Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

LncRNA SBF2-AS1: A Budding Star in Various Cancers

Author(s): Fangshun Tan, Jinlan Chen, Bei Wang, Zhuoying Du, Jie Mou, Yinxin Wu, Yuling Liu, Fangnan Zhao and Chengfu Yuan*

Volume 28, Issue 18, 2022

Published on: 24 June, 2022

Page: [1513 - 1522] Pages: 10

DOI: 10.2174/1381612828666220418131506

Price: $65

conference banner
Abstract

Long non-coding RNA (lncRNA) is a new kind of RNA with a length of over 200 nucleotides. Current frontiers revealed that lncRNAs implicate in various tumor progression, including tumorigenesis, proliferation, migration, invasion, metastasis, and angiogenesis. Recently discovered long non-coding RNA SETbinding factor 2 antisense RNA 1 (lncRNA SBF2-AS1), an oncogenic antisense RNA to SBF2, locates at 11p15.1 locus and is 2708 nt long. Accumulating evidence has demonstrated that lncRNA SBF2-AS1 participates in the progression of the various tumor, including pathogenesis, diagnosis, treatment, and prognosis of acute myeloid leukemia (AML), breast cancer (BC), cervical cancer (CC), clear cell renal cell carcinoma (ccRCC), colorectal cancer (CRC), diffuse large B-cell lymphoma (DLBCL), esophageal squamous cell carcinoma (ESCC), gastric cancer (GC), glioma, glioblastoma (GBM), hepatocellular carcinoma (HCC), lung cancer (LC), lung adenocarcinoma (LUAD), non-small cell lung cancer (NSCLC), osteosarcoma (OS), pancreatic cancer (PC), papillary thyroid cancer (PTC), small cell lung cancer (SCLC). Therefore, we summarized the underlying mechanisms of lncRNA SBF2-AS1 in various cancers to utilize its therapeutic function in target-selective treatment modalities.

Keywords: Lnc RNA, SBF2-AS1, cancer, biomarker, target, diagnosis, prognosis, hepatocellular carcinoma, metastasis, angiogenesis.

« Previous
[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Chan JJ, Tay Y. Noncoding RNA:RNA regulatory networks in cancer. Int J Mol Sci 2018; 19(5): 19.
[http://dx.doi.org/10.3390/ijms19051310] [PMID: 29702599]
[3]
Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Proteo Bioinfor 2016; 14(1): 42-54.
[http://dx.doi.org/10.1016/j.gpb.2015.09.006] [PMID: 26883671]
[4]
Li X, Wu Z, Fu X, Han W. lncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res 2014; 762: 1-21.
[http://dx.doi.org/10.1016/j.mrrev.2014.04.002] [PMID: 25485593]
[5]
Xu JZ, Zhang JL, Zhang WG. Antisense RNA: the new favorite in genetic research. J Zhejiang Univ Sci B 2018; 19(10): 739-49.
[http://dx.doi.org/10.1631/jzus.B1700594] [PMID: 30269442]
[6]
Tian Y-J, Wang Y-H, Xiao A-J, et al. Long noncoding RNA SBF2-AS1 act as a ceRNA to modulate cell proliferation via binding with miR-188-5p in acute myeloid leukemia. Artif Cells Nanomed Biotechnol 2019; 47(1): 1730-7.
[http://dx.doi.org/10.1080/21691401.2019.1608221] [PMID: 31062614]
[7]
Xia W, Liu Y, Cheng T, Xu T, Dong M, Hu X. Down-regulated lncRNA SBF2-AS1 inhibits tumorigenesis and progression of breast can-cer by sponging microRNA-143 and repressing RRS1. J Exp Clin Cancer Res 2020; 39(1): 18.
[http://dx.doi.org/10.1186/s13046-020-1520-5] [PMID: 31952549]
[8]
Xia W, Liu Y, Cheng T, Xu T, Dong M, Hu X. Correction to: Down-regulated lncRNA SBF2-AS1 inhibits tumorigenesis and progression of breast cancer by sponging microRNA-143 and repressing RRS1. J Exp Clin Cancer Res 2020; 39(1): 60.
[http://dx.doi.org/10.1186/s13046-020-01563-5] [PMID: 32264934]
[9]
Gao F, Feng J, Yao H, Li Y, Xi J, Yang J. LncRNA SBF2-AS1 promotes the progression of cervical cancer by regulating miR-361-5p/FOXM1 axis. Artif Cells Nanomed Biotechnol 2019; 47(1): 776-82.
[http://dx.doi.org/10.1080/21691401.2019.1577883] [PMID: 30856345]
[10]
Yang X, Zhang Y, Fan H. Downregulation of SBF2-AS1 functions as a tumor suppressor in clear cell renal cell carcinoma by inhibiting miR-338-3p-targeted ETS1. Cancer Gene Ther 2021; 28(7-8): 813-27.
[PMID: 32719443]
[11]
Chen G, Gu Y, Han P, Li Z, Zhao JL, Gao MZ. Long noncoding RNA SBF2-AS1 promotes colorectal cancer proliferation and invasion by inhibiting miR-619-5p activity and facilitating HDAC3 expression. J Cell Physiol 2019; 234(10): 18688-96.
[http://dx.doi.org/10.1002/jcp.28509] [PMID: 30912164]
[12]
Fu DW, Liu AC. LncRNA SBF2-AS1 promotes diffuse large B-Cell lymphoma growth by regulating FGFR2 via sponging miR-494-3p. Cancer Manag Res 2021; 13: 571-8.
[http://dx.doi.org/10.2147/CMAR.S284258] [PMID: 33519236]
[13]
Zhang Q, Pan X, You D. Overexpression of long non-coding RNA SBF2-AS1 promotes cell progression in esophageal squamous cell carcinoma (ESCC) by repressing miR-494 to up-regulate PFN2 expression Biol Open 2020; bio: 048793.
[http://dx.doi.org/10.1242/bio.048793] [PMID: 32229486]
[14]
Chen R, Xia W, Wang X, et al. Upregulated long non-coding RNA SBF2-AS1 promotes proliferation in esophageal squamous cell carci-noma. Oncol Lett 2018; 15(4): 5071-80.
[http://dx.doi.org/10.3892/ol.2018.7968] [PMID: 29552140]
[15]
Zha W, Li X, Tie X, et al. The molecular mechanisms of the long noncoding RNA SBF2-AS1 in regulating the proliferation of oesopha-geal squamous cell carcinoma. Sci Rep 2021; 11(1): 805.
[http://dx.doi.org/10.1038/s41598-020-80817-w] [PMID: 33436941]
[16]
He M, Feng L, Qi L, Rao M, Zhu Y. Long noncoding RNASBF2-AS1 promotes gastric cancer progression via regulating miR-545/EMS1 Axis. BioMed Res Int 2020; 2020: 6590303.
[http://dx.doi.org/10.1155/2020/6590303] [PMID: 32626753]
[17]
Luan F, Chen W, Chen M, et al. An autophagy-related long non-coding RNA signature for glioma. FEBS Open Bio 2019; 9(4): 653-67.
[http://dx.doi.org/10.1002/2211-5463.12601] [PMID: 30984540]
[18]
Zhang Q, Liu XJ, Li Y, Ying XW, Chen L. Prognostic value of Immune-Related lncRNA SBF2-AS1 in diffuse lower-grade glioma. Technol Cancer Res Treat 2021; 20: 15330338211011966.
[http://dx.doi.org/10.1177/15330338211011966] [PMID: 34159865]
[19]
Zheng J, Zhou Z, Qiu Y, et al. A Prognostic Ferroptosis-related lncRNAs signature associated with immune landscape and radiotherapy response in glioma. Front Cell Dev Biol 2021; 9: 675555.
[http://dx.doi.org/10.3389/fcell.2021.675555] [PMID: 34095147]
[20]
Rezaei O, Tamizkar KH, Sharifi G, Taheri M, Ghafouri-Fard S. Emerging role of long non-coding RNAs in the pathobiology of glioblas-toma. Front Oncol 2021; 10: 625884.
[http://dx.doi.org/10.3389/fonc.2020.625884] [PMID: 33634032]
[21]
Yu H, Zheng J, Liu X, et al. Transcription factor NFAT5 promotes glioblastoma cell-driven angiogenesis via SBF2-AS1/miR-338-3p-Mediated EGFL7 expression change. Front Mol Neurosci 2017; 10: 301.
[http://dx.doi.org/10.3389/fnmol.2017.00301] [PMID: 28983240]
[22]
Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to te-mozolomide in glioblastoma. J Exp Clin Cancer Res 2019; 38(1): 166.
[http://dx.doi.org/10.1186/s13046-019-1139-6] [PMID: 30992025]
[23]
Zhang YT, Li BP, Zhang B, et al. LncRNA SBF2-AS1 promotes hepatocellular carcinoma metastasis by regulating EMT and predicts unfavorable prognosis. Eur Rev Med Pharmacol Sci 2018; 22(19): 6333-41.
[PMID: 30338801]
[24]
Li Y, Liu G, Li X, Dong H, Xiao W, Lu S. Long non-coding RNA SBF2-AS1 promotes hepatocellular carcinoma progression through regulation of miR-140-5p-TGFBR1 pathway. Biochem Biophys Res Commun 2018; 503(4): 2826-32.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.047] [PMID: 30115383]
[25]
Zhou A, Liu H, Tang B. Comprehensive evaluation of endocytosis-associated protein scamp3 in hepatocellular carcinoma. Pharm Genomics Pers Med 2020; 13: 415-26.
[http://dx.doi.org/10.2147/PGPM.S270062] [PMID: 33116758]
[26]
Qi H, Wang L, Zhang X, Sun W, Liu J. LncRNA SBF2-AS1 inhibits apoptosis and promotes proliferation in lung cancer cell via regulat-ing FOXM1. J BUON 2020; 25(4): 1761-70.
[PMID: 33099911]
[27]
Chen R, Xia W, Wang S, et al. Long noncoding RNA SBF2-AS1 Is Critical for tumorigenesis of Early-stage lung adenocarcinoma. Mol Ther Nucleic Acids 2019; 16: 543-53.
[http://dx.doi.org/10.1016/j.omtn.2019.04.004] [PMID: 31071530]
[28]
Chen Q, Guo SM, Huang HQ, et al. Long noncoding RNA SBF2-AS1 contributes to the growth and metastatic phenotypes of NSCLC via regulating miR-338-3p/ADAM17 axis. Aging 2020; 12(18): 17902-20.
[http://dx.doi.org/10.18632/aging.103332] [PMID: 32976115]
[29]
Lv J, Qiu M, Xia W, et al. High expression of long non-coding RNA SBF2-AS1 promotes proliferation in non-small cell lung cancer. J Exp Clin Cancer Res 2016; 35(1): 75.
[http://dx.doi.org/10.1186/s13046-016-0352-9] [PMID: 27154193]
[30]
Wang A, Wang J. E2F1-Induced overexpression of long noncoding RNA SBF2-AS1 promotes Non-small-cell lung cancer metastasis through regulating miR-362-3p/GRB2 Axis. DNA Cell Biol 2020; 39(7): 1290-8.
[http://dx.doi.org/10.1089/dna.2020.5426] [PMID: 32364763]
[31]
Yu Z, Wang G, Zhang C, et al. LncRNA SBF2-AS1 affects the radiosensitivity of non-small cell lung cancer via modulating microRNA-302a/MBNL3 axis. Cell Cycle 2020; 19(3): 300-16.
[http://dx.doi.org/10.1080/15384101.2019.1708016] [PMID: 31928130]
[32]
Zhao QS, Li L, Zhang L, et al. Over-expression of lncRNA SBF2-AS1 is associated with advanced tumor progression and poor progno-sis in patients with non-small cell lung cancer. Eur Rev Med Pharmacol Sci 2016; 20(14): 3031-4.
[PMID: 27460731]
[33]
Dai JH, Huang WZ, Li C, Deng J, Lin SJ, Luo J. Silencing of long noncoding RNA SBF2-AS1 inhibits proliferation, migration and inva-sion and contributes to apoptosis in osteosarcoma cells by upregulating microRNA-30a to suppress FOXA1 expression. Cell Cycle 2019; 18(20): 2727-41.
[http://dx.doi.org/10.1080/15384101.2019.1656478] [PMID: 31432728]
[34]
Hua YQ, Zhu YD, Xie GQ, et al. Long non-coding SBF2-AS1 acting as a competing endogenous RNA to sponge microRNA-142-3p to participate in gemcitabine resistance in pancreatic cancer via upregulating TWF1. Aging 2019; 11(20): 8860-78.
[http://dx.doi.org/10.18632/aging.102307] [PMID: 31619579]
[35]
Yin Z, Zhou Y, Ma T, et al. Down-regulated lncRNA SBF2-AS1 in M2 macrophage-derived exosomes elevates miR-122-5p to restrict XIAP, thereby limiting pancreatic cancer development. J Cell Mol Med 2020; 24(9): 5028-38.
[http://dx.doi.org/10.1111/jcmm.15125] [PMID: 32301277]
[36]
Wen HL, Xu ZM, Wen D, Lin SY, Liang Y, Xie JP. Long noncoding RNAs SET-binding factor 2-antisense RNA1 promotes cell growth through targeting miR-431-5p/CDK14 axis in human papillary thyroid cancer. Kaohsiung J Med Sci 2020; 36(10): 808-16.
[http://dx.doi.org/10.1002/kjm2.12259] [PMID: 32602632]
[37]
Zhang Y, Li Y, Han L, Zhang P, Sun S. SBF2-AS1: An oncogenic lncRNA in small-cell lung cancer. J Cell Biochem 2019; 120(9): 15422-8.
[http://dx.doi.org/10.1002/jcb.28809] [PMID: 31050364]
[38]
Ben Khoud M, Ingegnere T, Quesnel B, Mitra S, Brinster C. Acute myeloid leukemia: Is it T time? Cancers 2021; 13(10): 13.
[http://dx.doi.org/10.3390/cancers13102385] [PMID: 34069204]
[39]
Paschke L, Jopek K, Szyszka M, Tyczewska M, Malendowicz LK, Rucinski M. ZFP91 zinc finger protein expression pattern in normal tissues and cancers. Oncol Lett 2019; 17(3): 3599-606.
[http://dx.doi.org/10.3892/ol.2019.9963] [PMID: 30867803]
[40]
Winters S, Martin C, Murphy D, Shokar NK. Breast cancer epidemiology, prevention, and screening. Prog Mol Biol Transl Sci 2017; 151: 1-32.
[http://dx.doi.org/10.1016/bs.pmbts.2017.07.002] [PMID: 29096890]
[41]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[42]
Wang L, Qiu JG, He J, et al. Suppression of miR-143 contributes to overexpression of IL-6, HIF-1& and NF-&B p65 in Cr(VI)-induced human exposure and tumor growth. Toxicol Appl Pharmacol 2019; 378: 114603.
[http://dx.doi.org/10.1016/j.taap.2019.114603] [PMID: 31152816]
[43]
Song J, Ma Z, Hua Y, et al. Functional role of RRS1 in breast cancer cell proliferation. J Cell Mol Med 2018; 22(12): 6304-13.
[http://dx.doi.org/10.1111/jcmm.13922] [PMID: 30320499]
[44]
Aalijahan H, Ghorbian S. Long non-coding RNAs and cervical cancer. Exp Mol Pathol 2019; 106: 7-16.
[http://dx.doi.org/10.1016/j.yexmp.2018.11.010] [PMID: 30471246]
[45]
Laoukili J, Stahl M, Medema RH. FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta 2007; 1775(1): 92-102.
[PMID: 17014965]
[46]
Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol 2021; 17(4): 245-61.
[http://dx.doi.org/10.1038/s41581-020-00359-2] [PMID: 33144689]
[47]
Li S, Young KH, Medeiros LJ. Diffuse large B-cell lymphoma. Pathology 2018; 50(1): 74-87.
[http://dx.doi.org/10.1016/j.pathol.2017.09.006] [PMID: 29167021]
[48]
Krook MA, Reeser JW, Ernst G, et al. Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br J Cancer 2021; 124(5): 880-92.
[http://dx.doi.org/10.1038/s41416-020-01157-0] [PMID: 33268819]
[49]
Wesseling P, Capper D. WHO 2016 Classification of gliomas. Neuropathol Appl Neurobiol 2018; 44(2): 139-50.
[http://dx.doi.org/10.1111/nan.12432] [PMID: 28815663]
[50]
Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology 2019; 156(2): 477-491.e1.
[http://dx.doi.org/10.1053/j.gastro.2018.08.065] [PMID: 30367835]
[51]
Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet 2021; 398(10299): 535-54.
[http://dx.doi.org/10.1016/S0140-6736(21)00312-3] [PMID: 34273294]
[52]
Pascoe HM, Knipe HC, Pascoe D, Heinze SB. The many faces of lung adenocarcinoma: A pictorial essay. J Med Imaging Radiat Oncol 2018; 62(5): 654-61.
[http://dx.doi.org/10.1111/1754-9485.12779] [PMID: 30079974]
[53]
Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivor-ship. Mayo Clin Proc 2008; 83(5): 584-94.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[54]
Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C. Progress and prospects of early detection in lung cancer. Open Biol 2017; 7(9): 7.
[http://dx.doi.org/10.1098/rsob.170070] [PMID: 28878044]
[55]
Lilienthal I, Herold N. Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: A review of cur-rent and future strategies. Int J Mol Sci 2020; 21(18): 21.
[http://dx.doi.org/10.3390/ijms21186885] [PMID: 32961800]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy