Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Evaluation of the Relationship between Aromatase/Sirtuin1 Interaction and miRNA Expression in Human Neuroblastoma Cells

Author(s): Yasemin Kartal, Unal Metin Tokat, Pelin Kelicen-Ugur, Serkan Yılmaz, Sevilay Karahan and Murat Timur Budak*

Volume 16, Issue 6, 2023

Published on: 21 October, 2022

Article ID: e100522204519 Pages: 20

DOI: 10.2174/1874467215666220510112118

Price: $65

Abstract

Background: Changes in activation/inhibition of Sirtuin-1 (SIRT1) and aromatase play an important role in a plethora of diseases. MicroRNAs (miRNAs) modulate multiple molecular pathways and affect a substantial number of physiological and pathological processes.

Objective: The aim of this study was to investigate any possible interaction between aromatase and SIRT1 in SH-SY5Y cells and to see how there is a connection between this interaction and miRNA expression, if there is an interaction.

Methods: In this study, cells were incubated in serum-deprived media for 6, 12, and 24 h. Aromatase and SIRT1 expressions were evaluated by Western blot. The IC50 concentration of SIRT1 activator (SRT1720), SIRT1 inhibitor (EX527), and aromatase inhibitors (letrozole and fadrozole) was determined by the XTT method. Then, CYP19A1 and SIRT1 levels were evaluated in the presence of SIRT1 siRNA or IC50 values for each activator/inhibitor. Finally, CYP19A1, SIRT1 expression and miRNA target gene were assessed with bioinformatic approaches.

Results: Aromatase and SIRT1 protein levels were significantly elevated in the cells incubated at 24 h in serum-deprived media (p ≤ 0.05). SIRT1 also positively regulated CYP19A1 in SH-SY5Y cells in media with/without FBS. Serum deprivation depending on time course caused changes in the oxidant/ antioxidant system. While oxidative stress index tended to decrease in the absence of FBS at 24 h compared to the control, it showed a significant decrease at 48 h in a serum-deprived manner (p ≤ 0.001). As a result of bioinformatics analysis, we determined 3 miRNAs that could potentially regulate SIRT1 and CYP19A1. hsa-miR-27a-3p and hsa-miR-181a-5p correlated in terms of their expressions at 24 h compared to 12 h, and there was a significant decrease in the expression of these miRNAs. On the contrary, the expression of hsa-miR-30c-5p significantly increased at 24 h compared to 12 h.

Conclusion: Considering the results, a direct link between aromatase and SIRT1 was observed in human neuroblastoma cells. The identification of key miRNAs, hsa-miR-27a-3p, hsa-miR-30c-5p, and hsa-miR-181a-5p targeting both aromatase and SIRT1, provides an approach with novel insights on neurology-associated diseases.

Keywords: Aromatase, hsa-miR-181a-5p, hsa-miR-27a-3p, hsa-miR-30c-5p, oxidative stress and Sirtuin1

Graphical Abstract

[1]
Mei, Z.; Zhang, X.; Yi, J.; Huang, J.; He, J.; Tao, Y. Sirtuins in metabolism, DNA repair and cancer. J. Exp. Clin. Cancer Res., 2016, 35(1), 182.
[http://dx.doi.org/10.1186/s13046-016-0461-5] [PMID: 27916001]
[2]
Wątroba, M.; Dudek, I.; Skoda, M.; Stangret, A.; Rzodkiewicz, P.; Szukiewicz, D. Sirtuins, epigenetics and longevity. Ageing Res. Rev., 2017, 40, 11-19.
[http://dx.doi.org/10.1016/j.arr.2017.08.001] [PMID: 28789901]
[3]
Ou, X.; Lee, M.R.; Huang, X.; Messina-Graham, S.; Broxmeyer, H.E. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells, 2014, 32(5), 1183-1194.
[http://dx.doi.org/10.1002/stem.1641] [PMID: 24449278]
[4]
Jian, C.; Zou, C.; Xu, N.; Chen, G.; Zou, D. Sirt1 protects neural stem cells from apoptosis by decreasing acetylation of histone 3K9. Stem Cells Cloning, 2018, 11, 39-41.
[http://dx.doi.org/10.2147/SCCAA.S173852] [PMID: 30233218]
[5]
Garva, R.; Thepmalee, C.; Yasamut, U.; Sudsaward, S.; Guazzelli, A.; Rajendran, R.; Tongmuang, N.; Khunchai, S.; Meysami, P.; Limjindaporn, T.; Yenchitsomanus, P.T.; Mutti, L.; Krstic-Demonacos, M.; Demonacos, C. Sirtuin family members selectively regulate autophagy in osteosarcoma and mesothelioma cells in response to cellular stress. Front. Oncol., 2019, 9, 949.
[http://dx.doi.org/10.3389/fonc.2019.00949] [PMID: 31608237]
[6]
Vachharajani, V.; McCall, C.E. Sirtuins: Potential therapeutic targets for regulating acute inflammatory response? Expert Opin. Ther. Targets, 2020, 24(5), 489-497.
[http://dx.doi.org/10.1080/14728222.2020.1743268] [PMID: 32174215]
[7]
Sosnowska, B.; Mazidi, M.; Penson, P.; Gluba-Brzózka, A.; Rysz, J.; Banach, M. The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 2017, 265, 275-282.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.08.027] [PMID: 28870631]
[8]
Leng, S.; Huang, W.; Chen, Y.; Yang, Y.; Feng, D.; Liu, W.; Gao, T.; Ren, Y.; Huo, M.; Zhang, J.; Yang, Y.; Wang, Y. SIRT1 coordinates with the CRL4B complex to regulate pancreatic cancer stem cells to promote tumorigenesis. Cell Death Differ., 2021, 28(12), 3329-3343.
[http://dx.doi.org/10.1038/s41418-021-00821-z] [PMID: 34163012]
[9]
Luo, X.Y.; Qu, S.L.; Tang, Z.H.; Zhang, Y.; Liu, M.H.; Peng, J.; Tang, H.; Yu, K.L.; Zhang, C.; Ren, Z.; Jiang, Z.S. SIRT1 in cardiovascular aging. Clin. Chim. Acta, 2014, 437, 106-114.
[http://dx.doi.org/10.1016/j.cca.2014.07.019] [PMID: 25063737]
[10]
Ma, F.; Wu, J.; Jiang, Z.; Huang, W.; Jia, Y.; Sun, W.; Wu, H. P53/NRF2 mediates SIRT1's protective effect on diabetic nephropathy. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(8), 1272-1281.
[http://dx.doi.org/10.1016/j.bbamcr.2019.04.006] [PMID: 30959066]
[11]
Kosgei, V.J.; Coelho, D.; Guéant-Rodriguez, R.M.; Guéant, J.L. Sirt1-PPARS cross-talk in complex metabolic diseases and inherited disorders of the one carbon metabolism. Cells, 2020, 9(8), 1882.
[http://dx.doi.org/10.3390/cells9081882] [PMID: 32796716]
[12]
Fujita, Y.; Yamashita, T. Sirtuins in neuroendocrine regulation and neurological diseases. Front. Neurosci., 2018, 12, 778.
[http://dx.doi.org/10.3389/fnins.2018.00778] [PMID: 30416425]
[13]
Yue, L.; Zhao, L.; Liu, H.; Li, X.; Wang, B.; Guo, H.; Gao, L.; Feng, D.; Qu, Y. Adiponectin protects against glutamate-induced excitotoxicity via activating SIRT1-dependent PGC-1α expression in HT22 hippocampal neurons. Oxid. Med. Cell. Longev., 2016, 2016, 2957354.
[http://dx.doi.org/10.1155/2016/2957354] [PMID: 28042384]
[14]
Araki, T.; Sasaki, Y.; Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science, 2004, 305(5686), 1010-1013.
[http://dx.doi.org/10.1126/science.1098014] [PMID: 15310905]
[15]
Chen, J.; Zhou, Y.; Mueller-Steiner, S.; Chen, L.F.; Kwon, H.; Yi, S.; Mucke, L.; Gan, L. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J. Biol. Chem., 2005, 280(48), 40364-40374.
[http://dx.doi.org/10.1074/jbc.M509329200] [PMID: 16183991]
[16]
Braidy, N.; Jayasena, T.; Poljak, A.; Sachdev, P.S. Sirtuins in cognitive ageing and Alzheimer’s disease. Curr. Opin. Psychiatry, 2012, 25(3), 226-230.
[http://dx.doi.org/10.1097/YCO.0b013e32835112c1] [PMID: 22327552]
[17]
Singh, P.; Hanson, P.S.; Morris, C.M. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neurosci., 2017, 18(1), 46.
[http://dx.doi.org/10.1186/s12868-017-0364-1] [PMID: 28578695]
[18]
Zhao, H.; Zhou, L.; Shangguan, A.J.; Bulun, S.E. Aromatase expression and regulation in breast and endometrial cancer. J. Mol. Endocrinol., 2016, 57(1), R19-R33.
[http://dx.doi.org/10.1530/JME-15-0310] [PMID: 27067638]
[19]
Azcoitia, I.; Arevalo, M.A.; De Nicola, A.F.; Garcia-Segura, L.M. Neuroprotective actions of estradiol revisited. Trends Endocrinol. Metab., 2011, 22(12), 467-473.
[http://dx.doi.org/10.1016/j.tem.2011.08.002] [PMID: 21889354]
[20]
Kelicen, P. Cincioğlu, M.; Hizli, F.; Nordberg, A. Abeta(25-35) attenuated SREBP level in nuclear extracts of serum-deprived human neuroblastoma cells. Neurochem. Res., 2009, 34(5), 845-850.
[http://dx.doi.org/10.1007/s11064-008-9832-4] [PMID: 18751890]
[21]
Ellem, S.J.; Risbridger, G.P. Aromatase and prostate cancer. Minerva Endocrinol., 2006, 31(1), 1-12.
[PMID: 16498360]
[22]
Brueggemeier, R.W. Aromatase inhibitors: New endocrine treatment of breast cancer. Semin. Reprod. Med., 2004, 22(1), 31-43.
[http://dx.doi.org/10.1055/s-2004-823025] [PMID: 15083379]
[23]
Colette, S.; Donnez, J. Are aromatase inhibitors effective in endometriosis treatment? Expert Opin. Investig. Drugs, 2011, 20(7), 917-931.
[http://dx.doi.org/10.1517/13543784.2011.581226] [PMID: 21529311]
[24]
Corbo, R.M.; Gambina, G.; Ulizzi, L.; Moretto, G.; Scacchi, R. Genetic variation of CYP19 (aromatase) gene influences age at onset of Alzheimer’s disease in women. Dement. Geriatr. Cogn. Disord., 2009, 27(6), 513-518.
[http://dx.doi.org/10.1159/000221832] [PMID: 19478482]
[25]
Chung, S.J.; Armasu, S.M.; Biernacka, J.M.; Lesnick, T.G.; Rider, D.N.; Cunningham, J.M.; Maraganore, D.M. Variants in estrogen-related genes and risk of Parkinson’s disease. Mov. Disord., 2011, 26(7), 1234-1242.
[http://dx.doi.org/10.1002/mds.23604] [PMID: 21469201]
[26]
Azcoitia, I.; Doncarlos, L.L.; Garcia-Segura, L.M. Estrogen and brain vulnerability. Neurotox. Res., 2002, 4(3), 235-245.
[http://dx.doi.org/10.1080/10298420290033232] [PMID: 12829404]
[27]
Zhang, L.; Lu, Q.; Chang, C. Epigenetics in health and disease. Adv. Exp. Med. Biol., 2020, 1253, 3-55.
[http://dx.doi.org/10.1007/978-981-15-3449-2_1] [PMID: 32445090]
[28]
Hwang, J.Y.; Aromolaran, K.A.; Zukin, R.S. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat. Rev. Neurosci., 2017, 18(6), 347-361.
[http://dx.doi.org/10.1038/nrn.2017.46] [PMID: 28515491]
[29]
Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[30]
Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol., 2018, 141(4), 1202-1207.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[31]
Shin, V.Y.; Chu, K.M. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J. Gastroenterol., 2014, 20(30), 10432-10439.
[http://dx.doi.org/10.3748/wjg.v20.i30.10432] [PMID: 25132759]
[32]
Wu, M.; Wang, G.; Tian, W.; Deng, Y.; Xu, Y. MiRNA-based therapeutics for lung cancer. Curr. Pharm. Des., 2018, 23(39), 5989-5996.
[http://dx.doi.org/10.2174/1381612823666170714151715] [PMID: 28714413]
[33]
Mellis, D.; Caporali, A. MicroRNA-based therapeutics in cardiovascular disease: Screening and delivery to the target. Biochem. Soc. Trans., 2018, 46(1), 11-21.
[http://dx.doi.org/10.1042/BST20170037] [PMID: 29196609]
[34]
Huang, W. MicroRNAs: Biomarkers, diagnostics, and therapeutics. Methods Mol. Biol., 2017, 1617, 57-67.
[http://dx.doi.org/10.1007/978-1-4939-7046-9_4] [PMID: 28540676]
[35]
Jiang, Z.H.; Tang, Y.Z.; Song, H.N.; Yang, M.; Li, B.; Ni, C.L. miRNA 342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6. Int. J. Mol. Med., 2020, 45(1), 45-52.
[PMID: 31746345]
[36]
Schratt, G. microRNAs at the synapse. Nat. Rev. Neurosci., 2009, 10(12), 842-849.
[http://dx.doi.org/10.1038/nrn2763] [PMID: 19888283]
[37]
Absalon, S.; Kochanek, D.M.; Raghavan, V.; Krichevsky, A.M. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J. Neurosci., 2013, 33(37), 14645-14659.
[http://dx.doi.org/10.1523/JNEUROSCI.1327-13.2013] [PMID: 24027266]
[38]
Aksoy-Aksel, A.; Zampa, F.; Schratt, G. MicroRNAs and synaptic plasticity-a mutual relationship. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1652), 20130515.
[http://dx.doi.org/10.1098/rstb.2013.0515] [PMID: 25135976]
[39]
McGuire, A.; Brown, J.A.; Kerin, M.J. Metastatic breast cancer: The potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev., 2015, 34(1), 145-155.
[http://dx.doi.org/10.1007/s10555-015-9551-7] [PMID: 25721950]
[40]
Wang, D.D.; Chen, X.; Yu, D.D.; Yang, S.J.; Shen, H.Y.; Sha, H.H.; Zhong, S.L.; Zhao, J.H.; Tang, J.H. miR-197: A novel biomarker for cancers. Gene, 2016, 591(2), 313-319.
[http://dx.doi.org/10.1016/j.gene.2016.06.035] [PMID: 27320730]
[41]
Kumar, S.; Vijayan, M.; Bhatti, J.S.; Reddy, P.H. MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog. Mol. Biol. Transl. Sci., 2017, 146, 47-94.
[http://dx.doi.org/10.1016/bs.pmbts.2016.12.013] [PMID: 28253991]
[42]
Ma, Y. The Challenge of microRNA as a biomarker of epilepsy. Curr. Neuropharmacol., 2018, 16(1), 37-42.
[PMID: 28676013]
[43]
Swarbrick, S.; Wragg, N.; Ghosh, S.; Stolzing, A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol. Neurobiol., 2019, 56(9), 6156-6167.
[http://dx.doi.org/10.1007/s12035-019-1500-y] [PMID: 30734227]
[44]
Ramanathan, K.; Padmanabhan, G. MiRNAs as potential biomarker of kidney diseases: A review. Cell Biochem. Funct., 2020, 38(8), 990-1005.
[http://dx.doi.org/10.1002/cbf.3555] [PMID: 32500596]
[45]
Cheng, Q.; Chen, X.; Wu, H.; Du, Y. Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis. J. Transl. Med., 2021, 19(1), 18.
[http://dx.doi.org/10.1186/s12967-020-02689-y] [PMID: 33407587]
[46]
Wang, S.; Yu, H.; Wickliffe, J.K. Limitation of the MTT and XTT assays for measuring cell viability due to superoxide formation induced by nano-scale TiO2. Toxicol. In Vitro, 2011, 25(8), 2147-2151.
[http://dx.doi.org/10.1016/j.tiv.2011.07.007] [PMID: 21798338]
[47]
Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem., 2004, 37(4), 277-285.
[http://dx.doi.org/10.1016/j.clinbiochem.2003.11.015] [PMID: 15003729]
[48]
Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem., 2005, 38(12), 1103-1111.
[http://dx.doi.org/10.1016/j.clinbiochem.2005.08.008] [PMID: 16214125]
[49]
Peri, A.; Benvenuti, S.; Luciani, P.; Deledda, C.; Cellai, I. Membrane cholesterol as a mediator of the neuroprotective effects of estrogens. Neuroscience, 2011, 191, 107-117.
[http://dx.doi.org/10.1016/j.neuroscience.2011.03.011] [PMID: 21396986]
[50]
Wise, P.M.; Dubal, D.B.; Wilson, M.E.; Rau, S.W.; Liu, Y. Estrogens: Trophic and protective factors in the adult brain. Front. Neuroendocrinol., 2001, 22(1), 33-66.
[http://dx.doi.org/10.1006/frne.2000.0207] [PMID: 11141318]
[51]
Brooks, D.C.; Coon, V.J.S.; Ercan, C.M.; Xu, X.; Dong, H.; Levine, J.E.; Bulun, S.E.; Zhao, H. Brain aromatase and the regulation of sexual activity in male mice. Endocrinology, 2020, 161, bqaa137.
[http://dx.doi.org/10.1210/endocr/bqaa137]
[52]
Liu, M.; Hurn, P.D.; Roselli, C.E.; Alkayed, N.J. Role of P450 aromatase in sex-specific astrocytic cell death. J. Cereb. Blood Flow Metab., 2007, 27(1), 135-141.
[http://dx.doi.org/10.1038/sj.jcbfm.9600331] [PMID: 16736049]
[53]
Gatson, J.W.; Simpkins, J.W.; Yi, K.D.; Idris, A.H.; Minei, J.P.; Wigginton, J.G. Aromatase is increased in astrocytes in the presence of elevated pressure. Endocrinology, 2011, 152(1), 207-213.
[http://dx.doi.org/10.1210/en.2010-0724] [PMID: 21047944]
[54]
Cohen, H.Y.; Miller, C.; Bitterman, K.J.; Wall, N.R.; Hekking, B.; Kessler, B.; Howitz, K.T.; Gorospe, M.; de Cabo, R.; Sinclair, D.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 2004, 305(5682), 390-392.
[http://dx.doi.org/10.1126/science.1099196] [PMID: 15205477]
[55]
Shang, L.; Zhou, H.; Xia, Y.; Wang, H.; Gao, G.; Chen, B.; Liu, Q.; Shao, C.; Gong, Y. Serum withdrawal up-regulates human SIRT1 gene expression in a p53-dependent manner. J. Cell. Mol. Med., 2009, 13(10), 4176-4184.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00468.x] [PMID: 19267881]
[56]
Liu, X.; Chen, B.; Chen, L.; Ren, W.T.; Liu, J.; Wang, G.; Fan, W.; Wang, X.; Wang, Y. U-shape suppressive effect of phenol red on the epileptiform burst activity via activation of estrogen receptors in primary hippocampal culture. PLoS One, 2013, 8(4), e60189.
[http://dx.doi.org/10.1371/journal.pone.0060189] [PMID: 23560076]
[57]
Holloway, K.R.; Barbieri, A.; Malyarchuk, S.; Saxena, M.; Nedeljkovic-Kurepa, A.; Cameron Mehl, M.; Wang, A.; Gu, X.; Pruitt, K. SIRT1 positively regulates breast cancer associated human aromatase (CYP19A1) expression. Mol. Endocrinol., 2013, 27(3), 480-490.
[http://dx.doi.org/10.1210/me.2012-1347] [PMID: 23340254]
[58]
Kim, D.; Nguyen, M.D.; Dobbin, M.M.; Fischer, A.; Sananbenesi, F.; Rodgers, J.T.; Delalle, I.; Baur, J.A.; Sui, G.; Armour, S.M.; Puigserver, P.; Sinclair, D.A.; Tsai, L.H. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J., 2007, 26(13), 3169-3179.
[http://dx.doi.org/10.1038/sj.emboj.7601758] [PMID: 17581637]
[59]
Wong, S.Y.; Tang, B.L. SIRT1 as a therapeutic target for Alzheimer’s disease. Rev. Neurosci., 2016, 27(8), 813-825.
[http://dx.doi.org/10.1515/revneuro-2016-0023] [PMID: 27497424]
[60]
Hiltunen, M.; Iivonen, S.; Soininen, H. Aromatase enzyme and Alzheimer’s disease. Minerva Endocrinol., 2006, 31(1), 61-73.
[PMID: 16498364]
[61]
Butler, H.T.; Warden, D.R.; Hogervorst, E.; Ragoussis, J.; Smith, A.D.; Lehmann, D.J. Association of the aromatase gene with Alzheimer’s disease in women. Neurosci. Lett., 2010, 468(3), 202-206.
[http://dx.doi.org/10.1016/j.neulet.2009.10.089] [PMID: 19879925]
[62]
Asim, A.; Kumar, A.; Muthuswamy, S.; Jain, S.; Agarwal, S. Down syndrome: An insight of the disease. J. Biomed. Sci., 2015, 22, 41.
[http://dx.doi.org/10.1186/s12929-015-0138-y] [PMID: 26062604]
[63]
Gomez, W.; Morales, R.; Maracaja-Coutinho, V.; Parra, V.; Nassif, M. Down syndrome and Alzheimer’s disease: Common molecular traits beyond the amyloid precursor protein. Aging (Albany NY), 2020, 12(1), 1011-1033.
[http://dx.doi.org/10.18632/aging.102677] [PMID: 31918411]
[64]
Nakajima, A.; Ohizumi, Y. Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(14), 3380.
[http://dx.doi.org/10.3390/ijms20143380] [PMID: 31295812]
[65]
Xie, A.; Gao, J.; Xu, L.; Meng, D. Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease. BioMed Res. Int., 2014, 2014, 648740.
[http://dx.doi.org/10.1155/2014/648740] [PMID: 24900975]
[66]
Takada, E.; Okubo, K.; Yano, Y.; Iida, K.; Someda, M.; Hirasawa, A.; Yonehara, S.; Matsuzaki, K. Molecular mechanism of apoptosis by amyloid β-protein fibrils formed on neuronal cells. ACS Chem. Neurosci., 2020, 11(5), 796-805.
[http://dx.doi.org/10.1021/acschemneuro.0c00011] [PMID: 32056421]
[67]
Morabito, S.; Miyoshi, E.; Michael, N.; Shahin, S.; Martini, A.C.; Head, E.; Silva, J.; Leavy, K.; Perez-Rosendahl, M.; Swarup, V. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat. Genet., 2021, 53(8), 1143-1155.
[http://dx.doi.org/10.1038/s41588-021-00894-z] [PMID: 34239132]
[68]
Liang, W.S.; Reiman, E.M.; Valla, J.; Dunckley, T.; Beach, T.G.; Grover, A.; Niedzielko, T.L.; Schneider, L.E.; Mastroeni, D.; Caselli, R.; Kukull, W.; Morris, J.C.; Hulette, C.M.; Schmechel, D.; Rogers, J.; Stephan, D.A. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. USA, 2008, 105(11), 4441-4446.
[http://dx.doi.org/10.1073/pnas.0709259105] [PMID: 18332434]
[69]
Zhang, Y.; James, M.; Middleton, F.A.; Davis, R.L. Transcriptional analysis of multiple brain regions in Parkinson’s disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2005, 137B(1), 5-16.
[http://dx.doi.org/10.1002/ajmg.b.30195] [PMID: 15965975]
[70]
Calligaris, R.; Banica, M.; Roncaglia, P.; Robotti, E.; Finaurini, S.; Vlachouli, C.; Antonutti, L.; Iorio, F.; Carissimo, A.; Cattaruzza, T.; Ceiner, A.; Lazarevic, D.; Cucca, A.; Pangher, N.; Marengo, E.; di Bernardo, D.; Pizzolato, G.; Gustincich, S. Blood transcriptomics of drug-naïve sporadic Parkinson’s disease patients. BMC Genomics, 2015, 16, 876.
[http://dx.doi.org/10.1186/s12864-015-2058-3] [PMID: 26510930]
[71]
Pinho, R.; Guedes, L.C.; Soreq, L.; Lobo, P.P.; Mestre, T.; Coelho, M.; Rosa, M.M.; Gonçalves, N.; Wales, P.; Mendes, T.; Gerhardt, E.; Fahlbusch, C.; Bonifati, V.; Bonin, M.; Miltenberger-Miltényi, G.; Borovecki, F.; Soreq, H.; Ferreira, J.J.; F Outeiro, T. T. Gene expression differences in peripheral blood of Parkinson’s disease patients with distinct progression profiles. PLoS One, 2016, 11(6), e0157852.
[http://dx.doi.org/10.1371/journal.pone.0157852] [PMID: 27322389]
[72]
Head, E.; Powell, D.; Gold, B.T.; Schmitt, F.A. Alzheimer’s disease in Down syndrome. Eur. J. Neurodegener. Dis., 2012, 1(3), 353-364.
[PMID: 25285303]
[73]
Hithersay, R.; Hamburg, S.; Knight, B.; Strydom, A. Cognitive decline and dementia in Down syndrome. Curr. Opin. Psychiatry, 2017, 30(2), 102-107.
[http://dx.doi.org/10.1097/YCO.0000000000000307] [PMID: 28009725]
[74]
Slonim, D.K.; Koide, K.; Johnson, K.L.; Tantravahi, U.; Cowan, J.M.; Jarrah, Z.; Bianchi, D.W. Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses. Proc. Natl. Acad. Sci. USA, 2009, 106(23), 9425-9429.
[http://dx.doi.org/10.1073/pnas.0903909106] [PMID: 19474297]
[75]
Lockstone, H.E.; Harris, L.W.; Swatton, J.E.; Wayland, M.T.; Holland, A.J.; Bahn, S. Gene expression profiling in the adult Down syndrome brain. Genomics, 2007, 90(6), 647-660.
[http://dx.doi.org/10.1016/j.ygeno.2007.08.005] [PMID: 17950572]
[76]
Ling, K.H.; Hewitt, C.A.; Tan, K.L.; Cheah, P.S.; Vidyadaran, S.; Lai, M.I.; Lee, H.C.; Simpson, K.; Hyde, L.; Pritchard, M.A.; Smyth, G.K.; Thomas, T.; Scott, H.S. Functional transcriptome analysis of the postnatal brain of the Ts1Cje mouse model for Down syndrome reveals global disruption of interferon-related molecular networks. BMC Genomics, 2014, 15, 624.
[http://dx.doi.org/10.1186/1471-2164-15-624] [PMID: 25052193]
[77]
Maciotta, S.; Meregalli, M.; Torrente, Y. The involvement of microRNAs in neurodegenerative diseases. Front. Cell. Neurosci., 2013, 7, 265.
[http://dx.doi.org/10.3389/fncel.2013.00265] [PMID: 24391543]
[78]
Qiu, L.; Tan, E.K.; Zeng, L. MicroRNAs and neurodegenerative diseases. Adv. Exp. Med. Biol., 2015, 888, 85-105.
[http://dx.doi.org/10.1007/978-3-319-22671-2_6] [PMID: 26663180]
[79]
Davis, E.J.; Broestl, L.; Abdulai-Saiku, S.; Worden, K.; Bonham, L.W.; Miñones-Moyano, E.; Moreno, A.J.; Wang, D.; Chang, K.; Williams, G.; Garay, B.I.; Lobach, I.; Devidze, N.; Kim, D.; Anderson-Bergman, C.; Yu, G.Q.; White, C.C.; Harris, J.A.; Miller, B.L.; Bennett, D.A.; Arnold, A.P.; De Jager, P.L.; Palop, J.J.; Panning, B.; Yokoyama, J.S.; Mucke, L.; Dubal, D.B. A second X chromosome contributes to resilience in a mouse model of Alzheimer’s disease. Sci. Transl. Med., 2020, 12(558), eaaz5677.
[http://dx.doi.org/10.1126/scitranslmed.aaz5677] [PMID: 32848093]
[80]
McClard, C.K.; Kochukov, M.Y.; Herman, I.; Liu, Z.; Eblimit, A.; Moayedi, Y.; Ortiz-Guzman, J.; Colchado, D.; Pekarek, B.; Panneerselvam, S.; Mardon, G.; Arenkiel, B.R. POU6f1 mediates neuropeptide-dependent plasticity in the adult brain. J. Neurosci., 2018, 38(6), 1443-1461.
[http://dx.doi.org/10.1523/JNEUROSCI.1641-17.2017] [PMID: 29305536]
[81]
Ma, X.; Liu, L.; Meng, J. MicroRNA-125b promotes neurons cell apoptosis and Tau phosphorylation in Alzheimer’s disease. Neurosci. Lett., 2017, 661, 57-62.
[http://dx.doi.org/10.1016/j.neulet.2017.09.043] [PMID: 28947385]
[82]
Peng, F.; Zhao, Y.; Huang, X.; Chen, C.; Sun, L.; Zhuang, L.; Xue, L. Loss of Polo ameliorates APP-induced Alzheimer’s disease-like symptoms in Drosophila. Sci. Rep., 2015, 5, 16816.
[http://dx.doi.org/10.1038/srep16816] [PMID: 26597721]
[83]
Huang, Y.T.; Iwamoto, K.; Kurosaki, T.; Nasu, M.; Ueda, S. The neuronal POU transcription factor Brn-2 interacts with Jab1, a gene involved in the onset of neurodegenerative diseases. Neurosci. Lett., 2005, 382(1-2), 175-178.
[http://dx.doi.org/10.1016/j.neulet.2005.03.008] [PMID: 15911144]
[84]
Lu, J.; Zhou, N.; Yang, P.; Deng, L.; Liu, G. MicroRNA-27a-3p downregulation inhibits inflammatory response and hippocampal neuronal cell apoptosis by upregulating mitogen-activated protein kinase 4 (MAP2K4) expression in epilepsy: In vivo and in vitro studies. Med. Sci. Monit., 2019, 25, 8499-8508.
[http://dx.doi.org/10.12659/MSM.916458] [PMID: 31710596]
[85]
Wang, J.; Zhao, J. MicroRNA dysregulation in epilepsy: From pathogenetic involvement to diagnostic biomarker and therapeutic agent development. Front. Mol. Neurosci., 2021, 14, 650372.
[http://dx.doi.org/10.3389/fnmol.2021.650372] [PMID: 33776649]
[86]
Liu, S.; Li, X.; Zhuang, S. miR-30c impedes glioblastoma cell proliferation and migration by targeting SOX9. Oncol. Res., 2019, 27(2), 165-171.
[http://dx.doi.org/10.3727/096504018X15193506006164] [PMID: 29495977]
[87]
Durrenberger, P.F.; Fernando, F.S.; Magliozzi, R.; Kashefi, S.N.; Bonnert, T.P.; Ferrer, I.; Seilhean, D.; Nait-Oumesmar, B.; Schmitt, A.; Gebicke-Haerter, P.J.; Falkai, P.; Grünblatt, E.; Palkovits, M.; Parchi, P.; Capellari, S.; Arzberger, T.; Kretzschmar, H.; Roncaroli, F.; Dexter, D.T.; Reynolds, R. Selection of novel reference genes for use in the human central nervous system: A BrainNet Europe Study. Acta Neuropathol., 2012, 124(6), 893-903.
[http://dx.doi.org/10.1007/s00401-012-1027-z] [PMID: 22864814]
[88]
Piras, I.S.; Krate, J.; Delvaux, E.; Nolz, J.; Mastroeni, D.F.; Persico, A.M.; Jepsen, W.M.; Beach, T.G.; Huentelman, M.J.; Coleman, P.D. Transcriptome changes in the Alzheimer’s disease middle temporal gyrus: Importance of RNA metabolism and mitochondria-associated membrane genes. J. Alzheimers Dis., 2019, 70(3), 691-713.
[http://dx.doi.org/10.3233/JAD-181113] [PMID: 31256118]
[89]
Hokama, M.; Oka, S.; Leon, J.; Ninomiya, T.; Honda, H.; Sasaki, K.; Iwaki, T.; Ohara, T.; Sasaki, T.; LaFerla, F.M.; Kiyohara, Y.; Nakabeppu, Y. Altered expression of diabetes-related genes in Alzheimer’s disease brains: The Hisayama study. Cereb. Cortex, 2014, 24(9), 2476-2488.
[http://dx.doi.org/10.1093/cercor/bht101] [PMID: 23595620]
[90]
Chauhan, D.; Bandi, M.; Singh, A.V.; Ray, A.; Raje, N.; Richardson, P.; Anderson, K.C. Preclinical evaluation of a novel SIRT1 modulator SRT1720 in multiple myeloma cells. Br. J. Haematol., 2011, 155(5), 588-598.
[http://dx.doi.org/10.1111/j.1365-2141.2011.08888.x] [PMID: 21950728]
[91]
Kalkan, R. Sarikamiş, B.; Elibol, B.; Gunay, N.; Kilic, U. Both activation and inhibition of SIRT1 may act via exosomal GSK3α/β in the in vitro amyloid beta toxicity model. Advances in Clinical Toxicology, 2019, 4, 1-8.
[http://dx.doi.org/10.23880/ACT-16000175]
[92]
Sheweita, S.A.; Ammar, R.G.; Sabra, S.A.; Sultan, A.S. Letrozole and zoledronic acid changed signalling pathways involved in the apoptosis of breast cancer cells. J. Taibah Univ. Med. Sci., 2020, 16(1), 112-120.
[http://dx.doi.org/10.1016/j.jtumed.2020.10.017] [PMID: 33603639]
[93]
Lu, X.Y.; Yang, Y.; Xu, H.; Zeng, T.; Zhang, Z.Z. Synergistic in vitro anti-tumor effect of letrozole and everolimus on human endometrial carcinoma Ishikawa cells. Eur. Rev. Med. Pharmacol. Sci., 2014, 18(16), 2264-2269.
[PMID: 25219824]
[94]
Kumar, A.; Ben-Aderet, L.; Elayyan, J.; Dvir-Ginzberg, M. NAD+-dependent deacetylases and medical therapy. Med. Epigenet., 2016, 35, 668.
[95]
Napper, A.D.; Hixon, J.; McDonagh, T.; Keavey, K.; Pons, J.F.; Barker, J.; Yau, W.T.; Amouzegh, P.; Flegg, A.; Hamelin, E.; Thomas, R.J.; Kates, M.; Jones, S.; Navia, M.A.; Saunders, J.O.; DiStefano, P.S.; Curtis, R. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J. Med. Chem., 2005, 48(25), 8045-8054.
[http://dx.doi.org/10.1021/jm050522v] [PMID: 16335928]
[96]
Belosay, A.; Brodie, A.M.; Njar, V.C. Effects of novel retinoic acid metabolism blocking agent (VN/14-1) on letrozole-insensitive breast cancer cells. Cancer Res., 2006, 66(23), 11485-11493.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2168] [PMID: 17145897]
[97]
Chronowska, E.; Tománek, M.; Kott, T. Effect of aromatase inhibitor (fadrozole) on proliferation, estradiol production and telomerase activity in pig granulosa cells in vitro. Czech J. Anim. Sci., 2009, 12, 566-574.
[http://dx.doi.org/10.17221/136/2009-CJAS]
[98]
Jiang, S.B.; Lu, Y.S.; Liu, T.; Li, L.M.; Wang, H.X.; Wu, Y.; Gao, X.H.; Chen, H.D. UVA influenced the SIRT1-miR-27a-5p-SMAD2-MMP1/COL1/BCL2 axis in human skin primary fibroblasts. J. Cell. Mol. Med., 2020, 24(17), 10027-10041.
[http://dx.doi.org/10.1111/jcmm.15610] [PMID: 32790210]
[99]
Saunders, L.R.; Sharma, A.D.; Tawney, J.; Nakagawa, M.; Okita, K.; Yamanaka, S.; Willenbring, H.; Verdin, E. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY), 2010, 2(7), 415-431.
[http://dx.doi.org/10.18632/aging.100176] [PMID: 20634564]
[100]
Zhou, B.; Li, C.; Qi, W.; Zhang, Y.; Zhang, F.; Wu, J.X.; Hu, Y.N.; Wu, D.M.; Liu, Y.; Yan, T.T.; Jing, Q.; Liu, M.F.; Zhai, Q.W. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia, 2012, 55(7), 2032-2043.
[http://dx.doi.org/10.1007/s00125-012-2539-8] [PMID: 22476949]
[101]
Chen, J.; Zhang, M.; Zhang, S.; Wu, J.; Xue, S. Rno-microRNA-30c-5p promotes myocardial ischemia reperfusion injury in rats through activating NF-κB pathway and targeting SIRT1. BMC Cardiovasc. Disord., 2020, 20(1), 240.
[http://dx.doi.org/10.1186/s12872-020-01520-2] [PMID: 32434515]
[102]
Otsuka, K.; Yamamoto, Y.; Ochiya, T. Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer. Oncotarget, 2018, 9(37), 24718-24730.
[http://dx.doi.org/10.18632/oncotarget.25339] [PMID: 29872500]
[103]
Tili, E.; Michaille, J.J.; Alder, H.; Volinia, S.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem. Pharmacol., 2010, 80(12), 2057-2065.
[http://dx.doi.org/10.1016/j.bcp.2010.07.003] [PMID: 20637737]
[104]
Shibahara, Y.; Miki, Y.; Onodera, Y.; Hata, S.; Chan, M.S.; Yiu, C.C.; Loo, T.Y.; Nakamura, Y.; Akahira, J.; Ishida, T.; Abe, K.; Hirakawa, H.; Chow, L.W.; Suzuki, T.; Ouchi, N.; Sasano, H. Aromatase inhibitor treatment of breast cancer cells increases the expression of let-7f, a microRNA targeting CYP19A1. J. Pathol., 2012, 227(3), 357-366.
[http://dx.doi.org/10.1002/path.4019] [PMID: 22407818]
[105]
Li, X.; Xu, M.; Ding, L.; Tang, J. MiR-27a: A novel biomarker and potential therapeutic target in tumors. J. Cancer, 2019, 10(12), 2836-2848.
[http://dx.doi.org/10.7150/jca.31361] [PMID: 31258791]
[106]
Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3(3), 205-214.
[http://dx.doi.org/10.1038/nrd1330] [PMID: 15031734]
[107]
Morales, A.E.; Pérez-Jiménez, A.; Hidalgo, M.C.; Abellán, E.; Cardenete, G. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2004, 139(1-3), 153-161.
[http://dx.doi.org/10.1016/j.cca.2004.10.008] [PMID: 15556078]
[108]
Shi, L.; Zhang, J.; Wang, Y.; Hao, Q.; Chen, H.; Cheng, X. Sirt1 regulates oxidative stress in oxygen-glucose deprived hippocampal neurons. Front Pediatr., 2020, 8, 455.
[http://dx.doi.org/10.3389/fped.2020.00455] [PMID: 32923413]
[109]
Yan, L.; Qi, W.; Liu, Y.; Zhou, F.; Wang, Y.; Bai, L.; Zhou, X.; Sun, C.; Nie, X.; Duan, S.; Ran, J.; Chen, J.; Ji, Y.; Liu, Y.; Li, Z.; Li, Y.; Wang, Q. The protective effect of aromatase on NSC-34 cells with stably expressed hSOD1-G93A. Neuroscience, 2019, 411, 37-46.
[http://dx.doi.org/10.1016/j.neuroscience.2019.05.022] [PMID: 31129201]
[110]
Salminen, A.; Kaarniranta, K.; Kauppinen, A. Crosstalk between oxidative stress and SIRT1: Impact on the aging process. Int. J. Mol. Sci., 2013, 14(2), 3834-3859.
[http://dx.doi.org/10.3390/ijms14023834] [PMID: 23434668]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy