Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Antibacterial, Anti-Inflammatory, and Antidiabetic Studies of the Amines Isolated from the Philippine Marine Sponge Desmacella sp

Author(s): Roeve Ann Mae C. Mazo, Chona D. Gelani*, Charlie A. Lavilla, Mylene M. Uy, Sharon Rose M. Tabugo, Emi Ohta and Shinji Ohta

Volume 19, Issue 1, 2023

Published on: 24 June, 2022

Article ID: e090522204450 Pages: 10

DOI: 10.2174/1573407218666220509152514

open access plus

Abstract

Aims: The study aimed to isolate and elucidate the structure of pure compounds from the polar extract of the marine sponge Desmacella sp. and explore their therapeutic potential.

Background: Only a few marine organisms and their associated microorganisms collected from various parts of the Philippines have been documented and investigated in terms of their potential as sources of bioactive secondary metabolites. The sponge Desmacella sp. was collected off the coast of Agusan del Norte, Mindanao, Philippines, for the purpose of isolating compounds with medicinal prospects.

Objective: The objective of the study was to explore the antibacterial, anti-inflammatory, and antidiabetic potentials of the pure isolates from the polar extract of the marine sponge Desmacella sp.

Methods: The polar extract of the marine sponge Desmacella sp. from Agusan del Norte, Philippines, was subjected to purification using gravity column and medium pressure liquid chromatographic methods with TLC profiling as a guide. Pure isolates were obtained and subjected to NMR spectroscopy and mass spectrometry for structure elucidation, and the structures were confirmed by comparing the data with the literature. The pure compounds were explored for their antibacterial potential against B. subtilis BIOTECH 1679 and P. aeruginosa BIOTECH 1335 using a microplatebased antibacterial assay with resazurin indicator for the cell growth and ciprofloxacin as a positive control. Their anti-inflammatory potentials were determined using membrane stabilization and protein denaturation assays and were compared with the anti-inflammatory drug diclofenac and their antidiabetic potential by measuring their ability of inhibiting starch-hydrolyzing enzyme α-amylase.

Results: The polar extract of the marine sponge Desmacella sp. from Agusan del Norte, Philippines, afforded three known compounds, namely, aaptamine, isopentylamine, and tyramine. This is the first report on the isolation of aaptamine, isopentylamine, and tyramine from the marine sponge genus Desmacella. The compounds aaptamine and isopentylamine exhibited antibacterial activity against B. subtilis, while tyramine and isopentylamine exhibited antibacterial activity against P. aeruginosa. These compounds showed the ability to inhibit heat-induced protein denaturation and effectively inhibited the erythrocytes' heat-induced hemolysis, which described in vitro antiinflammatory activity. These compounds were also evaluated for in vitro antidiabetic properties and showed their ability to inhibit the alpha-amylase enzyme activity of starch.

Conclusion: Three known amines, namely, aaptamine, isopentylamine, and tyramine were isolated from the polar extract of the marine sponge Desmacella sp. collected off Mindanao coasts. Aaptamine and isopentylamine exhibited antibacterial properties against B. subtilis, while isopentylamine and tyramine exhibited antibacterial activity against P. aeruginosa. The anti-inflammatory potentials of aaptamine, isopentylamine, and tyramine were exhibited clearly in the membrane stabilization and protein denaturation assays and were compared with the anti-inflammatory drug diclofenac. Aaptamine, isopentylamine, and tyramine exhibited hypoglycemic properties and were compared with the antidiabetic drug acarbose in the inhibition of starch-hydrolyzing enzyme α-amylase assay.

Keywords: Desmacella sp., aaptamine, isopentylamine, tyramine, antibacterial activity, antidiabetic activity, anti-inflammatory activity, amines, marine sponge.

Graphical Abstract

[1]
Sipkema, D.; Franssen, M.C.R.; Osinga, R.; Tramper, J.; Wijffels, R.H. Marine sponges as pharmacy. Mar. Biotechnol., 2005, 7(3), 142-162.
[http://dx.doi.org/10.1007/s10126-004-0405-5] [PMID: 15776313]
[2]
Anjum, K.; Abbas, S.Q.; Shah, S.A.A.; Akhter, N.; Batool, S.; Hassan, S.S. Marine sponges as a drug treasure. Biomol. Ther., 2016, 24(4), 347-362.
[http://dx.doi.org/10.4062/biomolther.2016.067] [PMID: 27350338]
[3]
Kim, S.K. Handbook of anticancer drugs from marine Origin; , 2015.
[http://dx.doi.org/10.1007/978-3-319-07145-9]
[4]
Gordaliza, M. Cytotoxic terpene quinones from marine sponges. Mar. Drugs, 2010, 8(12), 2849-2870.
[http://dx.doi.org/10.3390/md8122849] [PMID: 21339953]
[5]
Alcaraz, M.J.; Payá, M. Marine sponge metabolites for the control of inflammatory diseases. Curr. Opin. Investig. Drugs, 2006, 7(11), 974-979.
[PMID: 17117584]
[6]
Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov., 2009, 8(1), 69-85.
[http://dx.doi.org/10.1038/nrd2487] [PMID: 19096380]
[7]
Mayer, A.M.S.; Guerrero, A.J.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine pharmacology in 2014-2015: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2019, 18(1), 5.
[8]
Rice, L.B. Antimicrobial resistance in gram-positive bacteria. Am. J. Infect. Control, 2006, 34(5)(Suppl. 1), S11-S19.
[http://dx.doi.org/10.1016/j.ajic.2006.05.220] [PMID: 16813977]
[9]
Pettit, G.R.; McNulty, J.; Herald, D.L.; Doubek, D.L.; Chapuis, J.C.; Schmidt, J.M.; Tackett, L.P.; Boyd, M.R. Antineoplastic agents. 362. Isolation and X-ray crystal structure of dibromophakellstatin from the Indian Ocean sponge Phakellia mauritiana. J. Nat. Prod., 1997, 60(2), 180-183.
[http://dx.doi.org/10.1021/np9606106] [PMID: 9051914]
[10]
Yang, F.; Hamann, M.T.; Zou, Y.; Zhang, M.Y.; Gong, X. Bin; Xiao, J.R.; Chen, W.S.; Lin, H.W Antimicrobial metabolites from the Paracel Islands sponge Agelas mauritiana. J. Nat. Prod., 2012, 75(4), 774-778.
[11]
Tan, P.; Luscinskas, F.W.; Homer-Vanniasinkam, S. Cellular and molecular mechanisms of inflammation and thrombosis. Eur. J. Vasc. Endovasc. Surg., 1999, 17(5), 373-389.
[http://dx.doi.org/10.1053/ejvs.1998.0759] [PMID: 10329520]
[12]
Mayer, A.M.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009-2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2013, 11(7), 2510-2573.
[http://dx.doi.org/10.3390/md11072510] [PMID: 23880931]
[13]
Mayer, A.M.S.; Rodriguez, A.D.; Berlinck, R.G.S.; Hamann, M.T. Marine pharmacology in 2005-6: Marine compounds with antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim. Biophys. Acta, 2009, 1790(5), 283-308.
[http://dx.doi.org/10.1016/j.bbagen.2009.03.011] [PMID: 19303911]
[14]
Lauritano, C.; Ianora, A. Marine organisms with anti-diabetes properties. Mar. Drugs, 2016, 14(12), 220.
[http://dx.doi.org/10.3390/md14120220] [PMID: 27916864]
[15]
Barde, S.R.; Sakhare, R.S.; Kanthale, S.B.; Chandak, P.G.; Jamkhande, P.G. Marine bioactive agents: A short review on new marine antidiabetic compounds. Asian Pac. J. Trop. Dis., 2015, 5, S209-S213.
[http://dx.doi.org/10.1016/S2222-1808(15)60891-X]
[16]
Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci., 2016, 8(2), 83-91.
[http://dx.doi.org/10.4103/0975-7406.171700] [PMID: 27134458]
[17]
Li, Y.; Zhang, Y.; Shen, X.; Guo, Y.W. A novel sesquiterpene quinone from hainan sponge Dysidea villosa. Bioorg. Med. Chem. Lett., 2009, 19(2), 390-392.
[18]
Zhang, Y.; Li, Y.; Guo, Y.W.; Jiang, H.L.; Shen, X. A sesquiterpene quinone, dysidine, from the sponge Dysidea villosa, activates the insulin pathway through inhibition of PTPases. Acta Pharmacol. Sin., 2009, 30(3), 333-345.
[http://dx.doi.org/10.1038/aps.2009.5] [PMID: 19262557]
[19]
Cavalcanti, T.; Santos, G.G.; Pinheiro, U. Desmacella Schmidt, 1870 from Brazil: Description of two new species and a review of records (Desmacellida: Demospongiae: Porifera). Zootaxa, 2015, 4034(2), 364-374.
[http://dx.doi.org/10.11646/zootaxa.4034.2.8] [PMID: 26624447]
[20]
van Soest, R.W.; Boury-Esnault, N.; Hooper, J.N.A.; Rützler, K.; de Voogd, N.J.; Alvarez de Glasby, B.; Hajdu, E.; Pisera, A.B.; Manconi, R.; Schoenberg, C.; Klautau, M.; Picton, B.; Kelly, M.; Vacelet, J.; Dohrmann, M.; Díaz, M-C.; Cárdenas, P.; Carballo, J.L.; Carball, J.L.; Alvarez, B.; Hajdu, E.; Pisera, A.B.; Manconi, R.; Schönberg, C.; Klautau, M.; Picton, B.; Kelly, M.; Vacelet, J.; Dohrmann, M.; Díaz, M-C.; Cárdenas, P.; Carballo, J.L. world porifera database. available from: http://www.marinespecies.org/porifera
[21]
Thomas, T.; Moitinho-Silva, L.; Lurgi, M.; Björk, J.R.; Easson, C.; Astudillo-García, C.; Olson, J.B.; Erwin, P.M.; López-Legentil, S.; Luter, H.; Chaves-Fonnegra, A.; Costa, R.; Schupp, P.J.; Steindler, L.; Erpenbeck, D.; Gilbert, J.; Knight, R.; Ackermann, G.; Victor Lopez, J.; Taylor, M.W.; Thacker, R.W.; Montoya, J.M.; Hentschel, U.; Webster, N.S. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun., 2016, 7(1), 11870.
[http://dx.doi.org/10.1038/ncomms11870] [PMID: 27306690]
[22]
Manconi, R.; Pronzato, R. Phylum porifera. In: Thorp and Covich’s Freshwater Invertebrates: Ecology and General Biology, 4th ed.; James, T.D.; Christopher, R., Eds.; Elsevier, Amsterdam , 2015.
[http://dx.doi.org/10.1016/B978-0-12-385026-3.00008-5]
[23]
Hooper, J.N.A. ‘Sponguide’. Guide to sponge collection and identification; , 2003. Available from https://www.researchgate.net/publication/242495363_Sponguide_Guide_to_Sponge_Collection_and_Identification
[24]
Hooper, J.N.; Capon, R.J.; Keenan, C.P.; Parry, D.L.; Smit, N. Chemotaxonomy of marine sponges: Families microcionidae, raspailiidae and axinellidae, and their relationships with other families in the orders poecilosclerida and axinellida (Porifera: Demospongiae). Invertebr. Syst., 1992, 6(2), 261-301.
[http://dx.doi.org/10.1071/IT9920261]
[25]
Rodkina, S.A.; Imbs, A.B.; Krasokhin, V.B. Fatty acids of sponges from the sea of okhotsk. Russ. J. Mar. Biol., 2008, 34(6), 384-390.
[http://dx.doi.org/10.1134/S1063074008060060]
[26]
Nakamura, H.; Kobayashi, J.; Ohizumi, Y.; Hirata, Y. Isolation and structure of aaptamine a novel heteroaromatic substance possessing α-blocking activity from the sea sponge Aaptos aaptos. Tetrahedron Lett., 1982, 23(52), 5555-5558.
[27]
Abdjul, D.B.; Yagi, A.; Yamazaki, H.; Kirikoshi, R.; Takahashi, O.; Namikoshi, M.; Uchida, R. Anti-mycobacterial haliclonadiamine alkaloids from the okinawan marine sponge Haliclona sp. collected at Iriomote Island. Phytochem. Lett., 2018, 26, 130-133.
[http://dx.doi.org/10.1016/j.phytol.2018.05.028]
[28]
Takahashi, Y.; Ushio, M.; Kubota, T.; Yamamoto, S.; Fromont, J.; Kobayashi, J. Nakijiquinones J.R, sesquiterpenoid quinones with an amine residue from okinawan marine sponges. J. Nat. Prod., 2010, 73(3), 467-471.
[http://dx.doi.org/10.1021/np900470e] [PMID: 20028027]
[29]
Cui, Z.; Yuan, D.; Jiang, Z.; Li, Y.; Yin, J.; Yu, D.; Li, J. Chemical constituents of the sponge Tylotella Sp. Chin. Pharm. J., 1995, 30(9), 524.
[30]
Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 2007, 42(4), 321-324.
[http://dx.doi.org/10.1016/j.ymeth.2007.01.006] [PMID: 17560319]
[31]
Reshma, A.K.; Brindha, P. In vitro anti-inflammatory, antioxidant and nephroprotective studies on leaves of Aegle marmelos and Ocimum sanctum. Asian J. Pharm. Clin. Res., 2014, 7, 121-129.
[32]
Sakat, S.S.; Juvekar, A.R.; Gambhire, M.N. In-vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis Corniculata Linn. Int. J. Pharm. Pharm. Sci., 2010, 2(1), 146-155.
[33]
Mizushima, Y.; Kobayashi, M. Interaction of anti‐inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol., 1968, 20(3), 169-173.
[34]
Kumari, C.S.; Yasmin, N.; Hussain, M.R.; Babuselvam, M. In vitro anti-inflammatory and anti-artheritic property of Rhizopora mucronata leaves. Int. J. Pharm. Sci. Res., 2015, 6(3), 482-485.
[35]
Shinde, U.A.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. Membrane stabilizing activity - A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia, 1999, 70(3), 251-257.
[http://dx.doi.org/10.1016/S0367-326X(99)00030-1]
[36]
Sadique, J.; Al-Rqobah, W.A.; Bughaith, M.F.; El-Gindy, A.R. The bio-activity of certain medicinal plants on the stabilization of RBC membrane system. Fitoterapia, 1989, 60(6), 525-532.
[37]
Xiao, Z.; Storms, R.; Tsang, A. A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem., 2006, 351(1), 146-148.
[http://dx.doi.org/10.1016/j.ab.2006.01.036] [PMID: 16500607]
[38]
Kumar, B.S.; Khan, S.; Saran, G.S.; Nandeesh, R.; Manjunath, N.K. In vitro antidiabetic activity of Nisamalaki churna. Sains Malays., 2013, 42(5), 625-628.
[39]
Kumar, A.S.; Kavimani, S.; Jayaveera, K.N. A review on medicinal plants with potential antidiabetic activity. Int. J. Phytopharm., 2011, 2(2), 53-60.
[40]
Steinbeck, C.; Kuhn, S. NMRShiftDB-compound identification and structure elucidation support through a free community-built web database. Phytochemistry, 2004, 65(19), 2711-2717.
[http://dx.doi.org/10.1016/j.phytochem.2004.08.027] [PMID: 15464159]
[41]
Saito, T.; Yamaji, T.; Hayamizu, K.; Yanagisawa, M.; Yamamoto, O.; Matsuyama, S.; Wasada, N.; Someno, K.; Kinugasa, S.; Tamura, T.; Tanabe, K.; Hiraishi, J. National institute of advanced industrial science and technology Nat. Index, 2018. Available from: https://www.mendeley.com/search/?page=1&query=Saito% 20 and % 20 J. % 20 National % 20 institute % 20 of % 20 advanced % 20 industrial % 20 science % 20 and % 20 technology % 20 & sort By=relevance
[42]
Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; Mandal, R.; Sinelnikov, I.; Xia, J.; Jia, L.; Cruz, J.A.; Lim, E.; Sobsey, C.A.; Shrivastava, S.; Huang, P.; Liu, P.; Fang, L.; Peng, J.; Fradette, R.; Cheng, D.; Tzur, D.; Clements, M.; Lewis, A.; De Souza, A.; Zuniga, A.; Dawe, M.; Xiong, Y.; Clive, D.; Greiner, R.; Nazyrova, A.; Shaykhutdinov, R.; Li, L.; Vogel, H.J.; Forsythe, I. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res., 2009, 37(Suppl. 1), D603-D610.
[http://dx.doi.org/10.1093/nar/gkn810] [PMID: 18953024]
[43]
Ulrich, E.L.; Markley, J.L. BMRB. Roberts, G.C. Encyclopedia of biophysics; Springer: Berlin, Heidelberg, 2013. Available from:
[http://dx.doi.org/10.1007/978-3-642-16712-6_315]
[44]
Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I.M. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett., 2016, 38(6), 1015-1019.
[http://dx.doi.org/10.1007/s10529-016-2079-2] [PMID: 26969604]
[45]
Krishnamoorthy, K.; Manivannan, G.; Kim, S.J.; Jeyasubramanian, K.; Premanathan, M. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J. Nanopart. Res., 2012, 14(9), 1-10.
[http://dx.doi.org/10.1007/s11051-012-1063-6]
[46]
Sarillana, Z.C.; Fundador, E.O.; Fundador, N.G. Synthesis of ZnO nanoparticles using Theobroma cacao L. Pod husks, and their antibacterial activities against foodborne pathogens. Int. Food Res. J., 2021, 28.
[47]
Akhter, S.; Hasan, S.; Mehdi, H.M. Investigation of in vivo analgesic and anti-inflammatory activities of methanol extracts of Phyllanthus reticulatus and Mimosa pigra. J. Pharmacogn. Phytochem., 2018, 7, 2378-2385.
[48]
Cheesbrough, M. Microbiological tests. In: District laboratory practice in tropical countries, 2009.
[49]
Pitout, J.D.D.; Revathi, G.; Chow, B.L.; Kabera, B.; Kariuki, S.; Nordmann, P.; Poirel, L. Metallo-β-lactamase-producing Pseudomonas aeruginosa isolated from a large tertiary centre in Kenya. Clin. Microbiol. Infect., 2008, 14(8), 755-759.
[http://dx.doi.org/10.1111/j.1469-0691.2008.02030.x] [PMID: 18727799]
[50]
Kowalska-Krochmal, B.; Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 2021, 10(2), 165.
[http://dx.doi.org/10.3390/pathogens10020165] [PMID: 33557078]
[51]
Jang, K.H.; Chung, S.C.; Shin, J.; Lee, S.H.; Kim, T.I.; Lee, H.S.; Oh, K.B. Aaptamines as sortase A inhibitors from the tropical sponge Aaptos aaptos. Bioorg. Med. Chem. Lett., 2007, 17(19), 5366-5369.
[52]
Rajivgandhi, G.; Kumar, S.N.; Ramachandran, G.; Manoharan, N. Marine sponge alkaloid aaptamine enhances the anti-bacterial and anti-cancer activity against ESBL producing gram negative bacteria and HepG 2 human liver carcinoma cells. Biocatal. Agric. Biotechnol., 2019, 17, 628-637.
[53]
Rosmiati, R.; Parenrengi, A.; Suryati, E. Marine sponge Aaptos suberitoides, it’s potential source of natural antibacterial for controlling Vibrio harveyi on tiger shrimp (Penaeus monodon) culture. Indones. Aquac. J., 2015, 10(1), 33-40.
[http://dx.doi.org/10.15578/iaj.10.1.2015.33-40]
[54]
Mohamad, H.; Rashid, Z.M.; Shaari, K.; Latip, J.; Lajis, M.N.H.; Ali, A.M. Antibacterial and DPPH free radical-scavenging activities of methanolic extracts of Aaptos Sp. (Marine Sponges). Pertanika, J. Trop. Agric. Sci., 2009, 32(1), 43-50.
[55]
Mohamad, H.; Rosmiati; Muhammad, T.S.; Andriani, Y.; Bakar, K.; Ismail, N.; Saidin, J.; Latip, J.; Musa, N.; Parenrengi, A. Potential secondary metabolites from marine sponge Aaptos aaptos for atherosclerosis and vibriosis treatments. Nat. Prod. Commun., 2017, 12(8), pp. 1227-1230.
[56]
Davet, A. estudo fitoquímico e biológico do cacto – cereus jamacaru De candolle, cactaceae., 2005.Available from: https://www.acervodigital.ufpr.br/handle/1884/1921
[57]
Gadetskaya, A.V.; Tarawneh, A.H.; Zhusupova, G.E.; Gemejiyeva, N.G.; Cantrell, C.L.; Cutler, S.J.; Ross, S.A. Sulfated phenolic compounds from Limonium caspium: Isolation, structural elucidation, and biological evaluation. Fitoterapia, 2015, 104, 80-85.
[http://dx.doi.org/10.1016/j.fitote.2015.05.017] [PMID: 26025854]
[58]
Rosales, C. Neutrophil: A cell with many roles in inflammation or several cell types? Front. Physiol., 2018, 9, 113.
[http://dx.doi.org/10.3389/fphys.2018.00113] [PMID: 29515456]
[59]
Chen, X.H.; Cheng, T.M. The role of neutrophils in tissue repair. Chin. Pharmacol. Bull, 2001, 17(4), 373-375. Available from: https://pesquisa.bvsalud.org/portal/resource/pt/wpr-677478
[60]
Rashid, M.A.; Al Amin Sikder, M.; Kaisar, M.A.; Kowser Miah, M.; Masud Parvez, M.; Nawshad Hossian, A.; Abdur Rashid, M. Membrane stabilizing activity-a possible mechanism of action for the anti-inflammatory activity of two Bangladeshi medicinal plants: Mesua nagassarium (Burm.F.) and Kigelia pinnata (Jack); Dc. Int. Stand. Ser. Number, 2011, pp. 1-5.
[61]
Abe, H.; Katada, K.; Orita, M.; Nishikibe, M. Effects of calcium antagonists on the erythrocyte membrane. J. Pharm. Pharmacol., 1991, 43.
[62]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[63]
Osman, N.I.; Sidik, N.J.; Awal, A.; Adam, N.A.; Rezali, N.I. In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J. Intercult. Ethnopharmacol., 2016, 5(4), 343-349.
[http://dx.doi.org/10.5455/jice.20160731025522] [PMID: 27757263]
[64]
Opie, On the relation of necrosis and inflammation to denaturation of proteins. J. Exp. Med., 1962, 115(3), 597.
[65]
Chopra, A.; Geetha, R.V. In vitro anti-inflammatory activity of Vitis vinifera seed extract using albumin denaturation assay. Plant Cell Biotechnol. Mol. Biol., 2020, 21, 33-37.
[66]
Vedavathi, M.; Rajareddy, A.; Sreenivasa, G.M.; Jayachandran, E. The in vitro anti-denaturation effects induced by synthetic products in bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds without the use of animals. Int. J. Pharm Sci., 2010, 2(1), 404-410.
[67]
Levy, M.; Warner, R.C. Denaturation of bovine plasma albumin. J. Phys. Chem., 1954, 58(2), 106-109.
[http://dx.doi.org/10.1021/j150512a004]
[68]
Williams, L.A. Further insight into the bovine serum albumin assay (the in vitro anti-inflammatory assay. West Indian Med. J., 2009, 58(2), 181-182.
[PMID: 21866606]
[69]
Özbek, H.; Yuca, H.; Gözcü, S. Dursunoğlu, B.; Özenver, N.; Güvenalp, Z.; Kazaz, C.; Önal, M.; Demi̇Rezer, L.Ö. Phenolic compounds from Cotinus coggygria Scop. with alpha glucosidase inhibition. Fabad J. Pharm. Sci, 2019, 44(2), 127-132.
[70]
Zakłos-Szyda, M.; Majewska, I.; Redzynia, M.; Koziołkiewicz, M. Antidiabetic effect of polyphenolic extracts from selected edible plants as α-amylase, α -glucosidase and PTP1B inhibitors, and β pancreatic cells cytoprotective agents - a comparative study. Curr. Top. Med. Chem., 2015, 15(23), 2431-2444.
[http://dx.doi.org/10.2174/1568026615666150619143051] [PMID: 26088348]
[71]
Mahomoodally, M.F.; Subratty, A.H.; Gurib-Fakim, A.; Choudhary, M.I.; Nahar Khan, S. Traditional medicinal herbs and food plants have the potential to inhibit key carbohydrate hydrolyzing enzymes in vitro and reduce postprandial blood glucose peaks in vivo. Sci. World J., 2012, 2012
[72]
Jijith, U.S.; Jayakumari, S. Recent advances and methods for in-vitro evaluation of antidiaetic activity: A review. Int. J. Res. Ayurveda Pharm., 2017, 8(1), 81-87.
[http://dx.doi.org/10.7897/2277-4343.08117]
[73]
Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J. Nutr. Sci. Vitaminol., 2006, 52(2), 149-153.
[http://dx.doi.org/10.3177/jnsv.52.149] [PMID: 16802696]
[74]
de Oliveira, A.R.; Pereira, C.A. Inhibition of alpha-amylase by “insulin plant” (Myrcia sphaerocarpa DC) extracts: An alternative for the treatment of diabetes mellitus? J. Appl. Pharm. Sci., 2015, 5, 89-93.
[http://dx.doi.org/10.7324/JAPS.2015.50517]
[75]
Oyedemi, S.O.; Oyedemi, B.O.; Ijeh, I.I.; Ohanyerem, P.E.; Coopoosamy, R.M.; Aiyegoro, O.A. Alpha-amylase inhibition and antioxidative capacity of some antidiabetic plants used by the traditional healers in Southeastern Nigeria. Sci. World J., 2017, 2017
[http://dx.doi.org/10.1155/2017/3592491]
[76]
Ashok Kumar, B.S.; Lakshman, K.; Nandeesh, R.; Arun Kumar, P.A.; Manoj, B.; Kumar, V.; Sheshadri Shekar, D. In vitro alpha-amylase inhibition and in vivo antioxidant potential of Amaranthus spinosus in alloxan-induced oxidative stress in diabetic rats. Saudi J. Biol. Sci., 2011, 18(1), 1-5.
[http://dx.doi.org/10.1016/j.sjbs.2010.08.002] [PMID: 23961097]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy