Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Characteristics of Green-synthesized Magnesium Oxide Nanoparticles (MgONPs) and their Biomedical Applications

Author(s): Rajkuberan Chandrasekaran*, Sunita Patil, Muthukumar Krishnan and Kamil Kuca*

Volume 23, Issue 9, 2023

Published on: 12 December, 2022

Page: [1058 - 1069] Pages: 12

DOI: 10.2174/1389557523666221212114416

Price: $65

conference banner
Abstract

In the current epoch, noble metals/metal oxides with precise structures are needed to develop sustainable products to improve the welfare of human beings and the environment. Nanomaterials in the regime 1 -100 nm scale are a promising material for the research fraternities owing to their stupendous properties. The metallic/metal oxide nanoparticles (silver, gold, copper oxide, iron oxide, magnesium oxide) are gaining significant momentum and need to be extensively studied. Magnesium oxide nanoparticles (MgONPs) are a periclase, white hygroscopic material consisting of Mg2+ ions and O-2 ions in lattice arranged. These nanoparticles can be fabricated through physical, chemical and biological methods. The development of green synthesized MgONPs needs to be ascertained and explored its ultimate in medicine, health, cosmetics, environmental protection, chemical industries, and energy. Therefore, the present review manifests the green synthetic approaches of MgONPs and their impact on crystalline structure and shape. Further, we have provided the antibacterial and anticancer activities of MgONPs thoroughly reported in various kinds of literature. Overall, the unique MgONPs can be plausibly used as safe biomaterials in biomedical applications.

Graphical Abstract

[1]
Lyshevski, S.E. Nano-and Micro-Electromechanical Systems: fundamentals of nano-and microengineering; CRC press: Florida, 2018.
[http://dx.doi.org/10.1201/9781315219288]
[2]
Yusuf, A.; Al Jitan, S.; Garlisi, C.; Palmisano, G. A review of recent and emerging antimicrobial nanomaterials in wastewater treatment applications. Chemosphere, 2021, 278, 130440.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130440] [PMID: 33838416]
[3]
Hornak, J. Synthesis, properties, and selected technical applications of magnesium oxide nanoparticles: A Review. Int. J. Mol. Sci., 2021, 22(23), 12752.
[http://dx.doi.org/10.3390/ijms222312752] [PMID: 34884556]
[4]
Praveen Kumar, P.; Laxmi Deepak Bhatlu, M.; Sukanya, K.; Karthikeyan, S.; Jayan, N. Synthesis of magnesium oxide nanoparticle by eco friendly method (green synthesis) – A review. Mater. Today Proc., 2021, 37, 3028-3030.
[http://dx.doi.org/10.1016/j.matpr.2020.08.726]
[5]
Patil, S.; Chandrasekaran, R. Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol., 2020, 18(1), 67.
[http://dx.doi.org/10.1186/s43141-020-00081-3] [PMID: 33104931]
[6]
Ingale, A.G.; Chaudhari, A.N. Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J. Nanomed. Nanotechnol., 2013, 4(165), 1-7.
[http://dx.doi.org/10.4172/2157-7439.1000165]
[7]
Abinaya, S.; Kavitha, H.P.; Prakash, M.; Muthukrishnaraj, A. Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustain. Chem. Pharm., 2021, 19, 100368.
[http://dx.doi.org/10.1016/j.scp.2020.100368]
[8]
Nemade, K.R.; Waghuley, S.A. Synthesis of MgONPs by solvent mixed spray pyrolysis technique for optical investigation. Int. J. Met., 2014, 2014, 1-4.
[http://dx.doi.org/10.1155/2014/389416]
[9]
Synthesis of nanostructured magnesium oxide by sol gel method and its characterization. Int. J. Pharm. Sci. Res., 2018, 9(4), 1576-1581.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.9(4).1576-81]
[10]
Nader, N.; Masoud, H.; Ali, Z.; Mana, Y.; Mohammadreza, B.M. Synthesis of cubic MgO nanostructure by an easy hydrothermal-calcinations method. J. Ceram. Process. Res., 15(2), 88-92.
[11]
Green, T. Synthesis of magnesium oxide nanoparticles by wet chemical method and its antibacterial activity and mahalingam sundrarajan. Adv. Mat. Res., 2013, 678, 297-300.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.678.297]
[12]
Natarajan, G. Synthesis and optical characterization of mgonps using chemical precipitation method. Nanoparticle, 2016, 2(4), 1-6.
[13]
Meenakshi, S.D.; Rajarajan, M.; Rajendran, S.; Kennedy, Z.R.; Brindha, G. Nanotechnology Synthesis and characterization of magnesium oxide nanoparticles. 2012, 50, 10618-10620.
[14]
Imani, M.M.; Safaei, M. optimized synthesis of magnesium oxide nanoparticles as bactericidal agents. J. Nanotechnol., 2019, 2019, 1-6.
[http://dx.doi.org/10.1155/2019/6063832]
[15]
Alavi, M.A.; Morsali, A. Syntheses and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method. Ultrason. Sonochem., 2010, 17(2), 441-446.
[http://dx.doi.org/10.1016/j.ultsonch.2009.08.013] [PMID: 19762266]
[16]
Takahashi, N. Simple and rapid synthesis of MgO with nano-cube shape by means of a domestic microwave oven. 2007, 9, 722-724.
[http://dx.doi.org/10.1016/j.solidstatesciences.2007.05.007]
[17]
Su, Y.; Wei, H.; Zhou, Z.; Yang, Z.; Wei, L.; Zhang, Y. Rapid synthesis and characterization of magnesium oxide nanocubes via DC arc discharge. Mater. Lett., 2011, 65(1), 100-103.
[http://dx.doi.org/10.1016/j.matlet.2010.09.015]
[18]
Sunita, P.; Palaniswamy, M. A bio-inspired approach of formulation and evaluation of Aegle marmelos fruit extract mediated silver nanoparticle gel and comparison of its antibacterial activity with antiseptic cream. Eur. J. Integr. Med., 2020, 33, 101025.
[http://dx.doi.org/10.1016/j.eujim.2019.101025]
[19]
Singh, J.P.; Chae, K.H. Local electronic structure perspectives of nanoparticle growth: The Case of MgO. ACS Omega, 2019, 4(4), 7140-7150.
[http://dx.doi.org/10.1021/acsomega.9b00262] [PMID: 31459823]
[20]
Oh, C.; Streller, F.; Ashurst, W.R.; Carpick, R.W.; De Boer, M.P. In situ oxygen plasma cleaning of microswitch surfaces - Comparison of Ti and graphite electrodes. J. Micromech. Microeng., 2016, 16, 26.
[http://dx.doi.org/10.1088/0960-1317/26/11/115020]
[21]
Singh, J.P.; Singh, V.; Sharma, A.; Pandey, G.; Chae, K.H.; Lee, S. Approaches to synthesize MgO nanostructures for diverse applications. Heliyon, 2020, 6(9), e04882.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04882] [PMID: 33024853]
[22]
Ammulu, M.A.; Viswanath, K.V.; Giduturi, A.K.; Vemuri, P.K. Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox. b heartwood extract and its biomedical applications. J. Genet. Eng. Biotechnol., 2021, 19, 21.
[23]
Rajkuberan, C.; Sudha, K.; Sathishkumar, G.; Sivaramakrishnan, S. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt B), 924-930.
[http://dx.doi.org/10.1016/j.saa.2014.09.115] [PMID: 25459618]
[24]
Ogunyemi, S.O.; Zhang, F.; Abdallah, Y.; Zhang, M.; Wang, Y.; Sun, G.; Qiu, W.; Li, B. Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2230-2239.
[http://dx.doi.org/10.1080/21691401.2019.1622552] [PMID: 31161806]
[25]
Abdallah, Y.; Ogunyemi, S.O.; Abdelazez, A.; Zhang, M.; Hong, X.; Ibrahim, E.; Hossain, A.; Fouad, H.; Li, B.; Chen, J. The Green Synthesis of MgO Nano-Flowers Using Rosmarinus officinalis L . (Rosemary ) and the Antibacterial Activities against Xanthomonas oryzaepv.oryzae Biomed Res. Int., 2019, 2019
[26]
Jain, S. Wadhawan, V. Kumar, S.K. Mehta. ph-sensing strips based on biologically synthesized Ly-MgONPs. ACS Omega, 2019, 4, 21647-21657.
[http://dx.doi.org/10.1021/acsomega.9b01306] [PMID: 31891042]
[27]
Younis, I.Y.; El-Hawary, S.S.; Eldahshan, O.A.; Abdel-Aziz, M.M.; Ali, Z.Y. Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci. Rep., 2021, 11(1), 16868.
[http://dx.doi.org/10.1038/s41598-021-96377-6] [PMID: 34413416]
[28]
Ogunyemi, S.O.; Zhang, M.; Abdallah, Y.; Ahmed, T.; Qiu, W.; Ali, M.A.; Yan, C.; Yang, Y.; Chen, J.; Li, B. The bio-synthesis of three metal oxide nanoparticles (ZnO, MnO2, and MgO) and their antibacterial activity against the bacterial leaf blight pathogen. Front. Microbiol., 2020, 11, 588326.
[http://dx.doi.org/10.3389/fmicb.2020.588326] [PMID: 33343527]
[29]
Mohanasrinivasan, V.; Devi, C.S.; Mehra, A.; Prakash, S.; Agarwal, A.; Selvarajan, E. Biosynthesis of MgONPs Using Lactobacillus Sp. and its Activity against human leukemia cell lines HL-60. Bionanoscience, 2017, 8(1), 1-5.
[30]
Raliya, R.; Tarafdar, J.C.; Choudhary, K.; Mal, P.; Raturi, A.; Gautam, R.; Singh, S.K. Synthesis of MgONPs using Aspergillus tubingensis TFR-3. J. Bionanosci., 2014, 8(1), 34-38.
[http://dx.doi.org/10.1166/jbns.2014.1195]
[31]
Ibrahem, E.J.; Thalij, K. Antibacterial potential of magnesium oxide nanoparticles synthesized by antibacterial potential of magnesium oxide nanoparticles synthesized by Aspergillus niger. Biotechnol. J. Int., 2017, 2017, 1-7.
[http://dx.doi.org/10.9734/BJI/2017/29534]
[32]
El-Sayyad, G.S.; Mosallam, F.M.; El-Batal, A.I. One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv. Powder Technol., 2018, 29(11), 2616-2625.
[http://dx.doi.org/10.1016/j.apt.2018.07.009]
[33]
Chaudhary, R.; Nawaz, K.; Khan, A.K.; Hano, C.; Abbasi, B.H.; Anjum, S. An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules, 2020, 10(11), 1498.
[http://dx.doi.org/10.3390/biom10111498] [PMID: 33143289]
[34]
Pugazhendhi, A.; Prabhu, R.; Muruganantham, K.; Shanmuganathan, R.; Natarajan, S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J. Photochem. Photobiol. B, 2019, 190, 86-97.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.014] [PMID: 30504053]
[35]
Jhansi, K.; Jayarambabu, N.; Reddy, K.P.; Reddy, N.M.; Suvarna, R.P.; Rao, K.V.; Kumar, V.R.; Rajendar, V. Biosynthesis of MgONPs using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination. 3 Biotech., 2017, 7, 1-11.
[http://dx.doi.org/10.1007/s13205-017-0894-3]
[36]
Jeevanandam, J.; Chan, Y.S.; Danquah, M.K. Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J. Chem., 2017, 41(7), 2800-2814.
[http://dx.doi.org/10.1039/C6NJ03176E]
[37]
Hassan, S.E.D.; Fouda, A.; Saied, E.; Farag, M.M.S.; Eid, A.M.; Barghoth, M.G.; Awad, M.A.; Hamza, M.F.; Awad, M.F. Rhizopus oryzae-mediated green synthesis of magnesium oxide nanoparticles (Mgo-nps): A promising tool for antimicrobial, mosquitocidal action, and tanning effluent treatment. J. Fungi, 2021, 7(5), 372.
[http://dx.doi.org/10.3390/jof7050372] [PMID: 34068709]
[38]
Umaralikhan, L.; Jamal Mohamed Jaffar, M. Green synthesis of MgO nanoparticles and it antibacterial activity. Iran. J. Sci. Technol. Transac., 2018, 42(2), 477-485.
[39]
Fatiqin, A.; Amrulloh, H.; Simanjuntak, W. Green synthesis of MgO nanoparticles using Moringa oleifera leaf aqueous extract for antibacterial activity. Bull. Chem. Soc. Ethiop., 2021, 35(1), 161-170.
[http://dx.doi.org/10.4314/bcse.v35i1.14]
[40]
Amrulloh, H.; Fatiqin, A.; Simanjuntak, W.; Afriyani, H.; Annissa, A. Antioxidant and antibacterial activities of magnesium oxide nanoparticles prepared using aqueous extract of Moringa Oleifera bark as green agents. J. Multidiscipl. Appl. Nat. Sci., 2021, 1(1), 44-53.
[http://dx.doi.org/10.47352/jmans.v1i1.9]
[41]
Jeevanandam, J.; Chan, Y.S.; Danquah, M.K. Effect of pH variations on morphological transformation of biosynthesized MgO nanoparticles. Particul. Sci. Technol., 2020, 38(5), 573-586.
[http://dx.doi.org/10.1080/02726351.2019.1566938]
[42]
Rehman, T.R. Synthesis and Characterization of MgONPs using Neem Leaves with their Photocatalytic and Antioxidant Properties, Saudi j. Med. Pharm., 2021, 7, 348-357.
[http://dx.doi.org/10.36348/sjmps.2021.v07i08.002]
[43]
Munjal, S.; Singh, A. Synthesis and characterization of MgO nanoparticles by orange fruit waste through green method. Int. J. Adv. Res. Chem. Sci., 2017, 4(9), 36-42.
[http://dx.doi.org/10.20431/2349-0403.0409005]
[44]
Suresh, J.; Yuvakkumar, R.; Sundrarajan, M.; Hong, S.I. Green synthesis of magnesium oxide nanoparticles. Adv. Mat. Res., 2014, 952, 141-144.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.952.141]
[45]
Sharma, G.; Soni, R.; Jasuja, N.D. Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J. Taibah Univ. Sci., 2017, 11(3), 471-477.
[http://dx.doi.org/10.1016/j.jtusci.2016.09.004]
[46]
Sharma, S.K.; Khan, A.U.; Khan, M.; Gupta, M.; Gehlot, A.; Park, S.; Alam, M. Biosynthesis of MgO nanoparticles using Annona squamosa seeds and its catalytic activity and antibacterial screening. Micro & Nano Lett., 2020, 15(1), 30-34.
[http://dx.doi.org/10.1049/mnl.2019.0358]
[47]
Khan, A.; Shabir, D.; Ahmad, P.; Khandaker, M.U.; Faruque, M.R.I.; Din, I.U. Biosynthesis and antibacterial activity of MgO-NPs produced from Camellia-sinensis leaves extract. Mater. Res. Express, 2021, 8(1), 015402.
[http://dx.doi.org/10.1088/2053-1591/abd421]
[48]
Jeevanandam, J.; Chan, Y.S.; Wong, Y.J.; Hii, Y.S. Biogenic synthesis of magnesium oxide nanoparticles using Aloe barbadensis leaf latex extract. IOP Conf. Ser.: Mater. Sci. Eng., 2020, 943, p. 012030.
[http://dx.doi.org/10.1088/1757-899X/943/1/012030]
[49]
Amina, M.; Al Musayeib, N.M.; Alarfaj, N.A.; El-Tohamy, M.F.; Oraby, H.F.; Al Hamoud, G.A.; Bukhari, S.I.; Moubayed, N.M.S. Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials. PLoS One, 2020, 15(8), e0237567.
[http://dx.doi.org/10.1371/journal.pone.0237567] [PMID: 32797097]
[50]
Essien, E.R.; Atasie, V.N.; Okeafor, A.O.; Nwude, D.O. Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int. Nano Lett., 2020, 10(1), 43-48.
[http://dx.doi.org/10.1007/s40089-019-00290-w]
[51]
Vergheese, M.; Vishal, S.K. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J. Pharmacogn. Phytochem., 2018, 7, 1193-1200.
[52]
Palanisamy, G.; Pazhanivel, T. Green synthesis of MgONPs for antibacterial activity. Sci. Rep., 2017, 11, 137-141.
[53]
Rahmani-nezhad, S.; Dianat, S.; Saeedi, M.; Hadjiakhoondi, A. Synthesis, characterization and catalytic activity of plant- mediated MgONPs Using Mucuna Pruriens L. Seed Extract and their biological evaluation. J. Nanoanalysis., 2017, 4, 290-298.
[http://dx.doi.org/10.22034/jna.2017.540020]
[54]
Anantharaman, S. Kuriakose, Sathyabhama, M. George, Green synthesis and its applications of magnesium oxide nanoparticles from the seeds of Lepedium sativum. Int. J. Recent Sci. Res., 2016, 7, 14029-14032.
[55]
Kumara, K.N.S.; Nagaswarupa, H.P.; Prashantha, S.C.; Mahesh, K.R.V.; Mylarappa, M.; Siddeshwara, D.M.K.H.P. Raghavendra, N.Synthesis and characterization of ZnO/MgO nano particles by curry leaves through green approach and their photocatalytic applications. Int. J. Adv. Res., 2016, 4(10), 1958-1962.
[http://dx.doi.org/10.21474/IJAR01/2009]
[56]
Narendhran, S.; Manikandan, M.; Shakila, P.B. Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: a green chemistry approach. Bull. Mater. Sci., 2019, 42(3), 133.
[http://dx.doi.org/10.1007/s12034-019-1811-7]
[57]
Das, B.; Moumita, S.; Ghosh, S.; Khan, M.I.; Indira, D.; Jayabalan, R.; Tripathy, S.K.; Mishra, A.; Balasubramanian, P. Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. Mater. Sci. Eng. C, 2018, 91, 436-444.
[http://dx.doi.org/10.1016/j.msec.2018.05.059] [PMID: 30033274]
[58]
Karthik, K.; Dhanuskodi, S.; Prabu Kumar, S.; Gobinath, C.; Sivaramakrishnan, S. Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater. Lett., 2017, 206, 217-220.
[http://dx.doi.org/10.1016/j.matlet.2017.07.004]
[59]
Srivastava, V.; Sharma, Y.C.; Sillanpää, M. Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceram. Int., 2015, 41(5), 6702-6709.
[http://dx.doi.org/10.1016/j.ceramint.2015.01.112]
[60]
Dobrucka, R. Synthesis of MgO nanoparticles using Artemisia abrotanum Herba Extract and their antioxidant and photocatalytic properties. Iran. J. Sci. Technol. Trans. A Sci., 2018, 42(2), 547-555.
[http://dx.doi.org/10.1007/s40995-016-0076-x]
[61]
Datta, N.; Pal, M.; Roy, U.; Mitra, R.; Pradhan, A. Synthesis and characterisation of magnesium oxide nanoparticles using Ocimum sanctum and its application. World J. Pharm. Res. Infection, 2014, 13, 15.
[http://dx.doi.org/10.20959/wjpr20187-11615]
[62]
Ghidan, A.Y.; Tawfiq, M.; Al-Antary, A.M. Green synthesis of magnesium oxide MgONPs using Chamaemelum nobile flowers extract: effect on the green peach aphid. In The 3rd international nanotechnology and conference. Madridge J. nanotechnolnanosci., 2018, 3(2), p. 67.
[63]
Khan, M.I.; Akhtar, M.N.; Ashraf, N.; Najeeb, J.; Munir, H.; Awan, T.I.; Tahir, M.B.; Kabli, M.R.; Tahir, B.; Reda, M. Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl. Nanosci., 2020, 10(7), 2351-2364.
[http://dx.doi.org/10.1007/s13204-020-01414-x]
[64]
Sulak, M.B. KavakcıoğluYardımcı The green synthesis of MgONPs using dried jujube fruit extract and their anti-yeast activity against Saccharomyces cerevisiae, Inorg. Nano-Metal Chem., 2021, 52(5), 1-5.
[http://dx.doi.org/10.1080/24701556.2021.1956970]
[65]
Hii, Y.S.; Jeevanandam, J.; Chan, Y.S. Plant mediated green synthesis and nanoencapsulation of MgO nanoparticle from Calotropis gigantea: Characterisation and kinetic release studies. Inorganic and Nano-Metal Chemistry, 2018, 48(12), 620-631.
[http://dx.doi.org/10.1080/24701556.2019.1569053]
[66]
Agarwal, R.A.; Gupta, N.K.; Singh, R.; Nigam, S.; Ateeq, B. Ag/AgO nanoparticles grown via time dependent double mechanism in a 2D layered Ni-PCP and Their antibacterial efficacy. Nat. Publ. Gr., 2017, 2017, 1-9.
[http://dx.doi.org/10.1038/srep44852]
[67]
Nikolova, M.P. Metal Oxide Nanoparticles as Biomedical Materials. Biomemitics., 2020, 5, 1-47.
[http://dx.doi.org/10.3390/biomimetics5020027]
[68]
Antibiotic Resistance Threats in the United States. 2019, U.S. Department of Health and Human Services; CDC: Atlanta, GA, 2019.
[69]
Kumar, M.; Curtis, A.; Hoskins, C. Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics, 2018, 10(1), 11.
[http://dx.doi.org/10.3390/pharmaceutics10010011] [PMID: 29342903]
[70]
Khan, A.U.; Khan, A.U.; Li, B.; Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Alqarni, A.O.; Khan, Z.U.H.; Ullah, S.; Wasim, M.; Khan, Q.U.; Ahmad, W. Biosynthesis of silver capped magnesium oxide nanocomposite using Olea cuspidata leaf extract and their photocatalytic, antioxidant and antibacterial activity. Photodiagn. Photodyn. Ther., 2021, 33, 102153.
[http://dx.doi.org/10.1016/j.pdpdt.2020.102153] [PMID: 33348075]
[71]
Ali, R.; Shanan, Z.J.; Saleh, G.M.; Abass, Q. Green synthesis and the study of some physical properties of MgONPs and their antibacterial activity. Iraqi J. Sci, 2020, 266-276.
[72]
Kamran, U.; Bhatti, H.N.; Iqbal, M.; Jamil, S.; Zahid, M. Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. J. Mol. Struct., 2019, 1179, 532-539.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.006]
[73]
Bhattacharya, P.; Dey, A.; Neogi, S. An insight into the mechanism of antibacterial activity by magnesium oxide nanoparticles. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(26), 5329-5339.
[http://dx.doi.org/10.1039/D1TB00875G] [PMID: 34143165]
[74]
Leung, Y.H.; Ng, A.M.C.; Xu, X.; Shen, Z.; Gethings, L.A.; Wong, M.T.; Chan, C.M.N.; Guo, M.Y.; Ng, Y.H. Djurišić A.B.; Lee, P.K.H.; Chan, W.K.; Yu, L.H.; Phillips, D.L.; Ma, A.P.Y.; Leung, F.C.C. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small, 2014, 10(6), 1171-1183.
[http://dx.doi.org/10.1002/smll.201302434] [PMID: 24344000]
[75]
John Sushma, N.; Prathyusha, D.; Swathi, G.; Madhavi, T.; Deva Prasad Raju, B.; Mallikarjuna, K.; Kim, H.S. Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea-characterization and in vitro antioxidant studies. Appl. Nanosci., 2016, 6(3), 437-444.
[http://dx.doi.org/10.1007/s13204-015-0455-1]
[76]
Sharmila, G.; Muthukumaran, C.; Sangeetha, E.; Saraswathi, H.; Soundarya, S.; Kumar, N.M. Green fabrication, characterization of Pisonia alba leaf extract derived MgO nanoparticles and its biological applications. Nano-Struct. Nano-Objects, 2019, 20, 100380.
[http://dx.doi.org/10.1016/j.nanoso.2019.100380]
[77]
Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S.I. Green synthesis and characterization of hexagonal shaped MgO nanoparticles using insulin plant (Costus pictus D. Don) leave extract and its antimicrobial as well as anticancer activity. Adv. Powder Technol., 2018, 29(7), 1685-1694.
[http://dx.doi.org/10.1016/j.apt.2018.04.003]
[78]
Majeed, S.; Danish, M.; Muhadi, N.F.B.B. Genotoxicity and apoptotic activity of biologically synthesized magnesium oxide nanoparticles against human lung cancer A-549 cell line. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2018, 9(2), 025011.
[http://dx.doi.org/10.1088/2043-6254/aac42c]
[79]
Alarfaj, N.A.; Amina, M.; Al Musayeib, N.M.; El-Tohamy, M.F.; Oraby, H.F.; Bukhari, S.I.; Moubayed, N.M.S. Prospective of green synthesized Oleum cumini Oil/PVP/MgO bionanocomposite film for its antimicrobial, antioxidant and anticancer applications. J. Polym. Environ., 2020, 28(8), 2108-2124.
[http://dx.doi.org/10.1007/s10924-020-01755-2]
[80]
Jayapriya, M.; Premkumar, K.; Arulmozhi, M.; Karthikeyan, K. One-step biological synthesis of cauliflower-like Ag/MgO nanocomposite with antibacterial, anticancer, and catalytic activity towards anthropogenic pollutants. Res. Chem. Intermed., 2020, 46(3), 1771-1788.
[http://dx.doi.org/10.1007/s11164-019-04062-1]
[81]
Safaei, M.; Taran, M.; Rezaei, R.; Mansouri, K.; Mozaffari, H.R.; Imani, M.M.; Sharifi, R. Synthesis and anticancer properties of bacterial cellulose-magnesium oxide bionanocomposite. Curr. Issues Pharm. Med. Sci., 2019, 32(1), 29-33.
[http://dx.doi.org/10.2478/cipms-2019-0007]
[82]
Karthikeyan, C.; Sisubalan, N.; Sridevi, M.; Varaprasad, K.; Ghouse Basha, M.H.; Shucai, W.; Sadiku, R. Biocidal chitosan-magnesium oxide nanoparticles via a green precipitation process. J. Hazard. Mater., 2021, 411, 124884.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124884] [PMID: 33858076]
[83]
Balraj, B.; Senthilkumar, N.; Vetha Potheher, I.; Arulmozhi, M. Characterization, antibacterial, anti-arthritic and in-vitro cytotoxic potentials of biosynthesized Magnesium oxide nanomaterial. Mater. Sci. Eng. B, 2018, 231, 121-127.
[http://dx.doi.org/10.1016/j.mseb.2018.10.011]
[84]
Faisal, S. Abdullah; Jan, H.; Shah, S.A.; Shah, S.; Rizwan, M.; Zaman, N.; Hussain, Z.; Uddin, M.N.; Bibi, N.; Khattak, A.; Khan, W.; Iqbal, A.; Idrees, M.; Masood, R. Bio-catalytic activity of novel Mentha arvensis intervened biocompatible magnesium oxide nanomaterials. Catalysts, 2021, 11(7), 780.
[http://dx.doi.org/10.3390/catal11070780]
[85]
Amina, M.; Al Musayeib, N.M.; Al-Hamoud, G.A.; Al-Dbass, A.; El-Ansary, A.; Ali, M.A. Prospective of biosynthesized L. sativum oil/PEG/Ag-MgO bionanocomposite film for its antibacterial and anticancer potential. Saudi J. Biol. Sci., 28(10), 5971-5985.
[86]
Verma, S.K.; Nisha, K.; Panda, P.K.; Patel, P.; Kumari, P.; Mallick, M.A.; Sarkar, B.; Das, B. Green synthesized MgO nanoparticles infer biocompatibility by reducing in vivo molecular nanotoxicity in embryonic zebrafish through arginine interaction elicited apoptosis. Sci. Total Environ., 2020, 713, 136521.
[http://dx.doi.org/10.1016/j.scitotenv.2020.136521] [PMID: 31951838]
[87]
Krishnamoorthy, K.; Moon, J.Y.; Hyun, H.B.; Cho, S.K.; Kim, S.J. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J. Mater. Chem., 2012, 22(47), 24610-24617.
[http://dx.doi.org/10.1039/c2jm35087d]
[88]
Kainat; Khan, M.A.; Ali, F.; Faisal, S.; Rizwan, M.; Hussain, Z.; Zaman, N.; Afsheen, Z.; Uddin, M.N.; Bibi, N. Exploring the therapeutic potential of Hibiscus rosa sinensis synthesized cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs). Saudi J. Biol. Sci., 2021, 28(9), 5157-5167.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.035] [PMID: 34466093]
[89]
Venkatappa, M.M.; Udagani, C.; Hanumegowda, S.M.; Pramod, S.N.; Venkataramaiah, S.; Rangappa, R.; Achur, R.; Alataway, A.; Dewidar, A.Z.; Al-Yafrsi, M.A.; Mahmoud, E.; Elansary, H.O.; Sannaningaiah, D. Effect of biofunctional green synthesized mgo-nanoparticles on oxidative-stress-induced tissue damage and thrombosis. Molecules, 2022, 27(16), 5162.
[http://dx.doi.org/10.3390/molecules27165162] [PMID: 36014400]
[90]
Cai, L.; Chen, J.; Liu, Z.; Wang, H.; Yang, H.; Ding, W. Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front. Microbiol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fmicb.2018.00790] [PMID: 29922237]
[91]
Mazaheri, N. naghsh; Karimi, A.; Salavati, H. In vivo toxicity investigation of magnesium oxide nanoparticles in rat for environmental and biomedical applications. Iran. J. Biotechnol., 2019, 17(1), 1-9.
[http://dx.doi.org/10.21859/ijb.1543] [PMID: 31457037]
[92]
Hou, Y.; Witte, F.; Li, J.; Guan, S. The increased ratio of Mg2+/Ca2+ from degrading magnesium alloys directs macrophage fate for functionalized growth of endothelial cells. Smart Mater. Med., 2022, 3, 188-198.
[http://dx.doi.org/10.1016/j.smaim.2022.01.001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy