Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

An Updated Review on Properties, Nanodelivery Systems, and Analytical Methods for the Determination of 5-Fluorouracil in Pharmaceutical and Biological Samples

Author(s): Aline Martins dos Santos*, Alberto Gomes Tavares Junior, Suzana Gonçalves Carvalho and Marlus Chorilli*

Volume 28, Issue 18, 2022

Published on: 24 June, 2022

Page: [1501 - 1512] Pages: 12

DOI: 10.2174/1381612828666220509150918

Price: $65

Abstract

5-Fluorouracil (5-FU) is an antimetabolite drug used for over 70 years as first-line chemotherapy to treat various types of cancer, such as head, neck, breast, and colorectal cancer. 5-FU acts mainly by inhibiting thymidylate synthase, thereby interfering with deoxyribonucleic acid (DNA) replication or by 5-FU incorporating into DNA, causing damage to the sequence of nucleotides. Being analogous to uracil, 5-FU enters cells using the same transport mechanism, where a is converted into active metabolites such as fluorouridine triphosphate (FUTP), fluorodeoxyuridine monophosphate (FdUMP), and fluorodeoxyuridine triphosphate (FdUTP). Currently, there are several nano delivery systems being developed and evaluated at the preclinical level to overcome existing limitations to 5-FU chemotherapy, including liposomes, polymeric nanoparticles, polymeric micelles, nanoemulsions, mesoporous silica nanoparticles, and solid lipid nanoparticles. Therefore, it is essential to choose and develop suitable analytical methods for the quantification of 5-FU and its metabolites (5- fluorouridine and 5-fluoro-2-deoxyuridine) in pharmaceutical and biological samples. Among the analytical techniques, chromatographic methods are commonly the most used for the quantification of 5-FU from different matrices. However, other analytical methods have also been developed for the determination of 5-FU, such as electrochemical methods, a sensitive, selective, and precise technique, in addition to having a reduced cost. Here, we first review the physicochemical properties, mechanism of action, and advances in 5-FU nanodelivery systems. Next, we summarize the current progress of other chromatographic methods described to determine 5- FU. Lastly, we discuss the advantages of electrochemical methods for the identification and quantification of 5- FU and its metabolites in pharmaceutical and biological samples.

Keywords: Analytical methods, 5-fluorouracil, chromatographic, electrochemical, nanodrug delivery systems, mechanisms of action, physicochemical properties.

[1]
Semail NF, Abdul Keyon AS, Saad B, et al. Analytical method development and validation of anticancer agent, 5-fluorouracil, and its metabolites in biological matrices: An updated review. J Liq Chromatogr Relat Technol 2020; 43(15-16): 562-79.
[http://dx.doi.org/10.1080/10826076.2020.1781654]
[2]
Kornberg HL, Krebs HA. © 1957 Nature Publishing Group. Gr Nat Publ 1957; 180: 756-7.
[3]
de Oliveira EB, Amorim JOH, Lima LL, et al. 5-Fluorouracil, innovative drug delivery systems to enhance bioavailability for topical use. J Drug Deliv Sci Technol 2021; 61102155
[http://dx.doi.org/10.1016/j.jddst.2020.102155]
[4]
Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther 2020; 206107447
[http://dx.doi.org/10.1016/j.pharmthera.2019.107447] [PMID: 31756363]
[5]
O’Neil MJ, Smith APE, Heckelman SB. An encyclopedia of chemicals, drugs, and biologicals. The Merck Index 2001; p. 740.
[6]
Ceilley RI. Mechanisms of action of topical 5-fluorouracil: Review and implications for the treatment of dermatological disorders. J Dermatolog Treat 2012; 23(2): 83-9.
[http://dx.doi.org/10.3109/09546634.2010.507704] [PMID: 21034289]
[7]
Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed Pharmacother 2021; 137111285
[http://dx.doi.org/10.1016/j.biopha.2021.111285] [PMID: 33485118]
[8]
Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3(5): 330-8.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[9]
Ju J, Schmitz JC, Song B, Kudo K, Chu E. Regulation of p53 expression in response to 5-fluorouracil in human cancer RKO cells. Clin Cancer Res 2007; 13(14): 4245-51.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2890] [PMID: 17634554]
[10]
Longley DB, Boyer J, Allen WL, et al. The role of thymidylate synthase induction in modulating p53-regulated gene expression in re-sponse to 5-fluorouracil and antifolates. Cancer Res 2002; 62(9): 2644-9.
[PMID: 11980662]
[11]
Wang R, Huang J, Chen J, et al. Enhanced anti-colon cancer efficacy of 5-fluorouracil by epigallocatechin-3- gallate co-loaded in wheat germ agglutinin-conjugated nanoparticles. Nanomedicine (Lond) 2019; 21102068
[http://dx.doi.org/10.1016/j.nano.2019.102068] [PMID: 31374249]
[12]
Ehi-Eromosele CO, Ita BI, Iweala EEJ. Silica coated LSMO magnetic nanoparticles for the pH-responsive delivery of 5-fluorouracil anticancer drug. Colloids Surf A Physicochem Eng Asp 2017; 530: 164-71.
[http://dx.doi.org/10.1016/j.colsurfa.2017.07.059]
[13]
Abri Aghdam M, Bagheri R, Mosafer J, et al. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315: 1-22.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.018] [PMID: 31647978]
[14]
Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Design of liposomal formulations for cell targeting. Colloids Surf B Biointerfaces 2015; 136: 514-26.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.034] [PMID: 26454541]
[15]
Eloy JO, Ruiz A, de Lima FT, et al. EGFR-targeted immunoliposomes efficiently deliver docetaxel to prostate cancer cells. Colloids Surf B Biointerfaces 2020; 194111185
[http://dx.doi.org/10.1016/j.colsurfb.2020.111185] [PMID: 32574928]
[16]
Chorilli M, Calixto G, Rimério TC, Scarpa MV. Caffeine encapsulated in small unilamellar liposomes: Characerization and in vitro release profile. J Dispers Sci Technol 2013; 34(10): 1465-70.
[http://dx.doi.org/10.1080/01932691.2012.739535]
[17]
Sonju JJ, Dahal A, Singh SS, Jois SD. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J Control Release 2021; 329: 624-44.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.055] [PMID: 33010333]
[18]
Sen K, Banerjee S, Mandal M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf B Biointerfaces 2019; 180: 9-22.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.035] [PMID: 31015105]
[19]
Lakkadwala S, Singh J. Dual functionalized 5-fluorouracil liposomes as highly efficient nanomedicine for glioblastoma treatment as as-sessed in an in vitro brain tumor model. J Pharm Sci 2018; 107(11): 2902-13.
[http://dx.doi.org/10.1016/j.xphs.2018.07.020] [PMID: 30055226]
[20]
García MC. Nano- and microparticles as drug carriers. Eng Drug Deliv Syst 2020; pp. 71-110.
[http://dx.doi.org/10.1016/B978-0-08-102548-2.00004-4]
[21]
Choudhury H, Gorain B, Pandey M, Khurana RK, Kesharwani P. Strategizing biodegradable polymeric nanoparticles to cross the biologi-cal barriers for cancer targeting. Int J Pharm 2019; 565: 509-22.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.042] [PMID: 31102804]
[22]
Ferreira LMB, Kiill CP, Pedreiro LN, Santos AM, Gremião MPD. Supramolecular design of hydrophobic and hydrophilic polymeric nanoparticles. Des Dev New Nanocarriers 2018; pp. 181-221.
[http://dx.doi.org/10.1016/B978-0-12-813627-0.00005-3]
[23]
Haggag YA, Osman MA, El-Gizawy SA, et al. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and amelio-rates side effects in solid Ehrlich Carcinoma-bearing mice. Biomed Pharmacother 2018; 105: 215-24.
[http://dx.doi.org/10.1016/j.biopha.2018.05.124] [PMID: 29857301]
[24]
Ghasemi Z, Dinarvand R, Mottaghitalab F, Esfandyari-Manesh M, Sayari E, Atyabi F. Aptamer decorated hyaluronan/chitosan nanopar-ticles for targeted delivery of 5-fluorouracil to MUC1 overexpressing adenocarcinomas. Carbohydr Polym 2015; 121: 190-8.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.025] [PMID: 25659689]
[25]
Deshmukh AS, Chauhan PN, Noolvi MN, et al. Polymeric micelles: Basic research to clinical practice. Int J Pharm 2017; 532(1): 249-68.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.005] [PMID: 28882486]
[26]
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332: 127-47.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.016] [PMID: 33609621]
[27]
Gu C, Le V, Lang M, Liu J. Preparation of polysaccharide derivates chitosan-graft-poly(ɛ-caprolactone) amphiphilic copolymer micelles for 5-fluorouracil drug delivery. Colloids Surf B Biointerfaces 2014; 116: 745-50.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.026] [PMID: 24529474]
[28]
Han R, Sun Y, Kang C, Sun H, Wei W. Amphiphilic dendritic nanomicelle-mediated co-delivery of 5-fluorouracil and doxorubicin for enhanced therapeutic efficacy. J Drug Target 2017; 25(2): 140-8.
[http://dx.doi.org/10.1080/1061186X.2016.1207649] [PMID: 27356094]
[29]
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formula-tion development, stability issues, basic considerations and applications. J Control Release 2018; 270: 203-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[30]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[31]
Dos Santos Ramos MA, da Silva PB, de Toledo LG, et al. Intravaginal delivery of Syngonanthus nitens (Bong.) Ruhland fraction based on a nanoemulsion system applied to vulvovaginal candidiasis treatment. J Biomed Nanotechnol 2019; 15(5): 1072-89.
[http://dx.doi.org/10.1166/jbn.2019.2750] [PMID: 30890237]
[32]
Shakeel F, Haq N, Al-Dhfyan A, Alanazi FK, Alsarra IA. Chemoprevention of skin cancer using low HLB surfactant nanoemulsion of 5-fluorouracil: A preliminary study. Drug Deliv 2015; 22(4): 573-80.
[http://dx.doi.org/10.3109/10717544.2013.868557] [PMID: 24350612]
[33]
Guo P, Pi C, Zhao S, et al. Oral co-delivery nanoemulsion of 5-fluorouracil and curcumin for synergistic effects against liver cancer. Expert Opin Drug Deliv 2020; 17(10): 1473-84.
[http://dx.doi.org/10.1080/17425247.2020.1796629] [PMID: 32749895]
[34]
Sábio RM, Meneguin AB, Martins dos Santos A, Monteiro AS, Chorilli M. Exploiting mesoporous silica nanoparticles as versatile drug carriers for several routes of administration. Microporous Mesoporous Mater 2021; 312110774
[http://dx.doi.org/10.1016/j.micromeso.2020.110774]
[35]
Huang R, Shen YW, Guan YY, et al. Mesoporous silica nanoparticles: Facile surface functionalization and versatile biomedical applica-tions in oncology. Acta Biomater 2020; 116: 1-15.
[http://dx.doi.org/10.1016/j.actbio.2020.09.009] [PMID: 32911102]
[36]
Carvalho GC, Sábio RM, de Cássia Ribeiro T, et al. Highlights in mesoporous silica nanoparticles as a multifunctional controlled drug delivery nanoplatform for infectious diseases treatment. Pharm Res 2020; 37(10): 191.
[http://dx.doi.org/10.1007/s11095-020-02917-6] [PMID: 32895867]
[37]
Narayan R, Gadag S, Mudakavi RJ, et al. Mesoporous silica nanoparticles capped with chitosan-glucuronic acid conjugate for pH-responsive targeted delivery of 5-fluorouracil. J Drug Deliv Sci Technol 2021; 63102472
[http://dx.doi.org/10.1016/j.jddst.2021.102472]
[38]
Pan G, Jia TT, Huang QX, et al. Mesoporous silica nanoparticles (MSNs)-based organic/inorganic hybrid nanocarriers loading 5-Fluorouracil for the treatment of colon cancer with improved anticancer efficacy. Colloids Surf B Biointerfaces 2017; 159: 375-85.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.013] [PMID: 28818782]
[39]
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196111305
[http://dx.doi.org/10.1016/j.colsurfb.2020.111305] [PMID: 32795844]
[40]
Araujo VHS, Delello Di Filippo L, Duarte JL, et al. Exploiting solid lipid nanoparticles and nanostructured lipid carriers for drug delivery against cutaneous fungal infections. Crit Rev Microbiol 2021; 47(1): 79-90.
[http://dx.doi.org/10.1080/1040841X.2020.1843399] [PMID: 33156736]
[41]
Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. Eur J Pharm Biopharm 2014; 86(1): 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[42]
Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133: 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[43]
Khallaf RA, Salem HF, Abdelbary A. 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treat-ment. Drug Deliv 2016; 23(9): 3452-60.
[http://dx.doi.org/10.1080/10717544.2016.1194498] [PMID: 27240935]
[44]
Smith T, Affram K, Nottingham EL, et al. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci Rep 2020; 10(1): 16989.
[http://dx.doi.org/10.1038/s41598-020-73218-6] [PMID: 33046724]
[45]
Tavares AG Junior, de Araújo JTC, Meneguin AB, Chorilli M. Characteristics, properties and analytical/bioanalytical methods of 5-aminosalicylic acid: A review. Crit Rev Anal Chem 2020; 0: 1-15.
[http://dx.doi.org/10.1080/10408347.2020.1848516] [PMID: 33258695]
[46]
Lee JJ, Beumer JH, Chu E. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother Pharmacol 2016; 78(3): 447-64.
[http://dx.doi.org/10.1007/s00280-016-3054-2] [PMID: 27217046]
[47]
Breda M, Barattè S. A review of analytical methods for the determination of 5-fluorouracil in biological matrices. Anal Bioanal Chem 2010; 397(3): 1191-201.
[http://dx.doi.org/10.1007/s00216-010-3633-8] [PMID: 20383700]
[48]
Tamane PK, Pai RG, Pokharkar VB. A simple, rapid and sensitive high-performance thin-layer chromatographic method for the simulta-neous estimation of berberine and 5-fluorouracil in rabbit plasma. J Planar Chromatogr Mod TLC 2020; 33(2): 169-77.
[http://dx.doi.org/10.1007/s00764-020-00013-4]
[49]
Škvára P, Santana-Viera S, Montesdeoca-Esponda S. Mordačíková E, Santana-Rodríguez JJ, Vojs Staňová A. Determination of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine in hospital wastewater by liquid chromatography-mass spectrometry. J Sep Sci 2020; 43(15): 3074-82.
[http://dx.doi.org/10.1002/jssc.202000144] [PMID: 32432394]
[50]
Xu F, Wang Z, Song X, et al. A direct and sensitive method for determination of 5-fluorouracil in colorectal cancer cells: Evaluating the effect of stromal cell on drug resistance of cancer cells. J Anal Methods Chem 2021; 20216689488
[http://dx.doi.org/10.1155/2021/6689488] [PMID: 33708454]
[51]
Qin W, Wang X, Chen W, et al. An in vitro approach to simulate the process of 5-fluorouracil degradation with dihydropyrimidine dehy-drogenase: The process in accordance to the first-order kinetic reaction. Xenobiotica 2021; 51(1): 24-30.
[http://dx.doi.org/10.1080/00498254.2020.1799451] [PMID: 32686977]
[52]
Shiraiwa K, Suzuki Y, Uchida H, et al. Simultaneous quantification method for 5-FU, uracil, and tegafur using UPLC-MS/MS and clinical application in monitoring UFT/LV combination therapy after hepatectomy. Sci Rep 2021; 11(1): 3132.
[http://dx.doi.org/10.1038/s41598-021-82908-8] [PMID: 33542452]
[53]
Machon C, Catez F, Venezia ND, et al. Study of intracellular anabolism of 5-fluorouracil and incorporation in nucleic acids based on an LC-HRMS method. J Pharm Anal 2021; 11(1): 77-87.
[http://dx.doi.org/10.1016/j.jpha.2020.04.001] [PMID: 33717614]
[54]
Goel H, Singla R, Chawla R, Sahoo U, Tiwary AK, Sinha VR. Facile validated HPLC method using photodiode array detector for the combined analysis of etodolac and 5-FU in bulk and tablet dosage form. Egypt J Chem 2021; 64: 1601-14.
[http://dx.doi.org/10.21608/ejchem.2020.45336.2922]
[55]
Wang J. Electrochemical detection for microscale analytical systems: A review. Talanta 2002; 56(2): 223-31.
[http://dx.doi.org/10.1016/S0039-9140(01)00592-6] [PMID: 18968498]
[56]
Wang J. Portable electrochemical systems. Trends Analyt Chem 2002; 21(4): 226-32.
[http://dx.doi.org/10.1016/S0165-9936(02)00402-8]
[57]
Uslu B, Ozkan SA. Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Anal Lett 2011; 44(16): 2644-702.
[http://dx.doi.org/10.1080/00032719.2011.553010]
[58]
Kaya HO, Cetin AE, Azimzadeh M, Topkaya SN. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. J Electroanal Chem (Lausanne) 2021; 882114989
[http://dx.doi.org/10.1016/j.jelechem.2021.114989] [PMID: 33456428]
[59]
Zhang Y, Lei Y, Lu H, et al. Electrochemical detection of bisphenols in food: A review. Food Chem 2021; 346128895
[http://dx.doi.org/10.1016/j.foodchem.2020.128895] [PMID: 33421902]
[60]
Wang Q, Xue Q, Chen T, et al. Recent advances in electrochemical sensors for antibiotics and their applications. Chin Chem Lett 2021; 32(2): 609-19.
[http://dx.doi.org/10.1016/j.cclet.2020.10.025]
[61]
Vanova V, Mitrevska K, Milosavljevic V, Hynek D, Richtera L, Adam V. Peptide-based electrochemical biosensors utilized for protein detection. Biosens Bioelectron 2021; 180113087
[http://dx.doi.org/10.1016/j.bios.2021.113087] [PMID: 33662844]
[62]
Motshakeri M, Sharma M, Phillips ARJ, Kilmartin PA. Electrochemical methods for the analysis of milk. J Agric Food Chem 2022; 70(8): 2427-49.
[http://dx.doi.org/10.1021/acs.jafc.1c06350] [PMID: 35188762]
[63]
Hamidi-Asl E, Heidari-Khoshkelat L, Bakhsh Raoof J, Richard TP, Farhad S, Ghani M. A review on the recent achievements on corona-viruses recognition using electrochemical detection methods. Microchem J 2022; 178107322
[http://dx.doi.org/10.1016/j.microc.2022.107322] [PMID: 35233118]
[64]
Prasad BB, Kumar D, Madhuri R, Tiwari MP. Nonhydrolytic sol-gel derived imprinted polymer-multiwalled carbon nanotubes composite fiber sensors for electrochemical sensing of uracil and 5-fluorouracil. Electrochim Acta 2012; 71: 106-15.
[http://dx.doi.org/10.1016/j.electacta.2012.03.110]
[65]
Hua X, Hou X, Gong X, Shen G. Electrochemical behavior of 5-fluorouracil on a glassy carbon electrode modified with bromothymol blue and multi-walled carbon nanotubes. Anal Methods 2013; 5(10): 2470-6.
[http://dx.doi.org/10.1039/c3ay40149a]
[66]
Satyanarayana M, Goud KY, Reddy KK, Gobi KV. Biopolymer stabilized nanogold particles on carbon nanotube support as sensing platform for electrochemical detection of 5-fluorouracil in-vitro. Electrochim Acta 2015; 178: 608-16.
[http://dx.doi.org/10.1016/j.electacta.2015.08.036]
[67]
Zeybek KD, Demir B, Zeybek B. Pekyardımcı &#350. A sensitive electrochemical DNA biosensor for antineoplastic drug 5-fluorouracil based on glassy carbon electrode modified with poly(bromocresol purple). Talanta 2015; 144: 793-800.
[http://dx.doi.org/10.1016/j.talanta.2015.06.077] [PMID: 26452892]
[68]
Pattar VP, Nandibewoor ST. Electroanalytical method for the determination of 5-fluorouracil using a reduced graphene oxide/chitosan modified sensor. RSC Advances 2015; 5(43): 34292-301.
[http://dx.doi.org/10.1039/C5RA04396D]
[69]
Bukkitgar SD, Shetti NP. Electrochemical behavior of anticancer drug 5-fluorouracil at carbon paste electrode and its analytical applica-tion. J Anal Sci Technol 2016; 7(1): 1.
[http://dx.doi.org/10.1186/s40543-015-0080-3]
[70]
Bukkitgar SD, Shetti NP. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste elec-trode. Mater Sci Eng C 2016; 65: 262-8.
[http://dx.doi.org/10.1016/j.msec.2016.04.045] [PMID: 27157751]
[71]
Bukkitgar SD, Shetti NP. Electrochemical sensor for the determination of anticancer drug 5- fluorouracil at glucose modified electrode. ChemistrySelect 2016; 1(4): 771-7.
[http://dx.doi.org/10.1002/slct.201600197]
[72]
Fallah Shojaei A, Tabatabaeian K, Shakeri S, Karimi F. A novel 5-fluorouracile anticancer drug sensor based on ZnFe2O4 magnetic nano-particles ionic liquids carbon paste electrode. Sens Actuators B Chem 2016; 230: 607-14.
[http://dx.doi.org/10.1016/j.snb.2016.02.082]
[73]
Fouladgar M. CuO-CNT nanocomposite/ionic liquid modified sensor as new breast anticancer approach for determination of doxorubi-cin and 5-fluorouracil drugs. J Electrochem Soc 2018; 165(13): B559-64.
[http://dx.doi.org/10.1149/2.1001811jes]
[74]
Hadi M, Mollaei T, Ehsani A. Graphene oxides/multi-walled carbon nanotubes hybrid-modified carbon electrodes for fast and sensitive voltammetric determination of the anticancer drug 5-fluorouracil in spiked human plasma samples. Chem Pap 2018; 72(2): 431-9.
[http://dx.doi.org/10.1007/s11696-017-0295-4]
[75]
Lima D, Calaça GN, Viana AG, Pessôa CA. Porphyran-capped gold nanoparticles modified carbon paste electrode: A simple and efficient electrochemical sensor for the sensitive determination of 5-fluorouracil. Appl Surf Sci 2018; 427: 742-53.
[http://dx.doi.org/10.1016/j.apsusc.2017.08.228]
[76]
Zahed FM, Hatamluyi B, Lorestani F, Es’haghi Z. Silver nanoparticles decorated polyaniline nanocomposite based electrochemical sen-sor for the determination of anticancer drug 5-fluorouracil. Elsevier B.V. 2018; Vol. 161.
[http://dx.doi.org/10.1016/j.jpba.2018.08.004]
[77]
Roushani M, Saeidi Z, Hemati S, Hosseini M. Highly sensitive electrochemical determination of 5-fluorouracil using CuNPs/MWCNT/IL/Chit composite modified glassy carbon electrode. Adv Nanochemistry 2019; 1: 73-7.
[http://dx.doi.org/10.22126/anc.2019.1128]
[78]
Hatamluyi B, Es’haghi Z, Modarres Zahed F, Darroudi M. A novel electrochemical sensor based on GQDs-PANI/ZnO-NCs modified glassy carbon electrode for simultaneous determination of Irinotecan and 5-Fluorouracil in biological samples. Sens Actuators B Chem 2019; 286: 540-9.
[http://dx.doi.org/10.1016/j.snb.2019.02.017]
[79]
Teixeira PRS, Teixeira ASDNM, Farias EAO, et al. Development of a low-cost electrochemical sensor based on babassu mesocarp (Orbignya phalerata) immobilized on a flexible gold electrode for applications in sensors for 5-fluorouracil chemotherapeutics. Anal Bioanal Chem 2019; 411(3): 659-67.
[http://dx.doi.org/10.1007/s00216-018-1480-1] [PMID: 30515537]
[80]
Emamian R, Ebrahimi M, Karimi-Maleh H. A sensitive sensor for nano-molar detection of 5-fluorouracil by modifying a paste sensor with graphene quantum dots and an ionic liquid. J Nanostructures 2020; 10: 230-8.
[http://dx.doi.org/10.22052/JNS.2020.02.004]
[81]
Mutharani B, Ranganathan P, Chen SM. Temperature-reversible switched antineoplastic drug 5-fluorouracil electrochemical sensor based on adaptable thermo-sensitive microgel encapsulated PEDOT. Sens Actuators B Chem 2020; 304127361
[http://dx.doi.org/10.1016/j.snb.2019.127361]
[82]
Mariyappan V, Keerthi M, Chen S-M, Boopathy G. Facile synthesis of α -Sm 2 S 3/MoS 2 bimetallic sulfide as a high-performance electrochemical sensor for the detection of antineoplastic drug 5-fluorouracil in a biological samples. J Electrochem Soc 2020; 167(11)117506
[http://dx.doi.org/10.1149/1945-7111/aba1a5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy