Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Optimization of Polyphenol Extraction from Apricot Kernel Shells: Comparative Study Between Box-Behnken and Central Composite Designs

Author(s): Mohand Teffane*, Hafid Boudries, Mostapha Bachir-Bey, Ahcene Kadi, Abdeslem Taibi, Farid Boukhalfa and Warda Djoudi

Volume 19, Issue 3, 2023

Published on: 10 October, 2022

Article ID: e110522204568 Pages: 14

DOI: 10.2174/1573407218666220511111529

Price: $65

Abstract

Background: Prunus armeniaca L. is widely cultivated around the world. High consumption of its fruit produces a large number of apricot kernel shells. The valorization of this byproduct in terms of polyphenol compounds seems to be important.

Objective: This study aimed to optimize the extraction of phenolic compounds from apricot kernel shells by different extraction techniques by studying the effects of different parameters on the extraction efficiency, and the comparison between the Box-Behnken Design and the Central Composite Design of the response surface methodology is done in order to have good extraction estimation.

Methods: In this study, response surface methodology; Box-Behnken and Central Composite Designs, was used to contrast the efficacy and investigate the principal interactions of three operating parameters (ethanol concentration, microwave power, and extraction time), in the optimization of phenolic compounds extraction from apricot kernel shells by microwave-assisted extraction, ultrasonic-assisted extraction, and maceration techniques.

Results: The results indicated that the optimal total phenolic compounds obtained with microwave assisted extraction techniques by Box-Behnken Design was 9.30 ± 0.22 mg/g, where the ethanol concentration, microwave power, and extraction time, were 45.85%, 370.5 W, and 11 min, respectively. However, the optimal total phenolic compounds revealed by Central Composite Design were 8.86 ± 0.05mg/g under ethanol concentration, microwave power, and extraction time of 51.99%, 394.37W, and 9.68min, respectively.

Conclusion: This work proposes the best mathematical model to optimize the extraction of polyphenols from this by-product which seems to be a possible source of phenolic compounds that can be used in the food, cosmetic, and pharmaceutical industries.

Keywords: Phenolic compounds, Response surface methodology, Optimization, Apricot kernel shell, Box-Behnken Design, Central Composite Design

Graphical Abstract

[1]
Ahmadi, H.; Fathollahzadeh, H.; Mobli, H. Some physical and mechanical properties of apricot fruits, pits and kernels (C.V Tabarzeh). American-Eurasian J. Agric. Environ. Sci., 2008, 3(5), 703-707.
[2]
Shakun, A.S.; Vorobyova, V.I.; Chygyrynets, O.E.; Skiba, M.I. Influence of solvent on the component composition and antioxidant properties of apricot cake (Prunus armeniaca L.) extracts. J. Chem., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/2913454]
[3]
FAOSTAT. 2018. Available from: http://www.fao.org/faostat/fr/?#rankings/countries_by_commodity (Accessed on March 18, 2021)
[4]
Cheaib, D.; El Darra, N.; Rajha, H.N.; Maroun, R.G.; Louka, N. Systematic and empirical study of the dependence of polyphenol recovery from apricot pomace on temperature and solvent concentration levels. ScientificWorldJournal, 2018, 20188249184
[http://dx.doi.org/10.1155/2018/8249184] [PMID: 29618957]
[5]
Kasapoglu, E.D.; Kahraman, S.; Tornuk, F. Apricot juice processing byproducts as sources of value-added compounds for food industry. European Food Sci Eng., 2020, 1(1), 18-23.dergipark.org.tr/en/pub/efse/issue/54144/747538 [Available from
[6]
Al Juhaimi, F.; Musa Özcan, M.; Ghafoor, K.; Babiker, E.E. The effect of microwave roasting on bioactive compounds, antioxidant activity and fatty acid composition of apricot kernel and oils. Food Chem., 2018, 243, 414-419.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.100] [PMID: 29146358]
[7]
Teffane, M.; Hafid, B.; Mostapha, B.B.; Ahcene, K.; Farid, B. Effect of solvent type, extraction temperature, agitation speed and microwave power on phenolic compound extraction and antioxidant activity of apricot kernels (Prunus armeniaca L.). Curr. Bioact. Compd., 2021, 18, 4-12.
[http://dx.doi.org/10.2174/1573407217666215085507]
[8]
Şanal, İ.S.; Bayraktar, E.; Mehmetoğlu, Ü.; Çalımlı, A. Determination of optimum conditions for SC-(CO2 + ethanol) extraction of β- carotene from apricot pomace using response surface methodology. J. Supercrit. Fluids, 2005, 34(3), 331-338.
[http://dx.doi.org/10.1016/j.supflu.2004.08.005]
[9]
Aljoumaa, K.; Tabeikh, H.; Abboudi, M. Characterization of apricot kernel shells (Prunus armeniaca) by FTIR spectroscopy, DSC and TGA. J Indian Acad Wood Sci., 2017, 14(2), 127-132.
[http://dx.doi.org/10.1007/s13196-017-0197-7]
[10]
Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A.I.R.N.A. A box-behnken design for optimal extraction of phenolics from almond by-products. Food Anal. Methods, 2019, 12(9), 2009-2024.
[http://dx.doi.org/10.1007/s12161-019-01540-5]
[11]
Wang, S.; Fu, W.; Han, H.; Rakita, M.; Han, Q.; Xu, Q. Optimization of ultrasound-assisted extraction of phenolic compounds from walnut shells and characterization of their antioxidant activities. J. Food Nutr. Res., 2020, 8(1), 50-57.
[http://dx.doi.org/10.12691/jfnr-8-1-7]
[12]
Pérez-Armada, L.; Rivas, S.; González, B.; Moure, A. Extraction of phenolic compounds from hazelnut shells by green processes. J. Food Eng., 2019, 255, 1-8.
[http://dx.doi.org/10.1016/j.jfoodeng.2019.03.008]
[13]
Rodrigues, S.; Pinto, G. Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder. J. Food Eng., 2007, 80(3), 869-872.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.08.009] [PMID: 17400017]
[14]
Özbek, H.N. Yanık, D.K.; Fadıloğlu, S.; Göğüş, F. Optimization of microwave-assisted extraction of bioactive compounds from pistachio (Pistacia vera L.) hull. Sep. Sci. Technol., 2020, 55(2), 289-299.
[http://dx.doi.org/10.1080/01496395.2019.1577444]
[15]
Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem 2016, 194, 135-142.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.008] [PMID: 26471536]
[16]
Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction of Polyphenols from aromatic and medicinal plants: An overview of the methods and the effect of extraction parameters.polyphenols in plants; Elsevier, 2019, pp. 243-259.
[http://dx.doi.org/10.1016/B978-0-12-813768-0.00025-6]
[17]
Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem., 2015, 166, 585-595.
[18]
Goli, A.H.; Barzegar, M.; Sahari, M.A. Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem., 2005, 92(3), 521-525.
[http://dx.doi.org/10.1016/j.foodchem.2004.08.020]
[19]
Sarkar, A.; Ghosh, U. Effect of extraction temperature and technique on phenolic compounds and antioxidant activity of Tamarindus indica seeds. Res. J. Recent Sci.,, 2017. 06, 02-10-15
[20]
Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem., 2006, 97(4), 654-660.
[http://dx.doi.org/10.1016/j.foodchem.2005.04.028]
[21]
Lin, J.T.; Liu, S.C.; Hu, C.C.; Shyu, Y.S.; Hsu, C.Y.; Yang, D.J. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chem., 2016, 190, 520-528.
[http://dx.doi.org/10.1016/j.foodchem.2015.06.004] [PMID: 26213005]
[22]
Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J., 2013, 21(2), 143-152.
[http://dx.doi.org/10.1016/j.jsps.2012.05.002] [PMID: 24936134]
[23]
Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentão, P.; Andrade, P.B.; González-Álvarez, J.; Pereira, J.A. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crops Prod., 2013, 42, 126-132.
[24]
Chew, K.K.; Ng, S.Y.; Thoo, Y.Y.; Khoo, M.Z.; Wan, A. W.M.; Ho, C.W. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Centella asiatica extracts. Int. Food Res. J., 2011, 18, 571-578.
[25]
Yolmeh, M.; Jafari, S.M. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol., 2017, 10, 413-433.
[http://dx.doi.org/10.1007/s11947-016-1855-2]
[26]
Han, Z.P.; Liu, R.L.; Cui, H.Y.; Zhang, Z.Q. Microwave-assisted extraction and LC/MS analysis of phenolic antioxidants in sweet apricot (Prunus armeniaca L.) kernel skins. J. Liq. Chromatogr. Relat. Technol., 2013, 36(15), 2182-2195.
[http://dx.doi.org/10.1080/10826076.2012.717057]
[27]
Bouras, M.; Chadni, M.; Barba, F.J.; Grimi, N.; Bals, O.; Vorobiev, E. Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Ind. Crops Prod., 2015, 77, 590-601.
[http://dx.doi.org/10.1016/j.indcrop.2015.09.018]
[28]
Stamenković, O.S.; Kostić, M.D.; Radosavljević, D.B.; Veljković, V.B. Comparison of box-behnken, face central composite and full factorial designs in optimization of hempseed oil extraction by nhexane: A case study. Period. Polytech. Chem. Eng., 2018, 62(3), 359-367.
[http://dx.doi.org/10.3311/PPch.11448]
[29]
Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; dos Santos, W.N. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta, 2007, 597(2), 179-186.
[http://dx.doi.org/10.1016/j.aca.2007.07.011] [PMID: 17683728]
[30]
Korekar, G.; Stobdan, T.; Arora, R.; Yadav, A.; Singh, S.B. Antioxidant capacity and phenolics content of apricot (Prunus armeniaca L.) kernel as a function of genotype. Plant Foods Hum. Nutr., 2011, 66(4), 376-383.
[http://dx.doi.org/10.1007/s11130-011-0246-0] [PMID: 21779763]
[31]
Cheaib, D.; El Darra, N.; Rajha, H.N.; El-Ghazzawi, I.; Mouneimne, Y.; Jammoul, A.; Maroun, R.G.; Louka, N. Study of the selectivity and bioactivity of polyphenols using infrared assisted extraction from apricot pomace compared to conventional methods. Antioxidants, 2018, 7(12), 174.
[http://dx.doi.org/10.3390/antiox7120174] [PMID: 30486336]
[32]
Zolgharnein, J.; Shahmoradi, A.; Ghasemi, J.B. Comparative study of Box-Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (II) adsorption onto Robinia tree leaves: Multivariate optimization. J. Chemometr., 2013, 27(1-2), 12-20.
[http://dx.doi.org/10.1002/cem.2487]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy