.; Quigley, P.; Eisenhoffer, J.; Harsanyi, Z.; Darke, A.C. Once-daily, controlled-release tramadol and sustained-release diclofenac relieve chronic pain due to osteoarthritis: A randomized controlled trial. Pain Res. Manag., 2008, 13(2), 103-110.
[http://dx.doi.org/10.1155/2008/903784] [PMID: 18443672]
[36]
DeLemos, B.P.; Xiang, J.; Benson, C.; Gana, T.J.; Pascual, M.L.G.; Rosanna, R.; Fleming, B. Tramadol hydrochloride extended-release once-daily in the treatment of osteoarthritis of the knee and/or hip: A double-blind, randomized, dose-ranging trial. Am. J. Ther., 2011, 18(3), 216-226.
[http://dx.doi.org/10.1097/MJT.0b013e3181cec307] [PMID: 20215961]
[37]
Gao, S-H.; Huo, J-B.; Pan, Q-M.; Li, X-W.; Chen, H-Y.; Huang, J-H. The short-term effect and safety of duloxetine in osteoarthritis: A systematic review and meta-analysis. Medicine (Baltimore), 2019, 98(44), e17541.
[http://dx.doi.org/10.1097/MD.0000000000017541] [PMID: 31689755]
[38]
Strauss, E.J.; Hart, J.A.; Miller, M.D.; Altman, R.D.; Rosen, J.E. Hyaluronic acid viscosupplementation and osteoarthritis: Current uses and future directions. Am. J. Sports Med., 2009, 37(8), 1636-1644.
[http://dx.doi.org/10.1177/0363546508326984] [PMID: 19168804]
[39]
Zhang, L.; Song, J.; Kong, L.; Yuan, T.; Li, W.; Zhang, W.; Hou, B.; Lu, Y.; Du, G. The strategies and techniques of drug discovery from natural products. Pharmacol. Ther., 2020, 216, 107686.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107686] [PMID: 32961262]
[40]
Barnes, E.C.; Kumar, R.; Davis, R.A. The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery. Nat. Prod. Rep., 2016, 33(3), 372-381.
[http://dx.doi.org/10.1039/C5NP00121H] [PMID: 26739749]
[41]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[42]
Tiwari, U.; Cummins, E. Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res. Int., 2013, 50(2), 497-506.
[http://dx.doi.org/10.1016/j.foodres.2011.09.007]
[43]
Zaynab, M.; Fatima, M.; Sharif, Y.; Zafar, M.H.; Ali, H.; Khan, K.A. Role of primary metabolites in plant defense against pathogens. Microb. Pathog., 2019, 137, 103728.
[http://dx.doi.org/10.1016/j.micpath.2019.103728] [PMID: 31499183]
[44]
Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res., 2019, 52(1), 39.
[http://dx.doi.org/10.1186/s40659-019-0246-3] [PMID: 31358053]
[45]
Hussein, A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. In: Herbal Medicine; Builders, P., Ed.; IntechOpen: London, 2019.
[46]
Taylor, S.L.; Hefle, S.L. Naturally Occurring Toxicants in Foods. In: Foodborne Diseases, 3rd ed; Dodd, C.E.R.; Aldsworth, T.; Stein, R.A.; Cliver, D.O.; Riemann, H.P., Eds.; Academic Press: Cambridge, Massachusetts, 2017; pp. 327-344.
[http://dx.doi.org/10.1016/B978-0-12-385007-2.00016-4]
[47]
Wagner, H.; Wierer, M.; Bauer, R. In vitro inhibition of prostaglandin biosynthesis by essential oils and phenolic compounds. Planta Med., 1986, 52(3), 184-187.
[http://dx.doi.org/10.1055/s-2007-969117] [PMID: 3749341]
[48]
Moon, T.C.; Murakami, M.; Kudo, I.; Son, K.H.; Kim, H.P.; Kang, S.S.; Chang, H.W. A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm. Res., 1999, 48(12), 621-625.
[http://dx.doi.org/10.1007/s000110050512] [PMID: 10669112]
[49]
Pandey, M.K.; Sung, B.; Kunnumakkara, A.B.; Sethi, G.; Chaturvedi, M.M.; Aggarwal, B.B. Berberine modifies cysteine 179 of IkappaBalpha kinase, suppresses nuclear factor-kappaB-regulated antiapoptotic gene products, and potentiates apoptosis. Cancer Res., 2008, 68(13), 5370-5379.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0511] [PMID: 18593939]
[50]
Jeng, J.H.; Wu, H.L.; Lin, B.R.; Lan, W.H.; Chang, H.H.; Ho, Y.S.; Lee, P.H.; Wang, Y.J.; Wang, J.S.; Chen, Y.J.; Chang, M.C. Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production. Atherosclerosis, 2007, 191(2), 250-258.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.05.023] [PMID: 16797553]
[51]
Niu, X.; Zhang, H.; Li, W.; Mu, Q.; Yao, H.; Wang, Y. Anti-inflammatory effects of cavidine in vitro and in vivo, a selective COX-2 inhibitor in LPS-induced peritoneal macrophages of mouse. Inflammation, 2015, 38(2), 923-933.
[http://dx.doi.org/10.1007/s10753-014-0054-4] [PMID: 25373916]
[52]
Fan, L.; Fan, Y.; Liu, L.; Tao, W.; Shan, X.; Dong, Y.; Li, L.; Zhang, S.; Wang, H. Chelerythrine attenuates the inflammation of lipopolysaccharide-induced acute lung inflammation through NF-κB signaling pathway mediated by Nrf2. Front. Pharmacol., 2018, 9, 1047.
[http://dx.doi.org/10.3389/fphar.2018.01047] [PMID: 30319404]
[53]
Yun, K.J.; Shin, J.S.; Choi, J.H.; Back, N.I.; Chung, H.G.; Lee, K.T. Quaternary alkaloid, pseudocoptisine isolated from tubers of Corydalis turtschaninovi inhibits LPS-induced nitric oxide, PGE(2), and pro-inflammatory cytokines production via the down-regulation of NF-kappaB in RAW 264.7 murine macrophage cells. Int. Immunopharmacol., 2009, 9(11), 1323-1331.
[http://dx.doi.org/10.1016/j.intimp.2009.08.001] [PMID: 19666143]
[54]
Zhao, H.; Luo, F.; Li, H.; Zhang, L.; Yi, Y.; Wan, J. Antinociceptive effect of tetrandrine on LPS-induced hyperalgesia via the inhibition of IKKβ phosphorylation and the COX-2/PGE₂ pathway in mice. PLoS One, 2014, 9(4), e94586.
[http://dx.doi.org/10.1371/journal.pone.0094586] [PMID: 24722146]
[55]
Liu, Y.N.; Pan, S.L.; Liao, C.H.; Huang, D.Y.; Guh, J.H.; Peng, C.Y.; Chang, Y.L.; Teng, C.M. Evodiamine represses hypoxia-induced inflammatory proteins expression and hypoxia-inducible factor 1α accumulation in RAW264.7. Shock, 2009, 32(3), 263-269.
[http://dx.doi.org/10.1097/SHK.0b013e31819940cb] [PMID: 19106818]
[56]
Socca, E.A.; Luiz-Ferreira, A.; de Faria, F.M.; de Almeida, A.C.; Dunder, R.J.; Manzo, L.P.; Brito, A.R. Inhibition of tumor necrosis factor-alpha and cyclooxigenase-2 by Isatin: A molecular mechanism of protection against TNBS-induced colitis in rats. Chem. Biol. Interact., 2014, 209, 48-55.
[http://dx.doi.org/10.1016/j.cbi.2013.11.019] [PMID: 24316276]
[57]
Saeed, S.A.; Gilani, A.H.; Majoo, R.U.; Shah, B.H. Anti-thrombotic and anti-inflammatory activities of protopine. Pharmacol. Res., 1997, 36(1), 1-7.
[http://dx.doi.org/10.1006/phrs.1997.0195] [PMID: 9368908]
[58]
Gao, Y.; Jiang, W.; Dong, C.; Li, C.; Fu, X.; Min, L.; Tian, J.; Jin, H.; Shen, J. Anti-inflammatory effects of sophocarpine in LPS-induced RAW 264.7 cells via NF-κB and MAPKs signaling pathways. Toxicol. In Vitro, 2012, 26(1), 1-6.
[http://dx.doi.org/10.1016/j.tiv.2011.09.019] [PMID: 21978812]
[59]
Mo, C.; Wang, L.; Zhang, J.; Numazawa, S.; Tang, H.; Tang, X.; Han, X.; Li, J.; Yang, M.; Wang, Z.; Wei, D.; Xiao, H. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid. Redox Signal., 2014, 20(4), 574-588.
[http://dx.doi.org/10.1089/ars.2012.5116] [PMID: 23875776]
[60]
Choi, Y.H.; Choi, W.Y.; Hong, S.H.; Kim, S.O.; Kim, G.Y.; Lee, W.H.; Yoo, Y.H. Anti-invasive activity of sanguinarine through modulation of tight junctions and matrix metalloproteinase activities in MDA-MB-231 human breast carcinoma cells. Chem. Biol. Interact., 2009, 179(2-3), 185-191.
[http://dx.doi.org/10.1016/j.cbi.2008.11.009] [PMID: 19063874]
[61]
Yodkeeree, S.; Wongsirisin, P.; Pompimon, W.; Limtrakul, P. Anti-invasion effect of crebanine and O-methylbulbocapnine from Stephania venosa via down-regulated matrix metalloproteinases and urokinase plasminogen activator. Chem. Pharm. Bull. (Tokyo), 2013, 61(11), 1156-1165.
[http://dx.doi.org/10.1248/cpb.c13-00584] [PMID: 23985774]
[62]
Jeon, S.J.; Kwon, K.J.; Shin, S.; Lee, S.H.; Rhee, S.Y.; Han, S.H.; Lee, J.; Kim, H.Y.; Cheong, J.H.; Ryu, J.H.; Min, B.S.; Ko, K.H.; Shin, C.Y. Inhibitory effects of Coptis japonica alkaloids on the LPS-induced activation of BV2 microglial cells. Biomol. Ther. (Seoul), 2009, 17(11), 70-78.
[http://dx.doi.org/10.4062/biomolther.2009.17.1.70]
[63]
Zhou, X.; Lin, X.; Xiong, Y.; Jiang, L.; Li, W.; Li, J.; Wu, L. Chondroprotective effects of palmatine on osteoarthritis in vivo and in vitro: A possible mechanism of inhibiting the Wnt/β-catenin and Hedgehog signaling pathways. Int. Immunopharmacol., 2016, 34, 129-138.
[http://dx.doi.org/10.1016/j.intimp.2016.02.029] [PMID: 26945831]
[64]
Kirpotina, L.N.; Schepetkin, I.A.; Hammaker, D.; Kuhs, A.; Khlebnikov, A.I.; Quinn, M.T.; Salomone, S.; Grabiec, A.M.; Karonitsch, T. Therapeutic effects of tryptanthrin and tryptanthrin-6-oxime in models of rheumatoid arthritis. Front. Pharmacol., 2020, 11, 1145.
[http://dx.doi.org/10.3389/fphar.2020.01145] [PMID: 32792961]
[65]
Lu, S.; Xiao, X.; Cheng, M. Matrine inhibits IL-1β-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-κB in human chondrocytes in vitro. Int. J. Clin. Exp. Pathol., 2015, 8(5), 4764-4772.
[PMID: 26191166]
[66]
Li, Q.; Zhou, X.D.; Kolosov, V.P.; Perelman, J.M. Nicotine reduces TNF-α expression through a α7 nAChR/MyD88/NF-ĸB pathway in HBE16 airway epithelial cells. Cell. Physiol. Biochem., 2011, 27(5), 605-612.
[http://dx.doi.org/10.1159/000329982] [PMID: 21691078]
[67]
Chen, F.L.; Yang, Z.H.; Liu, Y.; Li, L.X.; Liang, W.C.; Wang, X.C.; Zhou, W.B.; Yang, Y.H.; Hu, R.M. Berberine inhibits the expression of TNFalpha, MCP-1, and IL-6 in AcLDL-stimulated macrophages through PPARgamma pathway. Endocrine, 2008, 33(3), 331-337.
[http://dx.doi.org/10.1007/s12020-008-9089-3] [PMID: 19034703]
[68]
Park, J.Y.; Kawada, T.; Han, I.S.; Kim, B.S.; Goto, T.; Takahashi, N.; Fushiki, T.; Kurata, T.; Yu, R. Capsaicin inhibits the production of tumor necrosis factor α by LPS-stimulated murine macrophages, RAW 264.7: A PPARgamma ligand-like action as a novel mechanism. FEBS Lett., 2004, 572(1-3), 266-270.
[http://dx.doi.org/10.1016/j.febslet.2004.06.084] [PMID: 15304360]
[69]
Zamani Taghizadeh Rabe, S.; Iranshahi, M.; Mahmoudi, M. In vitro anti-inflammatory and immunomodulatory properties of umbelliprenin and methyl galbanate. J. Immunotoxicol., 2016, 13(2), 209-216.
[http://dx.doi.org/10.3109/1547691X.2015.1043606] [PMID: 26004404]
[70]
Ishita, I.J.; Nurul Islam, M.; Kim, Y.S.; Choi, R.J.; Sohn, H.S.; Jung, H.A.; Choi, J.S. Coumarins from Angelica decursiva inhibit lipopolysaccharide-induced nitrite oxide production in RAW 264.7 cells. Arch. Pharm. Res., 2016, 39(1), 115-126.
[http://dx.doi.org/10.1007/s12272-015-0668-6] [PMID: 26474585]
[71]
Kim, Y.A.; Kong, C.S.; Park, H.H.; Lee, E.; Jang, M.S.; Nam, K.H.; Seo, Y. Anti-inflammatory activity of heterocarpin from the salt marsh Plant Corydalis heterocarpa in LPS-induced RAW 264.7 macrophage cells. Molecules, 2015, 20(8), 14474-14486.
[http://dx.doi.org/10.3390/molecules200814474] [PMID: 26266403]
[72]
Yang, I.J.; Lee, D.U.; Shin, H.M. Anti-inflammatory and antioxidant effects of coumarins isolated from Foeniculum vulgare in lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacol. Immunotoxicol., 2015, 37(3), 308-317.
[http://dx.doi.org/10.3109/08923973.2015.1038751] [PMID: 25990850]
[73]
Yoo, S.W.; Kim, J.S.; Kang, S.S.; Son, K.H.; Chang, H.W.; Kim, H.P.; Bae, K.; Lee, C.O. Constituents of the fruits and leaves of Euodia daniellii. Arch. Pharm. Res., 2002, 25(6), 824-830.
[http://dx.doi.org/10.1007/BF02976999] [PMID: 12510833]
[74]
Meena, A.; Yadav, D.K.; Srivastava, A.; Khan, F.; Chanda, D.; Chattopadhyay, S.K. In silico exploration of anti-inflammatory activity of natural coumarinolignoids. Chem. Biol. Drug Des., 2011, 78(4), 567-579.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01173.x] [PMID: 21736704]
[75]
Ju, Z.; Lin, X.; Lu, X.; Tu, Z.; Wang, J.; Kaliyaperumal, K.; Liu, J.; Tian, Y.; Xu, S.; Liu, Y.; Xu, S.; Liu, Y. Botryoisocoumarin A, a new COX-2 inhibitor from the mangrove Kandelia candel endophytic fungus Botryosphaeria sp. KcF6. J. Antibiot. (Tokyo), 2015, 68(10), 653-656.
[http://dx.doi.org/10.1038/ja.2015.46] [PMID: 25966851]
[76]
Ma, Y.; Jung, J-Y.; Jung, Y-J.; Choi, J-H.; Jeong, W-S.; Song, Y-S.; Kang, J-S.; Bi, K.; Kim, M-J. Anti-inflammatory activities of coumarins isolated from Angelica Gigas Nakai on LPS-stimulated RAW 264.7 cells. Prev. Nutr. Food Sci., 2009, 14(3), 179-187.
[http://dx.doi.org/10.3746/jfn.2009.14.3.179]
[77]
Kang, K.H.; Kong, C.S.; Seo, Y.; Kim, M.M.; Kim, S.K. Anti-inflammatory effect of coumarins isolated from Corydalis heterocarpa in HT-29 human colon carcinoma cells. Food Chem. Toxicol., 2009, 47(8), 2129-2134.
[http://dx.doi.org/10.1016/j.fct.2009.05.036] [PMID: 19500635]
[78]
Kim, J.S.; Kim, J.C.; Shim, S.H.; Lee, E.J.; Jin, W.; Bae, K.; Son, K.H.; Kim, H.P.; Kang, S.S.; Chang, H.W. Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Arch. Pharm. Res., 2006, 29(8), 617-623.
[http://dx.doi.org/10.1007/BF02968244] [PMID: 16964755]
[79]
Okuyama, S.; Morita, M.; Kaji, M.; Amakura, Y.; Yoshimura, M.; Shimamoto, K.; Ookido, Y.; Nakajima, M.; Furukawa, Y. Auraptene acts as an anti-inflammatory agent in the mouse brain. Molecules, 2015, 20(11), 20230-20239.
[http://dx.doi.org/10.3390/molecules201119691] [PMID: 26569206]
[80]
Kohno, H.; Suzuki, R.; Curini, M.; Epifano, F.; Maltese, F.; Gonzales, S.P.; Tanaka, T. Dietary administration with prenyloxycoumarins, auraptene and collinin, inhibits colitis-related colon carcinogenesis in mice. Int. J. Cancer, 2006, 118(12), 2936-2942.
[http://dx.doi.org/10.1002/ijc.21719] [PMID: 16395701]
[81]
Wu, S.J. Osthole attenuates inflammatory responses and regulates the expression of inflammatory mediators in HepG2 cells grown in differentiated medium from 3T3-L1 preadipocytes. J. Med. Food, 2015, 18(9), 972-979.
[http://dx.doi.org/10.1089/jmf.2014.3314] [PMID: 25876063]
[82]
Niu, X.; Wang, Y.; Li, W.; Mu, Q.; Li, H.; Yao, H.; Zhang, H. Protective effects of Isofraxidin against lipopolysaccharide-induced acute lung injury in mice. Int. Immunopharmacol., 2015, 24(2), 432-439.
[http://dx.doi.org/10.1016/j.intimp.2014.12.041] [PMID: 25596039]
[83]
Yuan, F.; Chen, J.; Sun, P.P.; Guan, S.; Xu, J. Wedelolactone inhibits LPS-induced pro-inflammation via NF-kappaB pathway in RAW 264.7 cells. J. Biomed. Sci., 2013, 20(1), 84.
[http://dx.doi.org/10.1186/1423-0127-20-84] [PMID: 24176090]
[84]
Yang, H.J.; Youn, H.; Seong, K.M.; Yun, Y.J.; Kim, W.; Kim, Y.H.; Lee, J.Y.; Kim, C.S.; Jin, Y.W.; Youn, B. Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation. Biochem. Pharmacol., 2011, 82(5), 524-534.
[http://dx.doi.org/10.1016/j.bcp.2011.05.027] [PMID: 21669192]
[85]
Rim, H.K.; Cho, W.; Sung, S.H.; Lee, K.T. Nodakenin suppresses lipopolysaccharide-induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor-associated factor 6 and nuclear factor-κB pathways and protects mice from lethal endotoxin shock. J. Pharmacol. Exp. Ther., 2012, 342(3), 654-664.
[http://dx.doi.org/10.1124/jpet.112.194613] [PMID: 22637723]
[86]
Khan, S.; Shin, E.M.; Choi, R.J.; Jung, Y.H.; Kim, J.; Tosun, A.; Kim, Y.S. Suppression of LPS-induced inflammatory and NF-κB responses by anomalin in RAW 264.7 macrophages. J. Cell. Biochem., 2011, 112(8), 2179-2188.
[http://dx.doi.org/10.1002/jcb.23137] [PMID: 21480361]
[87]
Moon, P.D.; Lee, B.H.; Jeong, H.J.; An, H.J.; Park, S.J.; Kim, H.R.; Ko, S.G.; Um, J.Y.; Hong, S.H.; Kim, H.M. Use of scopoletin to inhibit the production of inflammatory cytokines through inhibition of the IkappaB/NF-kappaB signal cascade in the human mast cell line HMC-1. Eur. J. Pharmacol., 2007, 555(2-3), 218-225.
[http://dx.doi.org/10.1016/j.ejphar.2006.10.021] [PMID: 17113069]
[88]
Song, B.; Wang, Z.; Liu, Y.; Xu, S.; Huang, G.; Xiong, Y.; Zhang, S.; Xu, L.; Deng, X.; Guan, S. Immunosuppressive activity of daphnetin, one of coumarin derivatives, is mediated through suppression of NF-κB and NFAT signaling pathways in mouse T cells. PLoS One, 2014, 9(5), e96502.
[http://dx.doi.org/10.1371/journal.pone.0096502] [PMID: 24800925]
[89]
Sen, Z.; Jie, M.; Jingzhi, Y.; Dongjie, W.; Dongming, Z.; Xiaoguang, C. Total coumarins from Hydrangea paniculata protect against cisplatin-induced acute kidney damage in mice by suppressing renal inflammation and apoptosis. Evid. Based Complement. Alternat. Med., 2017, 2017, 5350161.
[http://dx.doi.org/10.1155/2017/5350161] [PMID: 28367225]
[90]
Kang, J.K.; Hyun, C.G. 4-Hydroxy-7-methoxycoumarin inhibits inflammation in LPS-activated RAW264.7 macrophages by suppressing NF-κB and MAPK activation. Molecules, 2020, 25(19), 4424.
[http://dx.doi.org/10.3390/molecules25194424] [PMID: 32993156]
[91]
Bansal, Y.; Sethi, P.; Bansal, G. Coumarin: A potential nucleus for anti-inflammatory molecules. Med. Chem. Res., 2013, 22(7), 3049-3060.
[http://dx.doi.org/10.1007/s00044-012-0321-6]
[92]
Zárate, R.; El Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med., 2017, 6(1), 25.
[http://dx.doi.org/10.1186/s40169-017-0153-6] [PMID: 28752333]
[93]
Henry, G.E.; Momin, R.A.; Nair, M.G.; Dewitt, D.L. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem., 2002, 50(8), 2231-2234.
[http://dx.doi.org/10.1021/jf0114381] [PMID: 11929276]
[94]
Su, B.N.; Cuendet, M.; Farnsworth, N.R.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. Activity-guided fractionation of the seeds of Ziziphus jujuba using a cyclooxygenase-2 inhibitory assay. Planta Med., 2002, 68(12), 1125-1128.
[http://dx.doi.org/10.1055/s-2002-36354] [PMID: 12494342]
[95]
Stöhr, J.R.; Xiao, P.G.; Bauer, R. Isobutylamides and a new methylbutylamide from Piper sarmentosum. Planta Med., 1999, 65(2), 175-177.
[http://dx.doi.org/10.1055/s-2006-960460] [PMID: 17260253]
[96]
Ludwiczuk, A. Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids.Pharmacognosy: Fundamentals, Applications and Strategies; Simone, B.; Rupkia, D., Eds.; Academic Press, 2017, pp. 233-266.
[http://dx.doi.org/10.1016/B978-0-12-802104-0.00011-1]
[97]
Momin, R.A.; De Witt, D.L.; Nair, M.G. Inhibition of cyclooxygenase (COX) enzymes by compounds from Daucus carota L. Seeds. Phytother. Res., 2003, 17(8), 976-979.
[http://dx.doi.org/10.1002/ptr.1296] [PMID: 13680840]
[98]
Huss, U.; Ringbom, T.; Perera, P.; Bohlin, L.; Vasänge, M. Screening of ubiquitous plant constituents for COX-2 inhibition with a scintillation proximity based assay. J. Nat. Prod., 2002, 65(11), 1517-1521.
[http://dx.doi.org/10.1021/np020023m] [PMID: 12444669]
[99]
Yano, S.; Suzuki, Y.; Yuzurihara, M.; Kase, Y.; Takeda, S.; Watanabe, S.; Aburada, M.; Miyamoto, K. Antinociceptive effect of methyleugenol on formalin-induced hyperalgesia in mice. Eur. J. Pharmacol., 2006, 553(1-3), 99-103.
[http://dx.doi.org/10.1016/j.ejphar.2006.09.020] [PMID: 17049512]
[100]
Tjendraputra, E.; Tran, V.H.; Liu-Brennan, D.; Roufogalis, B.D.; Duke, C.C. Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells. Bioorg. Chem., 2001, 29(3), 156-163.
[http://dx.doi.org/10.1006/bioo.2001.1208] [PMID: 11437391]
[101]
Peana, A.T.; Marzocco, S.; Popolo, A.; Pinto, A. (-)-Linalool inhibits in vitro NO formation: Probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci., 2006, 78(7), 719-723.
[http://dx.doi.org/10.1016/j.lfs.2005.05.065] [PMID: 16137709]
[102]
Gerhäuser, C.; Klimo, K.; Heiss, E.; Neumann, I.; Gamal-Eldeen, A.; Knauft, J.; Liu, G.Y.; Sitthimonchai, S.; Frank, N. Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutat. Res., 2003, 523-524, 163-172.
[http://dx.doi.org/10.1016/S0027-5107(02)00332-9] [PMID: 12628514]
[103]
Marsik, P.; Kokoska, L.; Landa, P.; Nepovim, A.; Soudek, P.; Vanek, T. In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosyntheses. Planta Med., 2005, 71(8), 739-742.
[http://dx.doi.org/10.1055/s-2005-871288] [PMID: 16142638]
[104]
Sakuma, S.; Fujimoto, Y.; Tagano, S.; Tsunomori, M.; Nishida, H.; Fujita, T. Effects of nonanal, trans-2-nonenal and 4-hydroxy-2,3-trans-nonenal on cyclooxygenase and 12-lipoxygenase metabolism of arachidonic acid in rabbit platelets. J. Pharm. Pharmacol., 1997, 49(2), 150-153.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06770.x] [PMID: 9055186]
[105]
Dewhirst, F.E. Structure-activity relationships for inhibition of prostaglandin cyclooxygenase by phenolic compounds. Prostaglandins, 1980, 20(2), 209-222.
[http://dx.doi.org/10.1016/S0090-6980(80)80040-2] [PMID: 6774382]
[106]
Jayaprakasam, B.; Alexander-Lindo, R.L.; DeWitt, D.L.; Nair, M.G. Terpenoids from stinking toe (Hymneae courbaril) fruits with cyclooxygenase and lipid peroxidation inhibitory activities. Food Chem., 2007, 105(2), 485-490.
[http://dx.doi.org/10.1016/j.foodchem.2007.04.004]
[107]
Zhang, X.; Fan, C.; Xiao, Y.; Mao, X. Anti-inflammatory and antiosteoclastogenic activities of parthenolide on human periodontal ligament cells in vitro. Evid. based Complementary Altern. Med., 2014, 1-11.
[108]
Rufino, A.T.; Ribeiro, M.; Sousa, C.; Judas, F.; Salgueiro, L.; Cavaleiro, C.; Mendes, A.F. Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur. J. Pharmacol., 2015, 750, 141-150.
[http://dx.doi.org/10.1016/j.ejphar.2015.01.018] [PMID: 25622554]
[109]
Liu, Y.; Li, A.; Feng, X.; Jiang, X.; Sun, X.; Huang, W.; Zhu, X.; Zhao, Z. L-menthol alleviates cigarette smoke extract induced lung injury in rats by inhibiting oxidative stress and inflammation: Via nuclear factor Kappa B, P38 MAPK and Nrf2 signalling pathways. RSC Advances, 2018, 8(17), 9353-9363.
[http://dx.doi.org/10.1039/C8RA00160J]
[110]
Guesmi, F.; Prasad, S.; Tyagi, A.K.; Landoulsi, A. Antinflammatory and anticancer effects of terpenes from oily fractions of Teucruim alopecurus, blocker of IκBα kinase, through downregulation of NF-κB activation, potentiation of apoptosis and suppression of NF-κB-regulated gene expression. Biomed. Pharmacother., 2017, 95, 1876-1885.
[http://dx.doi.org/10.1016/j.biopha.2017.09.115] [PMID: 28968948]
[111]
Rufino, A.T.; Ribeiro, M.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: Structural and enantiomeric selectivity. J. Nat. Prod., 2014, 77(2), 264-269.
[http://dx.doi.org/10.1021/np400828x] [PMID: 24455984]
[112]
Kang, S.; Zhang, J.; Yuan, Y. Abietic acid attenuates IL-1β-induced inflammation in human osteoarthritis chondrocytes. Int. Immunopharmacol., 2018, 64, 110-115.
[http://dx.doi.org/10.1016/j.intimp.2018.07.014] [PMID: 30172103]
[113]
Tanaka, Y.T.; Tanaka, K.; Kojima, H.; Hamada, T.; Masutani, T.; Tsuboi, M.; Akao, Y. Cynaropicrin from Cynara Scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B. Bioorg. Med. Chem. Lett., 2013, 23(2), 518-523.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.034] [PMID: 23232059]
[114]
Pae, H.O.; Jeong, G.S.; Kim, H.S.; Woo, W.H.; Rhew, H.Y.; Kim, H.S.; Sohn, D.H.; Kim, Y.C.; Chung, H.T. Costunolide inhibits production of tumor necrosis factor-α and interleukin-6 by inducing heme oxygenase-1 in RAW264.7 macrophages. Inflamm. Res., 2007, 56(12), 520-526.
[http://dx.doi.org/10.1007/s00011-007-7015-4] [PMID: 18210237]
[115]
Wei, C.; Tan, C.K.; Xiaoping, H.; Junqiang, J. Acanthoic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts. Inflammation, 2015, 38(2), 896-901.
[http://dx.doi.org/10.1007/s10753-014-0051-7] [PMID: 25373915]
[116]
Jang, S.I.; Kim, H.J.; Kim, Y.J.; Jeong, S.I.; You, Y.O. Tanshinone IIA inhibits LPS-induced NF-kappaB activation in RAW 264.7 cells: Possible involvement of the NIK-IKK, ERK1/2, p38 and JNK pathways. Eur. J. Pharmacol., 2006, 542(1-3), 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2006.04.044] [PMID: 16797002]
[117]
Umar, S.; Zargan, J.; Umar, K.; Ahmad, S.; Katiyar, C.K.; Khan, H.A. Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem. Biol. Interact., 2012, 197(1), 40-46.
[http://dx.doi.org/10.1016/j.cbi.2012.03.003] [PMID: 22450443]
[118]
Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.S.; Laufer, S.; Lima, J.L.F.C.; Fernandes, E. Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation, 2015, 38(2), 858-870.
[http://dx.doi.org/10.1007/s10753-014-9995-x] [PMID: 25139581]
[119]
Hanáková, Z.; Hošek, J.; Kutil, Z.; Temml, V.; Landa, P. Vaněk, T.; Schuster, D.; Dall’Acqua, S.; Cvačka, J.; Polanský, O.; Šmejkal, K. Anti-inflammatory activity of natural geranylated flavonoids: Cyclooxygenase and lipoxygenase inhibitory properties and proteomic analysis. J. Nat. Prod., 2017, 80(4), 999-1006.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01011] [PMID: 28322565]
[120]
Levita, J.; Rositama, M.R.; Alias, N.; Khalida, N.; Saptarini, N.M.; Megantara, S. discovering COX-2 inhibitors from flavonoids and diterpenoids. J. Appl. Pharm. Sci., 2017, 7(7), 103-110.
[121]
Chung, T.T.; Chuang, C.Y.; Teng, Y.H.; Hsieh, M.J.; Lai, J.C.; Chuang, Y.T.; Chen, M.K.; Yang, S.F. Tricetin suppresses human oral cancer cell migration by reducing matrix metalloproteinase-9 expression through the mitogen-activated protein kinase signaling pathway. Environ. Toxicol., 2017, 32(11), 2392-2399.
[http://dx.doi.org/10.1002/tox.22452] [PMID: 28731287]
[122]
Lim, H.; Park, H.; Kim, H.P. Effects of flavonoids on matrix metalloproteinase-13 expression of interleukin-1β-treated articular chondrocytes and their cellular mechanisms: Inhibition of c-Fos/AP-1 and JAK/STAT signaling pathways. J. Pharmacol. Sci., 2011, 116(2), 221-231.
[http://dx.doi.org/10.1254/jphs.11014FP] [PMID: 21606625]
[123]
Hwang, Y.P.; Oh, K.N.; Yun, H.J.; Jeong, H.G. The flavonoids apigenin and luteolin suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and AP-1-dependent signaling in HaCaT cells. J. Dermatol. Sci., 2011, 61(1), 23-31.
[http://dx.doi.org/10.1016/j.jdermsci.2010.10.016] [PMID: 21112745]
[124]
Ko, C.H.; Shen, S.C.; Lee, T.J.F.; Chen, Y.C. Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Mol. Cancer Ther., 2005, 4(2), 281-290.
[PMID: 15713899]
[125]
Wang, C.C.; Guo, L.; Tian, F.D.; An, N.; Luo, L.; Hao, R.H.; Wang, B.; Zhou, Z.H. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model. Braz. J. Med. Biol. Res., 2017, 50(4), e5714.
[http://dx.doi.org/10.1590/1414-431x20165714] [PMID: 28355351]
[126]
Phromnoi, K.; Yodkeeree, S.; Anuchapreeda, S.; Limtrakul, P. Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacol. Sin., 2009, 30(8), 1169-1176.
[http://dx.doi.org/10.1038/aps.2009.107] [PMID: 19617894]
[127]
Yoon, H.Y.; Lee, E.G.; Lee, H.; Cho, I.J.; Choi, Y.J.; Sung, M.S.; Yoo, H.G.; Yoo, W.H. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs. Int. J. Mol. Med., 2013, 32(4), 971-977.
[http://dx.doi.org/10.3892/ijmm.2013.1468] [PMID: 23934131]
[128]
Farsad-Naeimi, A.; Alizadeh, M.; Esfahani, A.; Darvish Aminabad, E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct., 2018, 9(4), 2025-2031.
[http://dx.doi.org/10.1039/C7FO01898C] [PMID: 29541713]
[129]
Crascì, L.; Panico, A. Protective effects of many citrus flavonoids on cartilage degradation process. J. Biomater. Nanobiotechnol., 2013, 4(3), 279-283.
[http://dx.doi.org/10.4236/jbnb.2013.43035]
[130]
Kawabata, K.; Murakami, A.; Ohigashi, H. Nobiletin, a citrus flavonoid, down-regulates matrix metalloproteinase-7 (matrilysin) expression in HT-29 human colorectal cancer cells. Biosci. Biotechnol. Biochem., 2005, 69(2), 307-314.
[http://dx.doi.org/10.1271/bbb.69.307] [PMID: 15725655]
[131]
Matchett, M.D.; MacKinnon, S.L.; Sweeney, M.I.; Gottschall-Pass, K.T.; Hurta, R.A.R. Blueberry flavonoids inhibit matrix metalloproteinase activity in DU145 human prostate cancer cells. Biochem. Cell Biol., 2005, 83(5), 637-643.
[http://dx.doi.org/10.1139/o05-063] [PMID: 16234852]
[132]
Yadav, D.K.; Bharitkar, Y.P.; Hazra, A.; Pal, U.; Verma, S.; Jana, S.; Singh, U.P.; Maiti, N.C.; Mondal, N.B.; Swarnakar, S. Tamarixetin 3-O-β-d-glucopyranoside from Azadirachta indica leaves: Gastroprotective role through inhibition of matrix metalloproteinase-9 activity in mice. J. Nat. Prod., 2017, 80(5), 1347-1353.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00957] [PMID: 28493718]
[133]
Murakami, A.; Takahashi, D.; Kinoshita, T.; Koshimizu, K.; Kim, H.W.; Yoshihiro, A.; Nakamura, Y.; Jiwajinda, S.; Terao, J.; Ohigashi, H. Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: The αβ-unsaturated carbonyl group is a prerequisite. Carcinogenesis, 2002, 23(5), 795-802.
[http://dx.doi.org/10.1093/carcin/23.5.795] [PMID: 12016152]
[134]
Endale, M.; Park, S.C.; Kim, S.; Kim, S.H.; Yang, Y.; Cho, J.Y.; Rhee, M.H. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology, 2013, 218(12), 1452-1467.
[http://dx.doi.org/10.1016/j.imbio.2013.04.019] [PMID: 23735482]
[135]
Kim, H.K.; Park, H.R.; Lee, J.S.; Chung, T.S.; Chung, H.Y.; Chung, J. Down-regulation of iNOS and TNF-α expression by kaempferol via NF-kappaB inactivation in aged rat gingival tissues. Biogerontology, 2007, 8(4), 399-408.
[http://dx.doi.org/10.1007/s10522-007-9083-9] [PMID: 17278014]
[136]
Goto, T.; Naknukool, S.; Yoshitake, R.; Hanafusa, Y.; Tokiwa, S.; Li, Y.; Sakamoto, T.; Nitta, T.; Kim, M.; Takahashi, N.; Yu, R.; Daiyasu, H.; Seno, S.; Matsuda, H.; Kawada, T. Proinflammatory cytokine interleukin-1β suppresses cold-induced thermogenesis in adipocytes. Cytokine, 2016, 77, 107-114.
[http://dx.doi.org/10.1016/j.cyto.2015.11.001] [PMID: 26556104]
[137]
Bodet, C.; La, V.D.; Epifano, F.; Grenier, D. Naringenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models. J. Periodontal Res., 2008, 43(4), 400-407.
[http://dx.doi.org/10.1111/j.1600-0765.2007.01055.x] [PMID: 18503517]
[138]
Xie, C.; Kang, J.; Li, Z.; Schauss, A.G.; Badger, T.M.; Nagarajan, S.; Wu, T.; Wu, X. The açaí flavonoid velutin is a potent anti-inflammatory agent: Blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-κB activation and MAPK pathway. J. Nutr. Biochem., 2012, 23(9), 1184-1191.
[http://dx.doi.org/10.1016/j.jnutbio.2011.06.013] [PMID: 22137267]
[139]
Castro, S.B.R.; Junior, C.O.R.; Alves, C.C.S.; Dias, A.T.; Alves, L.L.; Mazzoccoli, L.; Zoet, M.T.; Fernandes, S.A.; Teixeira, H.C.; Almeida, M.V.; Ferreira, A.P. Synthesis of lipophilic genistein derivatives and their regulation of IL-12 and TNF-α in activated J774A.1 cells. Chem. Biol. Drug Des., 2012, 79(3), 347-352.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01296.x] [PMID: 22171555]
[140]
Kang, O.H.; Lee, J.H.; Kwon, D.Y. Apigenin inhibits release of inflammatory mediators by blocking the NF-κB activation pathways in the HMC-1 cells. Immunopharmacol. Immunotoxicol., 2011, 33(3), 473-479.
[http://dx.doi.org/10.3109/08923973.2010.538851] [PMID: 21142820]
[141]
Wang, P.; Li, S.S.; Wang, X.H. Myricetin exerts anti-osteoarthritic effects in Il-1β stimulated SW1353 cells via regulating matrix metalloproteinases and modulating JNK/P38MAPK/Ap-1/c-FOS and JAK/STAT Signalling. Int. J. Pharmacol., 2016, 12(4), 440-450.
[http://dx.doi.org/10.3923/ijp.2016.440.450]
[142]
Cheng, A.W.; Tan, X.; Sun, J.Y.; Gu, C.M.; Liu, C.; Guo, X. Catechin attenuates TNF-α induced inflammatory response via AMPK-SIRT1 pathway in 3T3-L1 adipocytes. PLoS One, 2019, 14(5), e0217090.
[http://dx.doi.org/10.1371/journal.pone.0217090] [PMID: 31100089]
[143]
Huang, W.C.; Wu, S.J.; Tu, R.S.; Lai, Y.R.; Liou, C.J. Phloretin inhibits interleukin-1β-induced COX-2 and ICAM-1 expression through inhibition of MAPK, Akt, and NF-κB signaling in human lung epithelial cells. Food Funct., 2015, 6(6), 1960-1967.
[http://dx.doi.org/10.1039/C5FO00149H] [PMID: 25996641]
[144]
Ansari, M.Y.; Ahmad, N.; Haqqi, T.M. Butein Activates Autophagy Through AMPK/TSC2/ULK1/mTOR Pathway to Inhibit IL-6 Expression in IL-1β. Stimulated Human Chondrocytes. Cell. Physiol. Biochem., 2018, 49(3), 932-946.
[http://dx.doi.org/10.1159/000493225] [PMID: 30184535]
[145]
Min, S.W.; Ryu, S.N.; Kim, D.H. Anti-inflammatory effects of black rice, cyanidin-3-O-β-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int. Immunopharmacol., 2010, 10(8), 959-966.
[http://dx.doi.org/10.1016/j.intimp.2010.05.009] [PMID: 20669401]
[146]
Lee, J.K. Anti-inflammatory effects of eriodictyol in lipopolysaccharide-stimulated raw 264.7 murine macrophages. Arch. Pharm. Res., 2011, 34(4), 671-679.
[http://dx.doi.org/10.1007/s12272-011-0418-3] [PMID: 21544733]
[147]
Polat, F.R.; Karaboga, I.; Polat, M.S.; Erboga, Z.; Yilmaz, A.; Güzel, S. Effect of hesperetin on inflammatory and oxidative status in trinitrobenzene sulfonic acid-induced experimental colitis model. Cell. Mol. Biol., 2018, 64(11), 58-65.
[http://dx.doi.org/10.14715/cmb/2018.64.11.11] [PMID: 30213290]
[148]
Fas, S.C.; Baumann, S.; Zhu, J.Y.; Giaisi, M.; Treiber, M.K.; Mahlknecht, U.; Krammer, P.H.; Li-Weber, M. Wogonin sensitizes resistant malignant cells to TNFalpha- and TRAIL-induced apoptosis. Blood, 2006, 108(12), 3700-3706.
[http://dx.doi.org/10.1182/blood-2006-03-011973] [PMID: 16931628]
[149]
Wang, J.; Guo, C.; Wei, Z.; He, X.; Kou, J.; Zhou, E.; Yang, Z.; Fu, Y. Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-κB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells. J. Dairy Sci., 2016, 99(4), 3016-3022.
[http://dx.doi.org/10.3168/jds.2015-10330] [PMID: 26851851]
[150]
Cho, J.Y.; Kim, P.S.; Park, J.; Yoo, E.S.; Baik, K.U.; Kim, Y.K.; Park, M.H. Inhibitor of tumor necrosis factor-α production in lipopolysaccharide-stimulated RAW264.7 cells from Amorpha fruticosa. J. Ethnopharmacol., 2000, 70(2), 127-133.
[http://dx.doi.org/10.1016/S0378-8741(99)00154-3] [PMID: 10771202]
[151]
Chen, C.; Zhang, C.; Cai, L.; Xie, H.; Hu, W.; Wang, T.; Lu, D.; Chen, H. Baicalin suppresses IL-1β-induced expression of inflammatory cytokines via blocking NF-κB in human osteoarthritis chondrocytes and shows protective effect in mice osteoarthritis models. Int. Immunopharmacol., 2017, 52, 218-226.
[http://dx.doi.org/10.1016/j.intimp.2017.09.017] [PMID: 28942223]
[152]
Salehi, B.; Venditti, A.; Sharifi-Rad, M. Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; Antolak, H.; Azzini, E.; Setzer, W.N.; Martins, N. The therapeutic potential of Apigenin. Int. J. Mol. Sci., 2019, 20(6), 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[153]
Ferraz, C.R.; Carvalho, T.T.; Manchope, M.F.; Artero, N.A.; Rasquel-Oliveira, F.S.; Fattori, V.; Casagrande, R.; Verri, W.A., Jr; Mcphee, D.J. Therapeutic potential of flavonoids in pain and inflammation: Mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules, 2020, 25(3), 762.
[http://dx.doi.org/10.3390/molecules25030762] [PMID: 32050623]
[154]
Iris, M.; Michael, M.; Johannes, M. Glycosides. In: Encyclopedia of Biophysics; Roberts, G.C.K., Ed.; Springer: Berlin, Heidelberg, 2013; p. 921.
[155]
Jeong, H.J.; Koo, H.N.; Na, H.J.; Kim, M.S.; Hong, S.H.; Eom, J.W.; Kim, K.S.; Shin, T.Y.; Kim, H.M. Inhibition of TNF-α and IL-6 production by Aucubin through blockade of NF-kappaB activation RBL-2H3 mast cells. Cytokine, 2002, 18(5), 252-259.
[http://dx.doi.org/10.1006/cyto.2002.0894] [PMID: 12161100]
[156]
Wu, C.F.; Bi, X.L.; Yang, J.Y.; Zhan, J.Y.; Dong, Y.X.; Wang, J.H.; Wang, J.M.; Zhang, R.; Li, X. Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. Int. Immunopharmacol., 2007, 7(3), 313-320.
[http://dx.doi.org/10.1016/j.intimp.2006.04.021] [PMID: 17276889]
[157]
Wu, M.; Gu, Z. Screening of bioactive compounds from moutan cortex and their anti-inflammatory activities in rat synoviocytes. Evid. Based Complement. Alternat. Med., 2009, 6(1), 57-63.
[http://dx.doi.org/10.1093/ecam/nem066] [PMID: 18955220]
[158]
Teponno, R.B.; Kusari, S.; Spiteller, M. Recent advances in research on lignans and neolignans. Nat. Prod. Rep., 2016, 33(9), 1044-1092.
[http://dx.doi.org/10.1039/C6NP00021E] [PMID: 27157413]
[159]
Kim, J.Y.; Lim, H.J.; Lee, Y.; Kim, J.S.; Kim, D.H.; Lee, H.J.; Kim, H.D.; Jeon, R.; Ryu, J.H. In vitro anti-inflammatory activity of lignans isolated from Magnolia fargesii. Bioorg. Med. Chem. Lett., 2009, 19(3), 937-940.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.103] [PMID: 19110419]
[160]
Ryu, J.H.; Son, H.J.; Lee, S.H.; Sohn, D.H. Two neolignans from Perilla frutescens and their inhibition of nitric oxide synthase and tumor necrosis factor-α expression in murine macrophage cell line RAW 264.7. Bioorg. Med. Chem. Lett., 2002, 12(4), 649-651.
[http://dx.doi.org/10.1016/S0960-894X(01)00812-5] [PMID: 11844692]
[161]
Cho, J.Y.; Park, J.; Kim, P.S.; Yoo, E.S.; Baik, K.U.; Park, M.H. Savinin, a lignan from Pterocarpus santalinus inhibits tumor necrosis factor-α production and T cell proliferation. Biol. Pharm. Bull., 2001, 24(2), 167-171.
[http://dx.doi.org/10.1248/bpb.24.167] [PMID: 11217086]
[162]
Bulle, S.; Reddyvari, H.; Nallanchakravarthula, V.; Vaddi, D.R. Therapeutic potential of Pterocarpus santalinus L.: An update. Pharmacogn. Rev., 2016, 10(19), 43-49.
[http://dx.doi.org/10.4103/0973-7847.176575] [PMID: 27041873]
[163]
Xu, Y.; Lou, Z.; Lee, S.H. Arctigenin represses TGF-β-induced epithelial mesenchymal transition in human lung cancer cells. Biochem. Biophys. Res. Commun., 2017, 493(2), 934-939.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.117] [PMID: 28951214]
[164]
Pollastri, M.P.; Whitty, A.; Merrill, J.C.; Tang, X.; Ashton, T.D.; Amar, S. Identification and characterization of kava-derived compounds mediating TNF-α suppression. Chem. Biol. Drug Des., 2009, 74(2), 121-128.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00838.x] [PMID: 19538508]
[165]
Park, G.; Kim, H.G.; Sim, Y.; Sung, S.H.; Oh, M.S. Sauchinone, a lignan from Saururus chinensis, protects human skin keratinocytes against ultraviolet B-induced photoaging by regulating the oxidative defense system. Biol. Pharm. Bull., 2013, 36(7), 1134-1139.
[http://dx.doi.org/10.1248/bpb.b13-00101] [PMID: 23811562]
[166]
Huang, G.J.; Huang, S.S.; Deng, J.S. Anti-inflammatory activities of inotilone from Phellinus linteus through the inhibition of MMP-9, NF-κB, and MAPK activation in vitro and in vivo. PLoS One, 2012, 7(5), e35922.
[http://dx.doi.org/10.1371/journal.pone.0035922] [PMID: 22590514]
[167]
Lou, C.; Zhu, Z.; Zhao, Y.; Zhu, R.; Zhao, H. Arctigenin, a lignan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/-9 and heparanase in MDA-MB-231 cells. Oncol. Rep., 2017, 37(1), 179-184.
[http://dx.doi.org/10.3892/or.2016.5269] [PMID: 27878294]
[168]
Lu, Y.; Suh, S.J.; Kwak, C.H.; Kwon, K.M.; Seo, C.S.; Li, Y.; Jin, Y.; Li, X.; Hwang, S.L.; Kwon, O.; Chang, Y.C.; Park, Y.G.; Park, S.S.; Son, J.K.; Kim, C.H.; Chang, H.W. Saucerneol F, a new lignan, inhibits iNOS expression via MAPKs, NF-κB and AP-1 inactivation in LPS-induced RAW264.7 cells. Int. Immunopharmacol., 2012, 12(1), 175-181.
[http://dx.doi.org/10.1016/j.intimp.2011.11.008] [PMID: 22155103]
[169]
Lu, Y.; Hong, T.G.; Jin, M.; Yang, J.H.; Suh, S.J.; Piao, D.G.; Ko, H.K.; Seo, C.S.; Chang, Y.C.; Kim, C.H.; Son, J.K.; Chang, H.W. Saucerneol G, a new lignan, from Saururus chinensis inhibits matrix metalloproteinase-9 induction via a nuclear factor κB and mitogen activated protein kinases in lipopolysaccharide-stimulated RAW264.7 cells. Biol. Pharm. Bull., 2010, 33(12), 1944-1948.
[http://dx.doi.org/10.1248/bpb.33.1944] [PMID: 21139230]
[170]
Mali, A.V.; Wagh, U.V.; Hegde, M.V.; Chandorkar, S.S.; Surve, S.V.; Patole, M.V. In vitro anti-metastatic activity of enterolactone, a mammalian lignan derived from flax lignan, and down-regulation of matrix metalloproteinases in MCF-7 and MDA MB 231 cell lines. Indian J. Cancer, 2012, 49(1), 181-187.
[http://dx.doi.org/10.4103/0019-509X.98948] [PMID: 22842186]
[171]
Jäger, S.; Trojan, H.; Kopp, T.; Laszczyk, M.N.; Scheffler, A. Pentacyclic triterpene distribution in various plants - rich sources for a new group of multi-potent plant extracts. Molecules, 2009, 14(6), 2016-2031.
[http://dx.doi.org/10.3390/molecules14062016] [PMID: 19513002]
[172]
Carcache-Blanco, E.J.; Cuendet, M.; Park, E.J.; Su, B.N.; Rivero-Cruz, J.F.; Farnsworth, N.R.; Pezzuto, J.M.; Douglas Kinghorn, A. Potential cancer chemopreventive agents from Arbutus unedo. Nat. Prod. Res., 2006, 20(4), 327-334.
[http://dx.doi.org/10.1080/14786410500161205] [PMID: 16644527]
[173]
Vo, N.N.Q.; Nomura, Y.; Muranaka, T.; Fukushima, E.O. Structure-activity relationships of pentacyclic triterpenoids as inhibitors of cyclooxygenase and lipoxygenase enzymes. J. Nat. Prod., 2019, 82(12), 3311-3320.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00538] [PMID: 31774676]
[174]
Cheng, S.; Eliaz, I.; Lin, J.; Thyagarajan-Sahu, A.; Sliva, D. Triterpenes from Poria cocos suppress growth and invasiveness of pancreatic cancer cells through the downregulation of MMP-7. Int. J. Oncol., 2013, 42(6), 1869-1874.
[http://dx.doi.org/10.3892/ijo.2013.1902] [PMID: 23588713]
[175]
Kang, D.G.; Lee, H.J.; Kim, K.T.; Hwang, S.C.; Lee, C.J.; Park, J.S. Effect of oleanolic acid on the activity, secretion and gene expression of matrix metalloproteinase-3 in articular chondrocytes in vitro and the production of matrix metalloproteinase-3 in vivo. Korean J. Physiol. Pharmacol., 2017, 21(2), 197-204.
[http://dx.doi.org/10.4196/kjpp.2017.21.2.197] [PMID: 28280413]
[176]
Chen, N.H.; Liu, J.W.; Zhong, J.J. Ganoderic acid T inhibits tumor invasion in vitro and in vivo through inhibition of MMP expression. Pharmacol. Rep., 2010, 62(1), 150-163.
[http://dx.doi.org/10.1016/S1734-1140(10)70252-8] [PMID: 20360625]
[177]
Cha, H.J.; Bae, S.K.; Lee, H.Y.; Lee, O.H.; Sato, H.; Seiki, M.; Park, B.C.; Kim, K.W. Anti-invasive activity of ursolic acid correlates with the reduced expression of Matrix Metalloproteinase-9 (MMP-9) in HT1080 human fibrosarcoma cells. Cancer Res., 1996, 56(10), 2281-2284.
[PMID: 8625299]
[178]
Kobori, M.; Yoshida, M.; Ohnishi-Kameyama, M.; Shinmoto, H. Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. Br. J. Pharmacol., 2007, 150(2), 209-219.
[http://dx.doi.org/10.1038/sj.bjp.0706972] [PMID: 17160010]
[179]
Manjula, N.; Gayathri, B.; Vinaykumar, K.S.; Shankernarayanan, N.P.; Vishwakarma, R.A.; Balakrishnan, A. Inhibition of MAP kinases by crude extract and pure compound isolated from Commiphora mukul leads to down regulation of TNF-α IL-1β and IL-2. Int. Immunopharmacol., 2006, 6(2), 122-132.
[http://dx.doi.org/10.1016/j.intimp.2005.07.001] [PMID: 16399617]
[180]
Alharbi, W.S.; Almughem, F.A.; Almehmady, A.M.; Jarallah, S.J.; Alsharif, W.K.; Alzahrani, N.M.; Alshehri, A.A. Phytosomes as an Emerging Nanotechnology Platform for the Topical Delivery of Bioactive Phytochemicals. Pharmaceutics, 2021, 13(9), 1475.
[http://dx.doi.org/10.3390/pharmaceutics13091475] [PMID: 34575551]
[181]
Andrews, S.N.; Jeong, E.; Prausnitz, M.R. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm. Res., 2013, 30(4), 1099-1109.
[http://dx.doi.org/10.1007/s11095-012-0946-7] [PMID: 23196771]
[182]
Alkilani, A.Z.; McCrudden, M.T.C.; Donnelly, R.F. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4), 438-470.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[183]
Bos, J.D.; Meinardi, M.M.H.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol., 2000, 9(3), 165-169.
[http://dx.doi.org/10.1034/j.1600-0625.2000.009003165.x] [PMID: 10839713]
[184]
Scheuplein, R.J.; Blank, I.H.; Brauner, G.J.; MacFarlane, D.J. Percutaneous absorption of steroids. J. Invest. Dermatol., 1969, 52(1), 63-70.
[http://dx.doi.org/10.1038/jid.1969.9] [PMID: 5761930]
[185]
Tojo, K. Random brick model for drug transport across stratum corneum. J. Pharm. Sci., 1987, 76(12), 889-891.
[http://dx.doi.org/10.1002/jps.2600761209] [PMID: 3440932]
[186]
Hadgraft, J.; Valenta, C. pH, pK(a) and dermal delivery. Int. J. Pharm., 2000, 200(2), 243-247.
[http://dx.doi.org/10.1016/S0378-5173(00)00402-6] [PMID: 10867254]
[187]
Thakur, L.; Ghodasra, U.; Patel, N.; Dabhi, M. Novel approaches for stability improvement in natural medicines. Pharmacogn. Rev., 2011, 5(9), 48-54.
[http://dx.doi.org/10.4103/0973-7847.79099] [PMID: 22096318]
[188]
Heidarpour, F.; Mohammadabadi, M.R.; Zaidul, I.S.M.; Maherani, B.; Saari, N.; Hamid, A.A.; Abas, F.; Manap, M.Y.A.; Mozafari, M.R. Use of prebiotics in oral delivery of bioactive compounds: A nanotechnology perspective. Pharmazie, 2011, 66(5), 319-324.
[PMID: 21699064]
[189]
Mohammadabadi, M.R.; El-Tamimy, M.; Gianello, R.; Mozafari, M.R. Supramolecular assemblies of zwitterionic nanoliposome-polynucleotide complexes as gene transfer vectors: Nanolipoplex formulation and in vitro characterisation. J. Liposome Res., 2009, 19(2), 105-115.
[http://dx.doi.org/10.1080/08982100802547326] [PMID: 19242855]
[190]
Mortazavi, S.M.; Mohammadabadi, M.R.; Mozafari, M.R. Applications and in vivo behaviour of lipid vesicles. In: Nanoliposomes: From Fundamentals to Recent Developments; Mozafari, M.R.; Mortazavi, S.M., Eds.; Trafford Publishing Ltd.: Oxford, UK, 2005; pp. 67-76.
[191]
Mohammadabadi, M.R.; Mozafari, M.R. Development of nanoliposome-encapsulated thymoquinone: Evaluation of loading efficiency and particle characterization. Russ. J. Biopharm, 2019, 11(4), 39-46.
[192]
Mohammadabadi, M.R.; Mozafari, M.R. Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form. J. Drug Deliv. Sci. Technol., 2018, 47, 445-453.
[http://dx.doi.org/10.1016/j.jddst.2018.08.019]
[193]
Zarrabi, A.; Alipoor Amro Abadi, M.; Khorasani, S.; Mohammadabadi, M.R.; Jamshidi, A.; Torkaman, S.; Taghavi, E.; Mozafari, M.R.; Rasti, B. Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules, 2020, 25(3), 638.
[http://dx.doi.org/10.3390/molecules25030638] [PMID: 32024189]
[194]
El-Refaie, W.M.; Elnaggar, Y.S.R.; El-Massik, M.A.; Abdallah, O.Y. Novel self-assembled, gel-core hyaluosomes for non-invasive management of osteoarthritis: In vitro optimization, ex-vivo and in-vivo permeation. Pharm. Res., 2015, 32(9), 2901-2911.
[http://dx.doi.org/10.1007/s11095-015-1672-8] [PMID: 25777613]
[195]
Shakouri, A.; Adljouy, N.; Balkani, S.; Mohamadi, M.; Hamishehkar, H.; Abdolalizadeh, J.; Kazem Shakouri, S. Effectiveness of topical gel of medical leech (Hirudo medicinalis) saliva extract on patients with knee osteoarthritis: A randomized clinical trial. Complement. Ther. Clin. Pract., 2018, 31, 352-359.
[http://dx.doi.org/10.1016/j.ctcp.2017.12.001] [PMID: 29246745]
[196]
El-Say, K.M.; Abd-Allah, F.I.; Lila, A.E.; Hassan, A-S.; Kassem, A.E.A. Diacerein niosomal gel for topical delivery: Development, in vitro and in vivo assessment. J. Liposome Res., 2016, 26(1), 57-68.
[http://dx.doi.org/10.3109/08982104.2015.1029495] [PMID: 25853339]
[197]
Zhang, X. Regulatory Situation of Herbal Medicines: A Worldwide Review; WHO; , 1998. Available from: https://apps.who.int/iris/handle/10665/63801
[198]
Marwick, C. Growing use of medicinal botanicals forces assessment by drug regulators. JAMA, 1995, 273(8), 607-609.
[http://dx.doi.org/10.1001/jama.1995.03520320015008] [PMID: 7844858]
[199]
Verma, N. Current regulatory challenges and approaches in the registration of herbal drugs in Europe. Clin. Res. Regul. Aff., 2016, 33(1), 1-16.
[http://dx.doi.org/10.3109/10601333.2016.1130717]
[200]
Vanan, T. Challenges, constraints and opportunities in herbal medicines-a review. Int. J. Herb. Med., 2014, 2(1), 21-24.
[201]
Saha, M.R.; Kar, P.; Sen, A. Assessment of phytochemical, antioxidant and genetic diversities among selected medicinal plant species of Mimosoideae (Mimosaceae). Indian J. Tradit. Knowl., 2018, 17(1), 32-40.
[202]
Jacobson, J.S. Traditional, complementary and alternative medicine: Policy and public health perspectives. In: Global Public Health; Gerard, B.; Gemma, B., Eds.; Imperial College Press: London, 2010; p. 5.
[203]
Li, X.Z.; Huang, H.J.; Zhang, S.N.; Liu, Q.; Wang, Y.M. Label-free quantitative proteomics positions the effects and mechanisms of Herba Lysimachiae on synovial diseases based on biolabel-led research pattern. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1138, 121969.
[http://dx.doi.org/10.1016/j.jchromb.2020.121969] [PMID: 31945707]
[204]
Zhang, A.H.; Sun, H.; Yan, G.L.; Han, Y.; Zhao, Q.Q.; Wang, X.J. Chinmedomics: A powerful approach integrating metabolomics with serum pharmacochemistry to evaluate the efficacy of traditional chinese medicine. Engineering (Beijing), 2019, 5(1), 60-68.
[http://dx.doi.org/10.1016/j.eng.2018.11.008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy