Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

A Multi-dimensional Review on Severe Acute Respiratory Syndrome Coronavirus-2

Author(s): Ketan Ghosh*, Bumba Chattopadyay, Tapas Maity and Ayan Acharya

Volume 24, Issue 8, 2023

Published on: 07 October, 2022

Page: [988 - 1017] Pages: 30

DOI: 10.2174/1389201023666220507003726

Price: $65

conference banner
Abstract

The advent and spread of novel coronavirus (nCoV) has posed a new public health crisis since December 2019. Several cases of unexplained pneumonia occurred in Wuhan, Hubei Province, China, only a month before the Chinese Spring festival. After the diagnosis of bronchoalveolar fluid samples of people infected, the new coronavirus was identified using nextgeneration sequence technology. This work aims to provide information regarding COVID-19 that will help the researchers to identify the vital therapeutic targets for SARS-CoV-2 and also will provide insights into some significant findings of recent times highlighted by scientific communities around the globe. In this review, we have tried to explore multiple aspects related to COVID-19, including epidemiology, etiology, COVID-19 variants, vaccine candidates, potential therapeutic targets, the role of natural products, and computational studies in drug design and development, repurposing, and analysis of crystal structures available for COVID-19 related protein structures. Druggable targets include all viral enzymes and proteins involved in viral replication and regulation of host cellular machines. The medical community tracks several therapies to combat the infection by investigating various antiviral and immunomodulatory mechanisms. While some vaccines are approved in this worldwide health crisis, a more precise therapy or drug is formally recommended to be used against SARS-CoV-2 infection. Natural products other than synthetic drugs have been tested by in silico analysis against COVID-19. However, important issues still need to be addressed regarding in vivo bioavailability and better efficacy.

Keywords: Coronavirus, vaccine, drug repurposing, natural products, computational study, COVID mutants

Graphical Abstract

[1]
Morens, D.M.; Breman, J.G.; Calisher, C.H.; Doherty, P.C.; Hahn, B.H.; Keusch, G.T.; Kramer, L.D.; LeDuc, J.W.; Monath, T.P.; Taubenberger, J.K. The origin of COVID-19 and why it matters. Am. J. Trop. Med. Hyg., 2020, 103(3), 955-959.
[http://dx.doi.org/10.4269/ajtmh.20-0849] [PMID: 32700664]
[2]
Al-Qahtani, A.A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Emergence, history, basic and clinical aspects. Saudi J. Biol. Sci., 2020, 27(10), 2531-2538.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.033] [PMID: 32336927]
[3]
Martini, M.; Gazzaniga, V.; Bragazzi, N.L.; Barberis, I. The Spanish Influenza Pandemic: a lesson from history 100 years after 1918. J. Prev. Med. Hyg., 2019, 60(1), E64-E67.
[PMID: 31041413]
[4]
Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[5]
Richman, D.D.; Whitley, R.J.; Hayden, F.G. Clinical Virology. John Wiley & Sons, 2020.
[6]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[7]
Lauber, C.; Goeman, J.J. The Footprint of Genome Architecture in the Largest Genome Expansion in RNA Viruses. PLoS Pathog;Stern, A, Ed., 2013, 9(7), 1003500.
[http://dx.doi.org/10.1371/journal.ppat.1003500]
[8]
International Committee on Taxonomy of Viruses (2010) ICTV Master Species List 2009. 2010.https://talk.ictvonline.org/files/master-species-lists/ (Accessed on 4 Mar 2022). (XLS) available at: https://talk.ictvonline.org/files/master-species lists/m/msl/1231 Acessed on 15 Jun 2021.
[9]
Chan, J.F.W.; Lau, S.K.P.; To, K.K.W.; Cheng, V.C.C.; Woo, P.C.Y.; Yuen, K.Y. Middle East respiratory syndrome coronavirus: Another zoonotic betacorona virus causing SARS-like disease. Clin. Microbiol. Rev., 2015, 28(2), 465-522.
[http://dx.doi.org/10.1128/CMR.00102-14] [PMID: 25810418]
[10]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[11]
Mann, R.; Perisetti, A.; Gajendran, M.; Gandhi, Z.; Umapathy, C.; Goyal, H. Clinical characteristics, diagnosis, and treatment of major coronavirus outbreaks. Front. Med. (Lausanne), 2020, 7(1), 581521.
[http://dx.doi.org/10.3389/fmed.2020.581521] [PMID: 33282890]
[12]
The species severe acute respiratory syndrome-related coronavirus: Classifying 2019- nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[13]
COVID-19 Weekly Epidemiological Update by World Health Organization. 2021. Available from:https://www.who.int/docs/default.source/coronaviruse/situation.reports/20210309_weekly_epi_update_30.pdf (Accessed on 4 Mar 2022).
[14]
Joshi, A.; Mewani, A.H.; Arora, S.; Grover, A. India’s COVID-19 Burdens, 2020. Front. Public Health, 2021, 9, 608810.
[http://dx.doi.org/10.3389/fpubh.2021.608810] [PMID: 33937163]
[15]
Callender, L.A.; Curran, M.; Bates, S.M.; Mairesse, M.; Weigandt, J.; Betts, C.J. The impact of pre-existing comorbidities and therapeutic interventions on COVID-19. Front. Immunol., 2020, 11, 1991.
[http://dx.doi.org/10.3389/fimmu.2020.01991] [PMID: 32903476]
[16]
Rather, Ra.; Islam, T. Rehman Iul, Pandey D. Development of vaccine against coronavirus disease 2019 (Covid-19) In India. Asian J Adv Med Sci., 2021, 4, 13-21.
[17]
Parvathaneni, V.; Gupta, V. Utilizing drug repurposing against COVID-19 - Efficacy, limitations, and challenges. Life Sci., 2020, 259, 118275.
[http://dx.doi.org/10.1016/j.lfs.2020.118275] [PMID: 32818545]
[18]
da Silva Antonio, A.; Wiedemann, L.S.M.; Veiga-Junior, V.F. Natural products’ role against COVID-19. RSC Advances, 2020, 10, 23379-23393.
[http://dx.doi.org/10.1039/D0RA03774E]
[19]
Muchtaridi, M.; Fauzi, M.; Khairul Ikram, N.K.; Mohd Gazzali, A.; Wahab, H.A. Natural flavonoids as potential angiotensin-converting enzyme 2 inhibitors for anti-SARS-CoV-2. Molecules, 2020, 25(17), 3980.
[http://dx.doi.org/10.3390/molecules25173980] [PMID: 32882868]
[20]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[21]
Mirza, M.U.; Froeyen, M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J. Pharm. Anal., 2020, 10(4), 320-328.
[http://dx.doi.org/10.1016/j.jpha.2020.04.008] [PMID: 32346490]
[22]
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - an in silico docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn., 2021, 39(12), 4362-4374.
[http://dx.doi.org/10.1080/07391102.2020.1779818] [PMID: 32568613]
[23]
Wang, X.; Guan, Y. COVID-19 drug repurposing: A review of computational screening methods, clinical trials, and protein interaction assays. Med. Res. Rev., 2021, 41(1), 5-28.
[http://dx.doi.org/10.1002/med.21728] [PMID: 32864815]
[24]
Mohamed, K.; Yazdanpanah, N.; Saghazadeh, A.; Rezaei, N. Computational drug discovery and repurposing for the treatment of COVID-19: A systematic review. Bioorg. Chem., 2021, 106, 104490.
[http://dx.doi.org/10.1016/j.bioorg.2020.104490] [PMID: 33261845]
[25]
Hwang, W.; Lei, W.; Katritsis, N.M.; MacMahon, M.; Chapman, K.; Han, N. Current and prospective computational approaches and challenges for developing COVID-19 vaccines. Adv. Drug Deliv. Rev., 2021, 172, 249-274.
[http://dx.doi.org/10.1016/j.addr.2021.02.004] [PMID: 33561453]
[26]
Tilocca, B.; Britti, D.; Urbani, A.; Roncada, P. Computational immune proteomics approach to target COVID-19. J. Proteome Res., 2020, 19(11), 4233-4241.
[http://dx.doi.org/10.1021/acs.jproteome.0c00553] [PMID: 32914632]
[27]
Shanmugam, A.; Muralidharan, N.; Velmurugan, D.; Gromiha, M.M. Therapeutic targets and computational approaches on drug development for COVID-19. Curr. Top. Med. Chem., 2020, 20(24), 2210-2220.
[http://dx.doi.org/10.2174/1568026620666200710105507] [PMID: 32648845]
[28]
Frediansyah, A.; Tiwari, R.; Sharun, K.; Dhama, K.; Harapan, H. Antivirals for COVID-19: A critical review. Clin. Epidemiol. Glob. Health, 2021, 9, 90-98.
[http://dx.doi.org/10.1016/j.cegh.2020.07.006] [PMID: 33521390]
[29]
Galindez, G.; Matschinske, J. Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies. Nat Comput Sci., 2021, 1(1), 33-41.
[http://dx.doi.org/10.1038/s43588-020-00007-6]
[30]
Al-Khafaji, K.; Al-Duhaidahawi, D.; Taskin Tok, T. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 39(9), 3387-3395.
[PMID: 32364041]
[31]
Abd, E.W.; Eassa, S.M.; Metwally, M.; Al-Hraishawi, H.; Omar, S.R. SARS-CoV-2 Transmission channels: A review of the literature. MEDICC Rev., 2020, 22(4), 51-69.
[PMID: 33295321]
[32]
Singh, B.; Kumar, V.; Tripathi, S. A review of Covid-19 based on current evidences. Int Res J Mod Eng Technol Sci., 2020, 2(8), 1449-1459.
[33]
van Boheemen, S.; de Graaf, M.; Lauber, C.; Bestebroer, T.M.; Raj, V.S.; Zaki, A.M.; Osterhaus, A.D.; Haagmans, B.L.; Gorbalenya, A.E.; Snijder, E.J.; Fouchier, R.A. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio, 2012, 3(6), e00473-e12.
[http://dx.doi.org/10.1128/mBio.00473-12] [PMID: 23170002]
[34]
Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.; Zaki, A.; Fouchier, R.A.; Thiel, V.; Drosten, C.; Rottier, P.J.; Osterhaus, A.D.; Bosch, B.J.; Haagmans, B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440), 251-254.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[35]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[36]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14(8), 523-534.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[37]
Ashraf, U.M.; Abokor, A.A.; Edwards, J.M.; Waigi, E.W.; Royfman, R.S.; Hasan, S.A.; Smedlund, K.B.; Hardy, A.M.G.; Chakravarti, R.; Koch, L.G. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiol. Genomics, 2021, 53(2), 51-60.
[http://dx.doi.org/10.1152/physiolgenomics.00087.2020] [PMID: 33275540]
[38]
Dro żdż al, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Szostak, B.; Majewski, P.; Rotter, I.; Kotfis, K. COVID-19: Pain management in patients with SARS-CoV-2 infection—molecular mechanisms, challenges, and perspectives. Brain Sci., 2020, 10(7), 465.
[http://dx.doi.org/10.3390/brainsci10070465] [PMID: 32698378]
[39]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[40]
Hussman, J.P. Cellular and molecular pathways of COVID-19 and potential points of therapeutic intervention. Front. Pharmacol., 2020, 11, 1169.
[http://dx.doi.org/10.3389/fphar.2020.01169] [PMID: 32848776]
[41]
Touyz, R.M.; Schiffrin, E.L. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol. Rev., 2000, 52(4), 639-672.
[PMID: 11121512]
[42]
Murakami, M.; Kamimura, D.; Hirano, T. Pleiotropy and specificity: insights from the interleukin 6 family of cytokines. Immunity, 2019, 50(4), 812-831.
[http://dx.doi.org/10.1016/j.immuni.2019.03.027] [PMID: 30995501]
[43]
Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science, 2020, 368(6490), 473-474.
[http://dx.doi.org/10.1126/science.abb8925] [PMID: 32303591]
[44]
Liu, L. J; Li, S Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMed., 2020, 55, 102763.
[45]
Ong, E.Z.; Chan, Y.F.Z.; Leong, W.Y.; Lee, N.M.Y.; Kalimuddin, S.; Haja Mohideen, S.M.; Chan, K.S.; Tan, A.T.; Bertoletti, A.; Ooi, E.E.; Low, J.G.H. A dynamic immune response shapes COVID-19 progression. Cell Host Microbe, 2020, 27(6), 879-882.e2.
[http://dx.doi.org/10.1016/j.chom.2020.03.021] [PMID: 32359396]
[46]
Kutter, J.S.; de Meulder, D.; Bestebroer, T.M.; Lexmond, P.; Mulders, A.; Richard, M.; Fouchier, R.A.M.; Herfst, S. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nat. Commun., 2021, 12(1), 1653.
[http://dx.doi.org/10.1038/s41467-021-21918-6] [PMID: 33712573]
[47]
Salamanna, F.; Maglio, M.; Landini, M.P.; Fini, M. Body localization of ACE-2: On the trail of the keyhole of SARS-CoV-2. Front. Med. (Lausanne), 2020, 7, 594495.
[http://dx.doi.org/10.3389/fmed.2020.594495] [PMID: 33344479]
[48]
Roychoudhury, S.; Das, A.; Jha, N.K.; Kesari, K.K.; Roychoudhury, S.; Jha, S.K.; Kosgi, R.; Choudhury, A.P.; Lukac, N.; Madhu, N.R.; Kumar, D.; Slama, P. Viral pathogenesis of SARS-CoV-2 infection and male reproductive health. Open Biol., 2021, 11(1), 200347.
[http://dx.doi.org/10.1098/rsob.200347] [PMID: 33465325]
[49]
Boziki, M.K.; Mentis, A.A.; Shumilina, M.; Makshakov, G.; Evdoshenko, E.; Grigoriadis, N. COVID-19 immunopathology and the central nervous system: Implication for multiple sclerosis and other autoimmune diseases with associated demyelination. Brain Sci., 2020, 10(6), 345.
[http://dx.doi.org/10.3390/brainsci10060345] [PMID: 32512702]
[50]
Su, S.; Cui, H.; Wang, T.; Shen, X.; Ma, C. Pain: A potential new label of COVID-19. Brain Behav. Immun., 2020, 87, 159-160.
[http://dx.doi.org/10.1016/j.bbi.2020.05.025] [PMID: 32389704]
[51]
Manjavachi, M.N.; Motta, E.M.; Marotta, D.M.; Leite, D.F.P.; Calixto, J.B. Mechanisms involved in IL-6-induced muscular mechanical hyperalgesia in mice. Pain, 2010, 151(2), 345-355.
[http://dx.doi.org/10.1016/j.pain.2010.07.018] [PMID: 20709454]
[52]
Tahamtan, A.; Ardebili, A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev. Mol. Diagn., 2020, 20(5), 453-454.
[http://dx.doi.org/10.1080/14737159.2020.1757437] [PMID: 32297805]
[53]
Feng, W.; Newbigging, A.M.; Le, C.; Pang, B.; Peng, H.; Cao, Y.; Wu, J.; Abbas, G.; Song, J.; Wang, D.B.; Cui, M.; Tao, J.; Tyrrell, D.L.; Zhang, X.E.; Zhang, H.; Le, X.C. Molecular diagnosis of COVID-19: challenges and research needs. Anal. Chem., 2020, 92(15), 10196-10209.
[http://dx.doi.org/10.1021/acs.analchem.0c02060] [PMID: 32573207]
[54]
Yang, P.; Wang, X. COVID-19: A new challenge for human beings. Cell. Mol. Immunol., 2020, 17(5), 555-557.
[http://dx.doi.org/10.1038/s41423-020-0407-x] [PMID: 32235915]
[55]
Pillaiyar, T.; Manickam, M.; Jung, S.H. Middle East respiratory syndrome-coronavirus (MERS-CoV): An updated overview and pharmacotherapeutics. Med. Chem., 2015, 5(8), 361-372.
[56]
Xia, S.; Zhu, Y.; Liu, M.; Lan, Q.; Xu, W.; Wu, Y.; Ying, T.; Liu, S.; Shi, Z.; Jiang, S.; Lu, L. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell. Mol. Immunol., 2020, 17(7), 765-767.
[http://dx.doi.org/10.1038/s41423-020-0374-2] [PMID: 32047258]
[57]
Bertram, S.; Dijkman, R.; Habjan, M.; Heurich, A.; Gierer, S.; Glowacka, I.; Welsch, K.; Winkler, M.; Schneider, H.; Hofmann-Winkler, H.; Thiel, V.; Pöhlmann, S. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J. Virol., 2013, 87(11), 6150-6160.
[http://dx.doi.org/10.1128/JVI.03372-12] [PMID: 23536651]
[58]
Du, L.; Kao, R.Y.; Zhou, Y.; He, Y.; Zhao, G.; Wong, C.; Jiang, S.; Yuen, K.Y.; Jin, D.Y.; Zheng, B.J. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem. Biophys. Res. Commun., 2007, 359(1), 174-179.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.092] [PMID: 17533109]
[59]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-Converting Enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[60]
Long, S.W.; Olsen, R.J.; Christensen, P.A.; Bernard, D.W.; Davis, J.J.; Shukla, M.; Nguyen, M.; Saavedra, M.O.; Yerramilli, P.; Pruitt, L.; Subedi, S.; Kuo, H.C.; Hendrickson, H.; Eskandari, G.; Nguyen, H.A.T.; Long, J.H.; Kumaraswami, M.; Goike, J.; Boutz, D.; Gollihar, J.; McLellan, J.S.; Chou, C.W.; Javanmardi, K.; Finkelstein, I.J.; Musser, J.M. Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area. MBio, 2020, 11(6), e02707-e02720.
[http://dx.doi.org/10.1128/mBio.02707-20] [PMID: 33127862]
[61]
Vogel, A.B.; Kanevsky, I.; Che, Y.; Swanson, K.A.; Muik, A.; Vormehr, M.; Kranz, L.M.; Walzer, K.C.; Hein, S.; Güler, A.; Loschko, J.; Maddur, M.S.; Ota-Setlik, A.; Tompkins, K.; Cole, J.; Lui, B.G.; Ziegenhals, T.; Plaschke, A.; Eisel, D.; Dany, S.C.; Fesser, S.; Erbar, S.; Bates, F.; Schneider, D.; Jesionek, B.; Sänger, B.; Wallisch, A.K.; Feuchter, Y.; Junginger, H.; Krumm, S.A.; Heinen, A.P.; Adams-Quack, P.; Schlereth, J.; Schille, S.; Kröner, C.; de la Caridad Güimil Garcia, R.; Hiller, T.; Fischer, L.; Sellers, R.S.; Choudhary, S.; Gonzalez, O.; Vascotto, F.; Gutman, M.R.; Fontenot, J.A.; Hall-Ursone, S.; Brasky, K.; Griffor, M.C.; Han, S.; Su, A.A.H.; Lees, J.A.; Nedoma, N.L.; Mashalidis, E.H.; Sahasrabudhe, P.V.; Tan, C.Y.; Pavliakova, D.; Singh, G.; Fontes-Garfias, C.; Pride, M.; Scully, I.L.; Ciolino, T.; Obregon, J.; Gazi, M.; Carrion, R., Jr; Alfson, K.J.; Kalina, W.V.; Kaushal, D.; Shi, P.Y.; Klamp, T.; Rosenbaum, C.; Kuhn, A.N.; Türeci, Ö.; Dormitzer, P.R.; Jansen, K.U.; Sahin, U. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature, 2021, 592(7853), 283-289.
[http://dx.doi.org/10.1038/s41586-021-03275-y] [PMID: 33524990]
[62]
Verdiá-Báguena, C.; Nieto-Torres, J.L.; Alcaraz, A.; DeDiego, M.L.; Torres, J.; Aguilella, V.M.; Enjuanes, L. Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology, 2012, 432(2), 485-494.
[http://dx.doi.org/10.1016/j.virol.2012.07.005] [PMID: 22832120]
[63]
Verdiá-Báguena, C.; Nieto-Torres, J.L.; Alcaraz, A.; Dediego, M.L.; Enjuanes, L.; Aguilella, V.M. Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge. Biochim. Biophys. Acta, 2013, 1828(9), 2026-2031.
[http://dx.doi.org/10.1016/j.bbamem.2013.05.008] [PMID: 23688394]
[64]
Tang, T.; Bidon, M.; Jaimes, J.A.; Whittaker, G.R.; Daniel, S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res., 2020, 178, 104792.
[http://dx.doi.org/10.1016/j.antiviral.2020.104792] [PMID: 32272173]
[65]
Pang, H.; Liu, Y.; Han, X.; Xu, Y.; Jiang, F.; Wu, D.; Kong, X.; Bartlam, M.; Rao, Z. Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine. J. Gen. Virol., 2004, 85(Pt 10), 3109-3113.
[http://dx.doi.org/10.1099/vir.0.80111-0] [PMID: 15448374]
[66]
Mishra, T.; Sreepadmanabh, M.; Ramdas, P.; Sahu, A.K.; Kumar, A.; Chande, A. SARS CoV-2 nucleoprotein enhances the infectivity of lentiviral spike particles. Front. Cell. Infect. Microbiol., 2021, 11, 663688.
[http://dx.doi.org/10.3389/fcimb.2021.663688] [PMID: 33968806]
[67]
Suryawanshi, R.K.; Koganti, R.; Agelidis, A.; Patil, C.D.; Shukla, D. Dysregulation of cell signaling by SARS-CoV-2. Trends Microbiol., 2021, 29(3), 224-237.
[http://dx.doi.org/10.1016/j.tim.2020.12.007] [PMID: 33451855]
[68]
Mendoza-Martinez, C.; Rodriguez-Lezama, A. Identification of potential inhibitors of SARS-CoV-2 Main protease via a rapid in-silico drug repurposing approach. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12085083.v1]
[69]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved-α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[70]
Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; Chang, S.; Xie, Y.C.; Tian, G.; Jiang, H.W.; Tao, S.C.; Shen, J.; Jiang, Y.; Jiang, H.; Xu, Y.; Zhang, S.; Zhang, Y.; Xu, H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498), 1499-1504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[71]
Graham, R.L.; Sparks, J.S.; Eckerle, L.D.; Sims, A.C.; Denison, M.R. SARS coronavirus replicase proteins in pathogenesis. Virus Res., 2008, 133(1), 88-100.
[http://dx.doi.org/10.1016/j.virusres.2007.02.017] [PMID: 17397959]
[72]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.H. An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[73]
Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11876-11881.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[74]
Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; Niemeyer, D.; Schneider, H.; Drosten, C.; Pöhlmann, S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol., 2011, 85(9), 4122-4134.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
[75]
Iwata-Yoshikawa, N.; Okamura, T.; Shimizu, Y.; Hasegawa, H.; Takeda, M.; Nagata, N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol., 2019, 93(6), e01815-e01818.
[http://dx.doi.org/10.1128/JVI.01815-18] [PMID: 30626688]
[76]
Senanayake, S.L. Drug repurposing strategies for COVID-19. Future Drug Discov., 2020, 2(2), fdd-2020-fdd-0010.
[http://dx.doi.org/10.4155/fdd-2020-0010]
[77]
Dolgin, E. Biggest COVID-19 trial tests repurposed drugs first. Nat. Biotechnol., 2020, 38(5), 510-510.
[http://dx.doi.org/10.1038/s41587-020-0528-x] [PMID: 32393915]
[78]
Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J.K.; Haynes, R.; Landray, M.J. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med., 2021, 384(8), 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[79]
Oldenburg, C.E.; Doan, T. Azithromycin for severe COVID-19. Lancet, 2020, 396(10256), 936-937.
[http://dx.doi.org/10.1016/S0140-6736(20)31863-8] [PMID: 32896293]
[80]
Yu, B.; Li, C.; Chen, P.; Zhou, N.; Wang, L.; Li, J.; Jiang, H.; Wang, D.W. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci. China Life Sci., 2020, 63(10), 1515-1521.
[http://dx.doi.org/10.1007/s11427-020-1732-2] [PMID: 32418114]
[81]
Chan, K.S.; Lai, S.T.; Chu, C.M.; Tsui, E.; Tam, C.Y.; Wong, M.M.; Tse, M.W.; Que, T.L.; Peiris, J.S.; Sung, J.; Wong, V.C.; Yuen, K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: A multicentre retrospective matched cohort study. Hong Kong Med. J., 2003, 9(6), 399-406.
[PMID: 14660806]
[82]
Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronaviruses susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading Exoribonuclease. MBio, 2018, 9(2), e00221-e18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[83]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[84]
Beck, B.R.; Shin, B.; Choi, Y.; Park, S.; Kang, K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput. Struct. Biotechnol. J., 2020, 18, 784-790.
[http://dx.doi.org/10.1016/j.csbj.2020.03.025] [PMID: 32280433]
[85]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: Drug targets and potential treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[86]
Robinson, P.C.; Richards, D.; Tanner, H.L.; Feldmann, M. Accumulating evidence suggests anti-TNF therapy needs to be given trial priority in COVID-19 treatment. Lancet Rheumatol., 2020, 2(11), e653-e655.
[http://dx.doi.org/10.1016/S2665-9913(20)30309-X] [PMID: 33521660]
[87]
Malone, RW; Tisdall, P
[88]
Alavi Darazam, I.; Shokouhi, S.; Mardani, M.; Pourhoseingholi, M.A.; Rabiei, M.M.; Hatami, F.; Shabani, M.; Moradi, O.; Gharehbagh, F.J.; Irvani, S.S.N.; Amirdosara, M.; Hajiesmaeili, M.; Rezaei, O.; Khoshkar, A.; Lotfollahi, L.; Gachkar, L.; Dehbsneh, H.S.; Khalili, N.; Soleymaninia, A.; Kusha, A.H.; Shoushtari, M.T.; Torabinavid, P. Umifenovir in hospitalized moderate to severe COVID-19 patients: A randomized clinical trial. Int. Immunopharmacol., 2021, 99, 107969.
[http://dx.doi.org/10.1016/j.intimp.2021.107969] [PMID: 34273635]
[89]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[90]
Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Sharma, G.; Lee, S.S.; Agoramoorthy, G. COVID-19: Consider IL-6 receptor antagonist for the therapy of cytokine storm syndrome in SARS-CoV-2 infected patients. J. Med. Virol., 2020, 92(11), 2260-2262.
[http://dx.doi.org/10.1002/jmv.26078] [PMID: 32462717]
[91]
Smith, M.; Smith, J.C. Repurposing therapeutics for the Wuhan coronavirus nCov-2019: Supercomputer-based docking to the viral S protein and human ACE2 interface. Chemrxiv, 2020, 11871402.v1.
[http://dx.doi.org/10.26434/chemrxiv.11871402.v1]
[92]
Cantini, F.; Niccoli, L.; Matarrese, D.; Nicastri, E.; Stobbione, P.; Goletti, D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect., 2020, 81(2), 318-356.
[http://dx.doi.org/10.1016/j.jinf.2020.04.017] [PMID: 32333918]
[93]
Mucke, H.A.M. COVID-19 and the drug repurposing tsunami. Assay Drug Dev. Technol., 2020, 18(5), 211-214.
[http://dx.doi.org/10.1089/adt.2020.996] [PMID: 32551883]
[94]
Elmezayen, A.D. Al-Obaidi, A.; Ş ahin, A.T.; Yelekçi, K. Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J. Biomol. Struct. Dyn., 2021, 39(8), 2980-2992.
[http://dx.doi.org/10.1080/07391102.2020.1758791] [PMID: 32306862]
[95]
Lenze, E.J.; Mattar, C.; Zorumski, C.F.; Stevens, A.; Schweiger, J.; Nicol, G.E.; Miller, J.P.; Yang, L.; Yingling, M.; Avidan, M.S.; Reiersen, A.M. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: A randomized clinical trial. JAMA, 2020, 324(22), 2292-2300.
[http://dx.doi.org/10.1001/jama.2020.22760] [PMID: 33180097]
[96]
Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifirò, G. Challenges for drug repurposing in the COVID-19 Pandemic Era. Front. Pharmacol., 2020, 11, 588654.
[http://dx.doi.org/10.3389/fphar.2020.588654] [PMID: 33240091]
[97]
Food and Drug Administration. Emergency use authorization- FDA;.2020; Available from: https://www.fda.gov/media/137564/download Accessed 7 July 2021
[98]
Cavalli, G.; De Luca, G.; Campochiaro, C.; Della-Torre, E.; Ripa, M.; Canetti, D.; Oltolini, C.; Castiglioni, B.; Tassan Din, C.; Boffini, N.; Tomelleri, A.; Farina, N.; Ruggeri, A.; Rovere-Querini, P.; Di Lucca, G.; Martinenghi, S.; Scotti, R.; Tresoldi, M.; Ciceri, F.; Landoni, G.; Zangrillo, A.; Scarpellini, P.; Dagna, L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: A retrospective cohort study. Lancet Rheumatol., 2020, 2(6), e325-e331.
[http://dx.doi.org/10.1016/S2665-9913(20)30127-2] [PMID: 32501454]
[99]
Campochiaro, C.; Della-Torre, E.; Cavalli, G.; De Luca, G.; Ripa, M.; Boffini, N.; Tomelleri, A.; Baldissera, E.; Rovere-Querini, P.; Ruggeri, A.; Monti, G.; De Cobelli, F.; Zangrillo, A.; Tresoldi, M.; Castagna, A.; Dagna, L. Efficacy and safety of tocilizumab in severe COVID-19 patients: A single-centre retrospective cohort study. Eur. J. Intern. Med., 2020, 76, 43-49.
[http://dx.doi.org/10.1016/j.ejim.2020.05.021] [PMID: 32482597]
[100]
Wang, J.; Peng, Y.; Xu, H.; Cui, Z.; Williams, R.O., III The COVID-19 vaccine Race: Challenges and opportunities in vaccine formulation. AAPS PharmSciTech, 2020, 21(6), 225.
[http://dx.doi.org/10.1208/s12249-020-01744-7] [PMID: 32761294]
[101]
Bao, L.; Deng, W.; Huang, B.; Gao, H.; Liu, J.; Ren, L.; Wei, Q.; Yu, P.; Xu, Y.; Qi, F.; Qu, Y.; Li, F.; Lv, Q.; Wang, W.; Xue, J.; Gong, S.; Liu, M.; Wang, G.; Wang, S.; Song, Z.; Zhao, L.; Liu, P.; Zhao, L.; Ye, F.; Wang, H.; Zhou, W.; Zhu, N.; Zhen, W.; Yu, H.; Zhang, X.; Guo, L.; Chen, L.; Wang, C.; Wang, Y.; Wang, X.; Xiao, Y.; Sun, Q.; Liu, H.; Zhu, F.; Ma, C.; Yan, L.; Yang, M.; Han, J.; Xu, W.; Tan, W.; Peng, X.; Jin, Q.; Wu, G.; Qin, C. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 2020, 583(7818), 830-833.
[http://dx.doi.org/10.1038/s41586-020-2312-y] [PMID: 32380511]
[102]
Lee, W.S.; Wheatley, A.K.; Kent, S.J.; DeKosky, B.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol., 2020, 5(10), 1185-1191.
[http://dx.doi.org/10.1038/s41564-020-00789-5] [PMID: 32908214]
[103]
Dong, Y.; Dai, T.; Wei, Y.; Zhang, L.; Zheng, M.; Zhou, F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Target. Ther., 2020, 5(1), 237.
[http://dx.doi.org/10.1038/s41392-020-00352-y] [PMID: 33051445]
[104]
Eastman, R.T.; Roth, J.S.; Brimacombe, K.R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M.D. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent. Sci., 2020, 6(5), 672-683.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[105]
COVID-19 Weekly Epidemiological Update by World Health Organization.. 2021. Available from:https://www.minsal.cl/wp-content/uploads/2021/04/20210330_Weekly_Epi_Update_33.pdf(Accessed on 4 Apr 2022).
[106]
Malik, Y.S.; Sircar, S.; Bhat, S.; Sharun, K.; Dhama, K.; Dadar, M.; Tiwari, R.; Chaicumpa, W. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet. Q., 2020, 40(1), 68-76.
[http://dx.doi.org/10.1080/01652176.2020.1727993] [PMID: 32036774]
[107]
Lee, P.I.; Hsueh, P.R. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J. Microbiol. Immunol. Infect., 2020, 53(3), 365-367.
[http://dx.doi.org/10.1016/j.jmii.2020.02.001] [PMID: 32035811]
[108]
Gendrot, M.; Andreani, J.; Boxberger, M.; Jardot, P.; Fonta, I.; Le Bideau, M.; Duflot, I.; Mosnier, J.; Rolland, C.; Bogreau, H.; Hutter, S.; La Scola, B.; Pradines, B. Antimalarial drugs inhibit the replication of SARS-CoV-2: An in vitro evaluation. Travel Med. Infect. Dis., 2020, 37, 101873.
[http://dx.doi.org/10.1016/j.tmaid.2020.101873] [PMID: 32916297]
[109]
Rodríguez-Morales, A.J.; MacGregor, K.; Kanagarajah, S.; Patel, D.; Schlagenhauf, P. Going global - Travel and the 2019 novel coronavirus. Travel Med. Infect. Dis., 2020, 33, 101578.
[http://dx.doi.org/10.1016/j.tmaid.2020.101578] [PMID: 32044389]
[110]
Popp, M.; Stegemann, M.; Metzendorf, M-I.; Gould, S.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Ivermectin for preventing and treating COVID-19. Cochrane Database Syst. Rev., 2021, 7(7), CD015017.
[PMID: 34318930]
[111]
Arentz, S.; Hunter, J.; Yang, G.; Goldenberg, J.; Beardsley, J.; Myers, S.P.; Mertz, D.; Leeder, S. Zinc for the prevention and treatment of SARS-CoV-2 and other acute viral respiratory infections: a rapid review. Adv. Integr. Med., 2020, 7(4), 252-260.
[http://dx.doi.org/10.1016/j.aimed.2020.07.009] [PMID: 32837895]
[112]
Turlington, M.; Chun, A.; Tomar, S.; Eggler, A.; Grum-Tokars, V.; Jacobs, J.; Daniels, J.S.; Dawson, E.; Saldanha, A.; Chase, P.; Baez-Santos, Y.M.; Lindsley, C.W.; Hodder, P.; Mesecar, A.D.; Stauffer, S.R. Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg. Med. Chem. Lett., 2013, 23(22), 6172-6177.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.112] [PMID: 24080461]
[113]
Verma, S.; Twilley, D.; Esmear, T.; Oosthuizen, C.B.; Reid, A.M.; Nel, M.; Lall, N. Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19). Front. Pharmacol., 2020, 11, 561334.
[http://dx.doi.org/10.3389/fphar.2020.561334] [PMID: 33101023]
[114]
Verma, A.; Adhikary, A.; Woloschak, G.; Dwarakanath, B.S.; Papineni, R.V.L. A combinatorial approach of a polypharmacological adjuvant 2-deoxy-D-glucose with low dose radiation therapy to quell the cytokine storm in COVID-19 management. Int. J. Radiat. Biol., 2020, 96(11), 1323-1328.
[http://dx.doi.org/10.1080/09553002.2020.1818865] [PMID: 32910699]
[115]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[116]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[117]
Parasuraman, S.; Thing, G.S.; Dhanaraj, S.A. Polyherbal formulation: Concept of ayurveda. Pharmacogn. Rev., 2014, 8(16), 73-80.
[http://dx.doi.org/10.4103/0973-7847.134229] [PMID: 25125878]
[118]
Al-Hatamleh, M.A.I.; Hatmal, M.M.; Sattar, K.; Ahmad, S.; Mustafa, M.Z.; Bittencourt, M.C.; Mohamud, R. Antiviral and immunomodulatory effects of phytochemicals from honey against COVID-19: Potential mechanisms of action and future directions. Molecules, 2020, 25(21), 5017.
[http://dx.doi.org/10.3390/molecules25215017] [PMID: 33138197]
[119]
Hardin, J.W.; Arena, J.M. Human Poisoning from Native and Cultivated Plants, 2nd ed; Duke University Press, 1974.
[120]
Kaul, T.N.; Middleton, E., Jr; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol., 1985, 15(1), 71-79.
[http://dx.doi.org/10.1002/jmv.1890150110] [PMID: 2981979]
[121]
Feng Yeh, C.; Wang, K.C.; Chiang, L.C.; Shieh, D.E.; Yen, M.H.; San Chang, J. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol., 2013, 148(2), 466-473.
[http://dx.doi.org/10.1016/j.jep.2013.04.040] [PMID: 23643542]
[122]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[123]
Gerth, K.; Irschik, H.; Reichenbach, H.; Trowitzsch, W. The myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J. Antibiot., 1982, 35(11), 1454-1459.
[http://dx.doi.org/10.7164/antibiotics.35.1454] [PMID: 6819280]
[124]
Tan, K.; Lim, Y. Viruses join the circular RNA world. FEBS J., 2021, 288(15), 4488-4502.
[http://dx.doi.org/10.1111/febs.15639] [PMID: 33236482]
[125]
Burg, R.W.; Miller, B.M.; Baker, E.E.; Birnbaum, J.; Currie, S.A.; Hartman, R.; Kong, Y.L.; Monaghan, R.L.; Olson, G.; Putter, I.; Tunac, J.B.; Wallick, H.; Stapley, E.O.; Oiwa, R.; Omura, S. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother., 1979, 15(3), 361-367.
[http://dx.doi.org/10.1128/AAC.15.3.361] [PMID: 464561]
[126]
Chang, J.C.F.; Walberg, J.A.; Campbell, W.R. One-year dietary toxicity study with methidathion in beagle dogs. Fundam. Appl. Toxicol., 1992, 19(2), 307-314.
[http://dx.doi.org/10.1016/0272-0590(92)90165-E] [PMID: 1516789]
[127]
Bailly, C. Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. Phytomedicine, 2019, 62, 152956.
[http://dx.doi.org/10.1016/j.phymed.2019.152956] [PMID: 31132753]
[128]
Yang, L.; Liu, S.; Liu, J.; Zhang, Z.; Wan, X.; Huang, B.; Chen, Y.; Zhang, Y. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduct. Target. Ther., 2020, 5(1), 128.
[http://dx.doi.org/10.1038/s41392-020-00243-2] [PMID: 32712629]
[129]
Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.H.; Kwon, S. Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules, 2019, 9(11), 696.
[http://dx.doi.org/10.3390/biom9110696] [PMID: 31690059]
[130]
Blossey, E.C.; Budzikiewicz, H.; Ohashi, M.; Fodor, G.; Djerassi, C. Mass spectrometry in structural and stereochemical problems—XXXIX: Tropane alkaloids. Tetrahedron, 1964, 20(3), 585-595.
[http://dx.doi.org/10.1016/S0040-4020(01)98621-1]
[131]
Muchtaridi, M.; Syahidah, H.N.; Subarnas, A.; Yusuf, M.; Bryant, S.D.; Langer, T. Molecular docking and 3D-pharmacophore modeling to study the interactions of chalcone derivatives with estroge receptor alpha. Pharmaceuticals (Basel),, 2017, 10(4), 81.
[http://dx.doi.org/10.3390/ph10040081] [PMID: 29035298]
[132]
Brahmbhatt, R.V. Herbal medicines in management and prevention of COVID-19. J. Pharmacogn. Phytochem., 2020, 9(3), 1221-1223.
[133]
Yue, H.; Pi, Z.; Song, F.; Liu, Z.; Cai, Z.; Liu, S. Studies on the aconitine-type alkaloids in the roots of Aconitum carmichaelii Debx. by HPLC/ESIMS/MS(n). Talanta, 2009, 77(5), 1800-1807.
[http://dx.doi.org/10.1016/j.talanta.2008.10.022] [PMID: 19159802]
[134]
Goothy, S.S.; Goothy, S. Ayurveda’s holistic lifestyle approach for the management of Coronavirus disease (COVID-19): Possible role of tulsi. Int J Res Pharm Sci., 2020, 1(11), 16-18.
[http://dx.doi.org/10.26452/ijrps.v11iSPL1.1976]
[135]
Tillu, G.; Salvi, S.; Patwardhan, B. AYUSH for COVID-19 management. J. Ayurveda Integr. Med., 2020, 11(2), 95-96.
[http://dx.doi.org/10.1016/j.jaim.2020.06.012] [PMID: 32600556]
[136]
Abouelela, M.E.; Assaf, H.K.; Abdelhamid, R.A.; Elkhyat, E.S.; Sayed, A.M.; Oszako, T.; Belbahri, L.; El Zowalaty, A.E.; Abdelkader, M.S.A. Identification of potential SARS-CoV-2 main protease and spike protein inhibitors from the genus aloe: An in-silico study for drug development. Molecules, 2021, 26(6), 1767.
[http://dx.doi.org/10.3390/molecules26061767] [PMID: 33801151]
[137]
Gandhi, A.J.; Rupareliya, J.D.; Shukla, V.J.; Donga, S.B.; Acharya, R. An ayurvedic perspective along with in silico study of the drugs for the management of SARS-CoV-2. J Ayur. Integr. Med., 2020.
[http://dx.doi.org/10.1016/j.jaim.2020.07.002]
[138]
García, L.F. Immune Response, inflammation, and the clinical spectrum of COVID-19. Front. Immunol., 2020, 11, 1441.
[http://dx.doi.org/10.3389/fimmu.2020.01441] [PMID: 32612615]
[139]
Mortaz, E.; Tabarsi, P.; Varahram, M.; Folkerts, G.; Adcock, I.M. The immune response and immunopathology of COVID-19. Front. Immunol., 2020, 11, 2037.
[http://dx.doi.org/10.3389/fimmu.2020.02037] [PMID: 32983152]
[140]
Liu, X.; Zhang, B.; Jin, Z.; Yang, H.; Rao, Z. The crystal structure of COVID-19 main protease in complex with an inhibitor N3., 2020.
[141]
Asarnow, D.; Charles, C.; Cheng, Y SARS-CoV-2 spike glycoprotein:Fab 3D11 complex. 2021.
[142]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[143]
Andi, B.; Kumaran, D.; Kreitler, D.F. Crystal structure of SARS-CoV-2 main protease (3CLpro/Mpro) in the apo form at 1.2 A resolution and a possible capture of zinc binding intermediate 2020.Available from: 10.2210/pdb7K3T/pdb (Accessed on 4 Apr 2022)
[144]
Bulut, H.; Hattori, S.I.; Das, D.; Murayama, K.; Mitsuya, H. Crystal structure of SARS-CoV-2 main protease in complex with an inhibitor GRL-2420., 2020.
[145]
Gajiwala, K.S.; Ferre, R.A.; Liu, W.; Ryan, K. Structure of SARS CoV-2 main protease shows simultaneous processing of its N- and C-terminii. 2021.
[146]
Wang, Y.C.; Yang, C.S.; Hou, M.H.; Tsai, C.L.; Chou, Y.Z.; Chen, Y SARS-CoV-2 main protease (Mpro) apo structure (space group, 212121). 2020.
[147]
Sacco, M.; Wang, J.; Chen, Y Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with noncovalent inhibitor Jun8-76-3A 2020.
[148]
Sauer, M.M.; Park, Y.J.; Veesler, D B6 Fab fragment bound to the SARS-CoV/-2 spike stem helix peptide. 2021.
[149]
Cong, Y.; Wang, Y.F. S-2H2-F1 structure, one RBD is up and two RBDs are down, only up RBD binds with a 2H2 Fab 2020.
[150]
Yan, R.H.; Zhang, Y.Y. Conformation 1 of S-ACE2-B0AT1 ternary complex., 2021.
[151]
Bangaru, S.; Turner, H.L.; Ozorowski, G.; Antanasijevic, A.; Ward, A. A.B Structure of SARS-CoV-2 3Q-2P full-length dimers of spike trimers 2020.
[152]
Srinivasan, V.; Gunther, S. Structure of SARS-CoV-2 Papain-like protease PLpro., 2021.
[153]
Osipiuk, J.; Jedrzejczak, R. The crystal structure of papain-like protease of SARS CoV-2., 2020.
[154]
Fu, Z.; Huang, H SARS CoV-2 PLpro in complex with GRL0617., 2020.
[155]
Correy, G.J.; Young, I.D.; Thompson, M.C.; Fraser, J.S Crystal structure of SARS-CoV-2 NSP3 macrodomain (C2 crystal form,100 K). 2020.
[156]
Correy, G.J.; Young, I.D.; Thompson, M.C.; Fraser, J. S Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000084843283., 2020.
[157]
Wilamowski, M.; Kim, Y. The 1.5 A Crystal structure of the Cofactor complex of NSP7 and the C-terminal Domain of NSP8 from SARS CoV-2. 2020.
[158]
Fisher, S.Z. ; Kozielski, F Nonstructural protein 10 (nsp10) from SARS CoV-2. 2020.
[159]
Hall, P.D.; Nelson, C.A.; Fremont, D. H Structure of the SARS-CoV-2 ORF8 encoded accessory protein., 2020.
[160]
Minasov, G.; Shuvalova, L.; Rosas-Lemus, M.; Kiryukhina, O.; Brunzelle, J.S.; Satchell, K.J.F Crystal structure of SARS-CoV-2 Nsp16/10 Heterodimer in complex with (m7GpppA2m)pUpUpApApA (Cap-1), S-Adenosyl-Lhomocysteine (SAH) and two Magnesium (Mg) ions. 2020.
[161]
Kim, Y.; Maltseva, N. 2020.
[162]
Littler, D.R.; Gully, B.S.; Riboldi-Tunnicliffe, A.; Rossjohn, J SARS-CoV-2 Nsp9 RNA-replicase. 2020.
[163]
Muralidharan, N.; Sakthivel, R.; Velmurugan, D.; Gromiha, M.M. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J. Biomol. Struct. Dyn., 2021, 39(7), 2673-2678.
[http://dx.doi.org/10.1080/07391102.2020.1752802] [PMID: 32248766]
[164]
Wang, J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J. Chem. Inf. Model., 2020, 60(6), 3277-3286.
[http://dx.doi.org/10.1021/acs.jcim.0c00179] [PMID: 32315171]
[165]
Vaidya, N.A.; Vyas, R. Computational studies of Hydroxychloroquine and chloroquine metabolites as possible candidates for coronavirus (COVID-19) treatment. Front. Pharmacol., 2020, 11, 569665.
[http://dx.doi.org/10.3389/fphar.2020.569665] [PMID: 33364944]
[166]
Mongia, A.; Saha, S.K.; Chouzenoux, E.; Majumdar, A. A computational approach to aid clinicians in selecting anti-viral drugs for COVID-19 trials. Sci. Rep., 2021, 11(1), 9047.
[http://dx.doi.org/10.1038/s41598-021-88153-3] [PMID: 33907209]
[167]
Ahmad, S.; Abbasi, H.W.; Shahid, S.; Gul, S.; Abbasi, S.W. Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment. J. Biomol. Struct. Dyn., 2021, 39(12), 1-9.
[PMID: 32462996]
[168]
Kaur, H.; Shekhar, N.; Sharma, S.; Sarma, P.; Prakash, A.; Medhi, B. Ivermectin as a potential drug for treatment of COVID-19: an in-sync review with clinical and computational attributes. Pharmacol. Rep., 2021, 73(3), 736-749.
[http://dx.doi.org/10.1007/s43440-020-00195-y] [PMID: 33389725]
[169]
Batra, R.; Chan, H.; Kamath, G.; Ramprasad, R.; Cherukara, M.J.; Sankaranarayanan, S.K.R.S. Screening of therapeutic agents for COVID-19 using machine learning and ensemble docking studies. J. Phys. Chem. Lett., 2020, 11(17), 7058-7065.
[http://dx.doi.org/10.1021/acs.jpclett.0c02278] [PMID: 32787328]
[170]
Yu, R.; Chen, L.; Lan, R.; Shen, R.; Li, P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int. J. Antimicrob. Agents, 2020, 56(2), 106012.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106012] [PMID: 32389723]
[171]
Anwar, F.; Altayb, H.N.; Al-Abbasi, F.A.; Al-Malki, A.L.; Kamal, M.A.; Kumar, V. Antiviral effects of probiotic metabolites on COVID-19. J. Biomol. Struct. Dyn., 2020, 1-10.
[PMID: 32475223]
[172]
Benlloch, J.M.; Cortés, J.C.; Martínez-Rodríguez, D.; Julián, R.S.; Villanueva, R.J. Effect of the early use of antivirals on the COVID-19 pandemic. A computational network modeling approach. Chaos Solitons Fractals, 2020, 140, 110168.
[http://dx.doi.org/10.1016/j.chaos.2020.110168] [PMID: 32836917]
[173]
Abdellatiif, M.H.; Ali, A.; Ali, A.; Hussien, M.A. Computational studies by molecular docking of some antiviral drugs with COVID-19 receptors are an approach to medication for COVID-19. Open Chem. J., 2021, 19(1), 245-264.
[http://dx.doi.org/10.1515/chem-2021-0024]
[174]
Kuleshov, M.V.; Stein, D.J.; Clarke, D.J.B.; Kropiwnicki, E.; Jagodnik, K.M.; Bartal, A.; Evangelista, J.E.; Hom, J.; Cheng, M.; Bailey, A.; Zhou, A.; Ferguson, L.B.; Lachmann, A.; Ma’ayan, A. The COVID-19 drug and gene set library. Patterns., 2020, 1(6), 100090.
[http://dx.doi.org/10.1016/j.patter.2020.100090] [PMID: 32838343]
[175]
Parida, P.K.; Paul, D.; Chakravorty, D. Nature’s therapy for COVID-19: Targeting the vital Non-Structural Proteins (NSP) from SARS-CoV-2 with phytochemicals from Indian medicinal plants. Phytomedicine Plus., 2021, 1(1), 100002.
[http://dx.doi.org/10.1016/j.phyplu.2020.100002]
[176]
Johnson, T.O.; Adegboyega, A.E.; Iwaloye, O.; Eseola, O.A.; Plass, W.; Afolabi, B.; Rotimi, D.; Ahmed, E.I.; Albrakati, A.; Batiha, G.E.; Adeyemi, O.S. Computational study of the therapeutic potentials of a new series of imidazole derivatives against SARS-CoV-2. J. Pharmacol. Sci., 2021, 147(1), 62-71.
[http://dx.doi.org/10.1016/j.jphs.2021.05.004] [PMID: 34294374]
[177]
Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov., 2020, 6, 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 32194980]
[178]
Cava, C.; Bertoli, G.; Castiglioni, I. In silico discovery of candidate drugs against Covid-19. Viruses, 2020, 12(4), 404.
[http://dx.doi.org/10.3390/v12040404] [PMID: 32268515]
[179]
He, B.; Garmire, L. Prediction of repurposed drugs for treating lung injury in COVID-19. F1000 Res., 2020, 9, 609.
[http://dx.doi.org/10.12688/f1000research.23996.2] [PMID: 32934806]
[180]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[181]
Shah, B.; Modi, P.; Sagar, S.R. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci., 2020, 252, 117652.
[http://dx.doi.org/10.1016/j.lfs.2020.117652] [PMID: 32278693]
[182]
Kandeel, M.; Al-Nazawi, M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci., 2020, 251, 117627.
[http://dx.doi.org/10.1016/j.lfs.2020.117627] [PMID: 32251634]
[183]
Mahanta, S.; Chowdhury, P. Potential anti-viral activity of approved repurposed drug against main protease of SARS-CoV-2: An in silico-based approach. J. Biomol. Struct. Dyn., 2021, 39(10), 3802-3811.
[PMID: 32406317]
[184]
Odhar, H.A.; Ahjel, S.W.; Albeer, A.A.M.A.; Hashim, A.F.; Rayshan, A.M.; Humadi, S.S. Molecular docking and dynamics simulation of FDA approved drugs with the main protease from 2019 novel coronavirus. Bioinformation, 2020, 16(3), 236-244.
[http://dx.doi.org/10.6026/97320630016236] [PMID: 32308266]
[185]
Mittal, L.; Kumari, A.; Srivastava, M.; Singh, M.; Asthana, S. Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach. J. Biomol. Struct. Dyn., 2021, 39(10), 3662-3680.
[PMID: 32396769]
[186]
Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn., 2021, 39(9), 3347-3357.
[http://dx.doi.org/10.1080/07391102.2020.1763201] [PMID: 32362245]
[187]
Farag, A.; Wang, P.; Ahmed, M.; Sadek, H. Identification of FDA approved drugs targeting COVID-19 virus by structure-based drug repositioning. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12003930.v1]
[188]
Gimeno, A.; Mestres-Truyol, J.; Ojeda-Montes, M.J.; Macip, G.; Saldivar-Espinoza, B.; Cereto-Massagué, A.; Pujadas, G.; Garcia-Vallvé, S. Prediction of novel inhibitors of the main protease (M-pro) of SARS-CoV-2 through consensus docking and drug reposition. Int. J. Mol. Sci., 2020, 21(11), 3793.
[http://dx.doi.org/10.3390/ijms21113793] [PMID: 32471205]
[189]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253, 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[190]
Gupta, M.K.; Vemula, S.; Donde, R.; Gouda, G.; Behera, L.; Vadde, R. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J. Biomol. Struct. Dyn., 2021, 39(7), 2617-2627.
[PMID: 32238078]
[191]
Elmezayen, A.D. Al-Obaidi, A.; Ş ahin, A.T.; Yelekçi, K. Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J. Biomol. Struct. Dyn., 2021, 39(8), 2980-2992.
[PMID: 32306862]
[192]
Hall, D.C., Jr; Ji, H.F. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med. Infect. Dis., 2020, 35, 101646.
[http://dx.doi.org/10.1016/j.tmaid.2020.101646] [PMID: 32294562]
[193]
de Oliveira, O.V.; Rocha, G.B.; Paluch, A.S.; Costa, L.T. Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening. J. Biomol. Struct. Dyn., 2021, 39(11), 1-10.
[PMID: 32448085]
[194]
Park, T.; Lee, S.Y.; Kim, S.; Kim, M.J.; Kim, H.G.; Jun, S.; Park, D. Spike protein binding prediction with neutralizing antibodies of SARS-CoV-2. BioRxiv, 2020. https://www.biorxiv.org/content/10.1101/2020.02.22.951178v1
[http://dx.doi.org/10.1101/2020.02.22.951178]
[195]
Wang, M.; Baker, J.S.; Quan, W.; Shen, S.; Fekete, G.; Gu, Y. A preventive role of exercise across the coronavirus 2 (SARS-CoV-2) pandemic. Front. Physiol., 2020, 11, 572718.
[http://dx.doi.org/10.3389/fphys.2020.572718] [PMID: 33013486]
[196]
Hammami, N.; Jdidi, H.; Frih, B. COVID-19 Pandemic: Physical activity as prevention mean. Open Sports Sci. J., 2020, 13(1), 120-122.
[http://dx.doi.org/10.2174/1875399X02013010120]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy