Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Theranostics and Nanoparticular Approaches for the Treatment of Oral Squamous Cell Carcinoma

Author(s): Sankha Bhattacharya*

Volume 18, Issue 3, 2022

Published on: 19 August, 2022

Page: [164 - 171] Pages: 8

DOI: 10.2174/1573394718666220511114831

Price: $65

Abstract

Oral squamous cell carcinoma (OSCC), one of the most common types of oral cancer, is a significant cause of morbidity and mortality worldwide. OSCC is typically treated with a multidisciplinary approach that includes surgery, chemotherapy, and radiation after a definitive oral cancer diagnosis. Conventional chemotherapy drugs, on the other hand, may be ineffective and have a variety of side effects. Many techniques for treating and diagnosing various types of oral cancer have been proven and approved, while others are currently being researched in clinical trials. This mini-review aimed to explain the current preclinical status of nano-based techniques for diagnosing and treating OSCC successfully. This mini compilation also highlights new theranostics approaches for treating squamous cell carcinoma (OSCC). Cancer biomarker detection has also been improved thanks to nanotechnology, which has made it faster and more sensitive. Various nanoparticles have been used as innovation drivers to overcome these constraints and enhance in situ drug delivery.

Keywords: Squamous cell carcinoma (OSCC), Matrix metalloproteases (MMPs), Magnetic nanoparticles (MNPs), HSC-3 cells, Vital protein endothelial growth factor (VEGF), C-reactive protein (CRP)

Graphical Abstract

[1]
Liang X, Yao Y, Li H, Wei J, Wan C, Liu Z. Clinical significance of decreased GPX1 expression in patients with acute myeloid leukaemia (Non-M3). J Coll Physicians Surg Pak 2021; 31(8): 941-6.
[http://dx.doi.org/10.29271/jcpsp.2021.08.941] [PMID: 34320712]
[2]
Liu Q, Li S, Dupuy A, et al. Exosomes as new biomarkers and drug delivery tools for the prevention and treatment of various diseases: Current perspectives. Int J Mol Sci 2021; 22(15): 7763.
[http://dx.doi.org/10.3390/ijms22157763] [PMID: 34360530]
[3]
Van DN, Van LP, Tien HN, Van ND, Le Van Q. Multidiscipli-nary therapy management for locally advanced minor salivary gland cancer in oral cavity: A case report and literature review. Ear Nose Throat J 2021; 2021: 1455613211031026.
[http://dx.doi.org/10.1177/01455613211031026] [PMID: 34281402]
[4]
Al-Jamaei AA, van Dijk BA, Helder MN, Forouzanfar T, Lee-mans CR, de Visscher JG. A population-based study of the epi-demiology of oral squamous cell carcinoma in the Netherlands 1989-2018, with emphasis on young adults. Int J Oral Maxillofac Surg 2022; 51(1): 18-26.
[PMID: 33773877]
[5]
Ahmad MZ, Ahmad J, Aslam M, Khan MA, Alasmary MY, Abdel-Wahab BA. Repurposed drug against COVID-19: Nano-medicine as an approach for finding new hope in old medicines. Nano Express 2021; 2(2): 022007.
[http://dx.doi.org/10.1088/2632-959X/abffed]
[6]
RaziyehsadatRezvaninejad H. Evaluation of relationship be-tween ABO bloods with oral cancer and compared with healthy individuals. Ann Rom Soc Cell Biol 2021; 25(6): 17712-20.
[7]
Krausch-Hofmann S, Tran TD, Janssens B, et al. Assessment of oral health in older adults by non-dental professional caregiv-ers-development and validation of a photograph-supported oral health-related section for the interRAI suite of instruments. Clin Oral Investig 2021; 25(6): 3475-86.
[http://dx.doi.org/10.1007/s00784-020-03669-8] [PMID: 33196870]
[8]
Doll C, Steffen C, Amthauer H, et al. Sentinel lymph node biop-sy in early stages of oral squamous cell carcinoma using the re-ceptor-targeted radiotracer 99mTc-tilmanocept. Diagnostics (Basel) 2021; 11(7): 1231.
[http://dx.doi.org/10.3390/diagnostics11071231] [PMID: 34359314]
[9]
Mazaira GI, Piwien Pilipuk G, Galigniana MD. Corticosteroid receptors as a model for the Hsp90•immunophilin-based transport machinery. Trends Endocrinol Metab 2021; 32(10): 827-38.
[http://dx.doi.org/10.1016/j.tem.2021.07.005] [PMID: 34420854]
[10]
Wushou A, Wang M, Yibulayin F, et al. Patients with cT1N0M0 oral squamous cell carcinoma benefit from elective neck dissec-tion: A SEER-based study. J Natl Compr Canc Netw 2021; 19(4): 385-92.
[http://dx.doi.org/10.6004/jnccn.2020.7632] [PMID: 33378738]
[11]
Jardim JF, Galvis MM, Fabelo IR, Soares FA, Pinto CAL, Kow-alski LP. Intratumoral lymphatic vascular density is an inde-pendent factor for disease-free and overall survival in advanced stage oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132(5): 580-8.
[http://dx.doi.org/10.1016/j.oooo.2021.07.014] [PMID: 34509400]
[12]
Puthiyottil D, Priyamvada PS, Kumar MN, Chellappan A, Zach-ariah B, Parameswaran S. Role of urinary beta 2 microglobulin and kidney injury molecule-1 in predicting kidney function at one year following acute kidney injury. Int J Nephrol Renovasc Dis 2021; 14: 225-34.
[http://dx.doi.org/10.2147/IJNRD.S319933] [PMID: 34267537]
[13]
Bagherifar R, Kiaie SH, Hatami Z, et al. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: Recent advances and perspectives. J Nanobiotechnology 2021; 19(1): 110.
[http://dx.doi.org/10.1186/s12951-021-00861-0] [PMID: 33865432]
[14]
Singhal J, Verma S, Kumar S, Mehrotra D. Recent advances in nano-bio-sensing fabrication technology for the detection of oral cancer. Mol Biotechnol 2021; 63(5): 339-62.
[http://dx.doi.org/10.1007/s12033-021-00306-x] [PMID: 33638110]
[15]
Meng X, Lou QY, Yang WY, et al. The role of non-coding RNAs in drug resistance of oral squamous cell carcinoma and therapeutic potential. Cancer Commun (Lond) 2021; 41(10): 981-1006.
[http://dx.doi.org/10.1002/cac2.12194] [PMID: 34289530]
[16]
Durgalakshmi D, Rishvanth R, Mohanraj J, Aruna P, Ganesan S. A roadmap of cancer: From the historical evidence to recent sal-ivary metabolites-based nanobiosensor diagnostic devices. Curr Metabol Sys Biol 2021; 8(1): 27-52.
[http://dx.doi.org/10.2174/2666338408999200626194459]
[17]
Prasad A, Carey RM, Brody RM, et al. Postoperative radiation therapy refusal in human papillomavirus‐associated oropha-ryngeal squamous cell carcinoma. Laryngoscope 2021. [Epub ahead of print]
[PMID: 34254672]
[18]
Huang C, Chen L, Savage SR, et al. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 2021; 39(3): 361-379.e16.
[http://dx.doi.org/10.1016/j.ccell.2020.12.007] [PMID: 33417831]
[19]
Panzarella V, Mauceri R, Carbone MI, et al. Oral squamous cell carcinoma mimicking osteonecrosis of the jaw: A case report. Qeios 2021. [Epub ahead of print]
[http://dx.doi.org/10.32388/IC2QDS]
[20]
Chen X, Sun J, Wang X, et al. A meta-analysis of proteomic blood markers of colorectal cancer. Curr Med Chem 2021; 28(6): 1176-96.
[http://dx.doi.org/10.2174/0929867327666200427094054] [PMID: 32338203]
[21]
Lauwerends LJ, van Driel PBAA, Baatenburg de Jong RJ, et al. Real-time fluorescence imaging in intraoperative decision mak-ing for cancer surgery. Lancet Oncol 2021; 22(5): e186-95.
[http://dx.doi.org/10.1016/S1470-2045(20)30600-8] [PMID: 33765422]
[22]
Xu F, Yu S, Han J, et al. Detection of circulating tumor DNA methylation in diagnosis of colorectal cancer. Clin Transl Gastroenterol 2021; 12(8): e00386.
[http://dx.doi.org/10.14309/ctg.0000000000000386] [PMID: 34382948]
[23]
Huda MN, Nafiujjaman M, Deaguero IG, et al. Potential use of exosomes as diagnostic biomarkers and in targeted drug deliv-ery: Progress in clinical and preclinical applications. ACS Biomater Sci Eng 2021; 7(6): 2106-49.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00217] [PMID: 33988964]
[24]
Shakeeb N, Varkey P, Ajit A. Human saliva as a diagnostic specimen for early detection of inflammatory biomarkers by re-al-time RT-PCR. Inflammation 2021; 44(5): 1713-23.
[http://dx.doi.org/10.1007/s10753-021-01484-1] [PMID: 34031776]
[25]
Campanati A, Martina E, Diotallevi F, et al. Saliva proteomics as fluid signature of inflammatory and immune-mediated skin dis-eases. Int J Mol Sci 2021; 22(13): 7018.
[http://dx.doi.org/10.3390/ijms22137018] [PMID: 34209865]
[26]
Ma J, Zhang L, Shi Y, et al. Elevated CREPT expression en-hances the progression of salivary gland adenoid cystic carci-noma. J Hard Tissue Biol 2021; 30(3): 273-82.
[http://dx.doi.org/10.2485/jhtb.30.273]
[27]
Lucio S, Lisseth A. MicroRNAs in body fluids: The role and importance in the development and diagnosis of diseases. Nat Rev Clin Oncol 2011; 8(8): 467-77.
[28]
Amiri A, Mahjoubin-Tehran M, Asemi Z, et al. Role of resvera-trol in modulating microRNAs in human diseases: From cancer to inflammatory disorder. Curr Med Chem 2021; 28(2): 360-76.
[http://dx.doi.org/10.2174/0929867326666191212102407] [PMID: 31830882]
[29]
Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The taming of nuclear factor erythroid-2-related factor-2 (Nrf2) deglycation by fructosamine-3-kinase (FN3K)-inhibitors-a novel strategy to combat cancers. Cancers (Basel) 2021; 13(2): 281.
[http://dx.doi.org/10.3390/cancers13020281] [PMID: 33466626]
[30]
Ji M, Zhang LJ. Expression levels of SCCA and CYFRA 21-1 in serum of patients with laryngeal squamous cell carcinoma and their correlation with tumorigenesis and progression. Clin Transl Oncol 2021; 23(2): 289-95.
[http://dx.doi.org/10.1007/s12094-020-02417-4] [PMID: 32577996]
[31]
Arroyo EA, Donís SP, Petronacci CM, et al. Usefulness of pro-tein-based salivary markers in the diagnosis of oral potentially malignant disorders: A systematic review and meta-analysis. Cancer Biomark 2021; 2021: 203043.
[http://dx.doi.org/10.3233/CBM-203043]
[32]
(a) ) Zeng Y, Liang H, Guo Y, Feng Y, Yao Q. Adiponectin regu-lates osteocytic MLO-Y4 cell apoptosis in a high-glucose envi-ronment through the AMPK/FoxO3a signaling pathway. J Cell Physiol 2021; 236(10): 7088-96.
[http://dx.doi.org/10.1002/jcp.30381] [PMID: 33792917];
(b) ) Schiegnitz E, Kämmerer PW, Schön H, et al. Proinflammatory cytokines as serum biomarker in oral carcinoma-A prospective multibiomarker ap-proach. J Oral Pathol Med 2018; 47(3): 268-74.
[http://dx.doi.org/10.1111/jop.12670] [PMID: 29272054]
[33]
(a) ) Rezaei F, Imani MM, Lopez-Jornet P, Sadeghi M. Estimation of serum and salivary matrix metalloproteinase levels in oral squamous cell carcinoma patients: A systematic review and me-ta-analysis. Postepy Dermatol Alergol 2021; 38(1): 104285.
[http://dx.doi.org/10.5114/ada.2021.104285];
(b) ) Chang SW, Abdul-Kareem S, Merican AF, Zain RB. Oral cancer prognosis based on clinicopathologic and genomic mark-ers using a hybrid of feature selection and machine learning methods. BMC Bioinformatics 2013; 14: 170.
[http://dx.doi.org/10.1186/1471-2105-14-170] [PMID: 23725313]
[34]
Niccolai E, Di Pilato V, Nannini G, et al. The Gut Microbiota-Immunity Axis in ALS: A role in deciphering disease heteroge-neity? Biomedicines 2021; 9(7): 753.
[http://dx.doi.org/10.3390/biomedicines9070753] [PMID: 34209688]
[35]
Bhojwani D, Yang JJ, Pui CH. Biology of childhood acute lym-phoblastic leukemia. Pediatr Clin North Am 2015; 62(1): 47-60.
[http://dx.doi.org/10.1016/j.pcl.2014.09.004] [PMID: 25435111]
[36]
Faur CI, Rotaru H, Osan C, et al. Salivary exosomal microRNAs as biomarkers for head and neck cancer detection-a literature review. Maxillofac Plast Reconstr Surg 2021; 43(1): 19.
[http://dx.doi.org/10.1186/s40902-021-00303-9] [PMID: 34191144]
[37]
Mouneshkumar CD, Gulati S, Jha A, Khangembam M, Gupta S, Gupta P. C-reactive protein levels: A prognostic marker for pa-tients with head-and-neck cancer. Indian J Dental Sci 2021; 13(3): 164.
[38]
Ko CA, Fang KH, Hsu CM, et al. The preoperative C-reactive protein-lymphocyte ratio and the prognosis of oral cavity squamous cell carcinoma. Head Neck 2021; 43(9): 2740-54.
[http://dx.doi.org/10.1002/hed.26738] [PMID: 33991004]
[39]
Angin YS, Yildirim M, Dasiran F, Okan I. Could lymphocyte to C-reactive protein ratio predict the prognosis in patients with gastric cancer? ANZ J Surg 2021; 91(7-8): 1521-7.
[http://dx.doi.org/10.1111/ans.16913] [PMID: 33956378]
[40]
(a) ) Nishi M, Shimada M, Tokunaga T, et al. Lymphocyte to C-reactive protein ratio predicts long-term outcomes for patients with lower rectal cancer. World J Surg Oncol 2021; 19(1): 201.
[http://dx.doi.org/10.1186/s12957-021-02319-x] [PMID: 34229704];
(b) ) Liu CJ, Chang KW, Lin SC, Cheng HW. Presurgical serum levels of matrix metalloproteinase-9 and vascular endothelial growth factor in oral squamous cell carcinoma. Oral Oncol 2009; 45(10): 920-5.
[http://dx.doi.org/10.1016/j.oraloncology.2009.04.007.] [PMID: 19502103]
[41]
Vallina C, López-Pintor RM, González-Serrano J, de Vicente JC, Hernández G, Lorz C. Genes involved in the epithelial-mesenchymal transition in oral cancer: A systematic review. Oral Oncol 2021; 117: 105310.
[http://dx.doi.org/10.1016/j.oraloncology.2021.105310] [PMID: 33901766]
[42]
Bhattacharya S. Glioblastoma multiforme and its cell interrup-tion. Curr Cancer Ther Rev 2021; 17(2): 89-92.
[http://dx.doi.org/10.2174/1573394716999201007125709]
[43]
Nauwelaerts SJD, Roosens NHC, Bernard A, De Keersmaecker SCJ, De Cremer K. Development of a multiplex mass spectrom-etry method for simultaneous quantification of urinary proteins related to respiratory health. Sci Rep 2021; 11(1): 10107.
[http://dx.doi.org/10.1038/s41598-021-89068-9] [PMID: 33980897]
[44]
Nguyen HT, Tran TH, Kim JO, Yong CS, Nguyen CN. Enhanc-ing the in vitro anti-cancer efficacy of artesunate by loading into poly-D,L-lactide-co-glycolide (PLGA) nanoparticles. Arch Pharm Res 2015; 38(5): 716-24.
[http://dx.doi.org/10.1007/s12272-014-0424-3] [PMID: 24968925]
[45]
Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: State of the art. Signal Transduct Target Ther 2020; 5(1): 101.
[http://dx.doi.org/10.1038/s41392-020-0207-x]
[46]
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nat Rev Mater 2021; 6(4): 351-70.
[http://dx.doi.org/10.1038/s41578-020-00269-6] [PMID: 34950512]
[47]
Pereira FM, Melo MN, Santos ÁKM, et al. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb Technol 2021; 150: 109889.
[http://dx.doi.org/10.1016/j.enzmictec.2021.109889] [PMID: 34489042]
[48]
Islam R, Gao S, Islam W, et al. Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeu-tic effects of anticancer nanomedicines. Acta Biomater 2021; 126: 372-83.
[http://dx.doi.org/10.1016/j.actbio.2021.03.044] [PMID: 33774199]
[49]
Elogail MA. Discussion on the paper “combined effects of thermal radiation and magnetohydrodynamic on peristaltic flow of nanofluids: Applications to radiotherapy and thermotherapy of cancer” by Wahed Hasona et al. Curr Cancer Ther Rev 2021; 17(2): 93-6.
[http://dx.doi.org/10.2174/1573394716999201224161119]
[50]
Agnello L, Tortorella S, d’Argenio A, et al. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR ap-tamer-conjugated polymeric nanovectors. J Exp Clin Cancer Res 2021; 40(1): 239.
[http://dx.doi.org/10.1186/s13046-021-02039-w]
[51]
Purcaru OS, Costachi A, Cioc CE, Buteica A, Dricu A. Iron Oxide magnetic nanoparticles as drug delivery systems for brain cancer treatment. Med Oncol 2021; 2(1): 55-66.
[http://dx.doi.org/10.52701/monc.2021.v2i1.30]
[52]
Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL. Magnetic nanoparticles in biology and medicine: Past, present, and future trends. Pharmaceutics 2021; 13(7): 943.
[http://dx.doi.org/10.3390/pharmaceutics13070943] [PMID: 34202604]
[53]
Vamvakidis K, Maniotis N, Dendrinou-Samara C. Magneto-fluorescent nanocomposites: Experimental and theoretical link-age for the optimization of magnetic hyperthermia. Nanoscale 2021; 13(13): 6426-38.
[http://dx.doi.org/10.1039/D1NR00121C] [PMID: 33885523]
[54]
de Oliveira Machado V, Andrade ÂL, Fabris JD, et al. Prepara-tion of hybrid nanocomposite particles for medical practices. Colloids Surf A Physicochem Eng Asp 2021; 624: 126706.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126706]
[55]
Wei Y, Deng Y, Ma S, et al. Local drug delivery systems as therapeutic strategies against periodontitis: A systematic review. J Control Release 2021; 333: 269-82.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.041] [PMID: 33798664]
[56]
Taneja N, Alam A, Patnaik RS, Taneja T, Gupta S. Understand-ing nanotechnology in the treatment of oral cancer: A compre-hensive review. Crit Rev in Ther Drug Carrier Syst 2021; 38(6): 1-48.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2021036437]
[57]
Aghaei H, Nazar AR, Varshosaz J. Double flow focusing micro-fluidic-assisted based preparation of methotrexate-loaded lipo-somal nanoparticles: Encapsulation efficacy, drug release and stability. Colloids Surf A Physicochem Eng Asp 2021; 614: 126166.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126166]
[58]
Javanbakht T, Laurent S, Stanicki D, Salzmann I. Rheological properties of superparamagnetic iron oxide nanoparticles. J Eng Sci 2021; 8(1): C29-37.
[http://dx.doi.org/10.21272/jes.2021.8(1).c4]
[59]
Ji X, Li R, Liu G, et al. Phase separation-based electrospun Janus nanofibers loaded with Rana chensinensis skin pep-tides/silver nanoparticles for wound healing. Mater Des 2021; 2021: 109864.
[http://dx.doi.org/10.1016/j.matdes.2021.109864]
[60]
Sokary R. Abu el-naga MN, Bekhit M, Atta S. A potential anti-biofilm, antimicrobial and anticancer activities of chitosan capped gold nanoparticles prepared by γ-irradiation. Mater Technol 2020; 2020: 1863555.
[http://dx.doi.org/10.1080/10667857.2020.1863555]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy