Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis and Biological Evaluation of Novel 1, 3, 4-Oxadiazole PD176252 Analogues as Potential GRPR Inhibitors

Author(s): Yuting Zhu, Huai Wang, Mingjun Yu, Chao Li, Xiaoming Meng, Meng He and Risheng Yao*

Volume 22, Issue 17, 2022

Published on: 30 June, 2022

Page: [3009 - 3024] Pages: 16

DOI: 10.2174/1871520622666220501162813

Price: $65

conference banner
Abstract

Background: GRPR is over-expressed in cancer cells and is a potential drug target for the treatment of cancer. PD176252, as the most representative non-peptide inhibitor of GRPR, can inhibit the growth of cancer cells, but its low selectivity to cancer cells and normal cells limits its further application.

Objective: The aim of this study was to design and synthesize novel GRPR inhibitor with stronger anti-cancer activity and higher affinity with GRPR than the lead compound PD176252.

Methods: A series of 1, 3, 4-oxadiazole derivatives as PD176252 analogues (4a-4j, 6a-6q) were synthesized and their cytotoxic activity was investigated on four cancer lines with high expression of GRPR (gastric (HGC-27), colon (HCT- 116), prostate (PC-3), and lung (A549)) and one human cell line (gastric mucosal epithelial (GES-1)) by MTT assay. Flow cytometry analysis and Western Blot were used to determine whether the compound induced programmed apoptosis of cancer cells. Competitive binding experiment was used to verify the affinity between GRPR and the optimal compound.

Results: Compound 6m exhibited significant growth inhibition on all tested cancer cell lines, especially gastric cancer cells (HGC-27 cellular IC50 0.37 ± 0.04μM). Also, the selectivity of 6m to HGC-27 was much higher than that of PD176252. Flow cytometric analysis and Western Blot proved that 6m significantly promoted the apoptosis of HGC- 27 cells. Moreover, competitive binding experiment confirmed the close binding of 6m with GRPR, which indicated 6m with a higher affinity than lead compound PD176252.

Conclusion: Our results suggested that 6m, as a novel GRPR inhibitor, had a higher affinity with GRPR and potential anti-cancer effect than PD176252, which can be used as a template for further optimization.

Keywords: PD176252, GRPR, anti-cancer, gastric cancer, affinity, programmed apoptosis, competitive binding.

Graphical Abstract

[1]
Jensen, R.T.; Battey, J.F.; Spindel, E.R.; Benya, R.V. International union of pharmacology. LXVIII. Mammalian bombesin receptors: No-menclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol. Rev., 2008, 60(1), 1-42.
[http://dx.doi.org/10.1124/pr.107.07108] [PMID: 18055507]
[2]
Baratto, L.; Duan, H.; Mäcke, H.; Iagaru, A. Imaging the distribution of gastrin-releasing peptide receptors in cancer. J. Nucl. Med., 2020, 61(6), 792-798.
[http://dx.doi.org/10.2967/jnumed.119.234971] [PMID: 32060215]
[3]
Baratto, L.; Duan, H.; Laudicella, R.; Toriihara, A.; Hatami, N.; Ferri, V.; Iagaru, A. Physiological 68Ga-RM2 uptake in patients with bio-chemically recurrent prostate cancer: An atlas of semi-quantitative measurements. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(1), 115-122.
[http://dx.doi.org/10.1007/s00259-019-04503-4] [PMID: 31478089]
[4]
Hohla, F.; Schally, A.V. Targeting gastrin releasing peptide receptors: New options for the therapy and diagnosis of cancer. Cell Cycle, 2010, 9(9), 1738-1741.
[http://dx.doi.org/10.4161/cc.9.9.11347] [PMID: 20473035]
[5]
Reubi, J.C.; Wenger, S.; Schmuckli-Maurer, J.; Schaer, J-C.; Gugger, M. Bombesin receptor subtypes in human cancers: Detection with the universal radioligand (125)I-[D-TYR(6), β-ALA(11), PHE(13), NLE(14)] bombesin(6-14). Clin. Cancer Res., 2002, 8(4), 1139-1146.
[PMID: 11948125]
[6]
Gugger, M.; Reubi, J.C. Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Am. J. Pathol., 1999, 155(6), 2067-2076.
[http://dx.doi.org/10.1016/S0002-9440(10)65525-3] [PMID: 10595936]
[7]
Mattei, J.; Achcar, R.D.; Cano, C.H.; Macedo, B.R.; Meurer, L.; Batlle, B.S.; Groshong, S.D.; Kulczynski, J.M.; Roesler, R.; Dal Lago, L.; Brunetto, A.T.; Schwartsmann, G. Gastrin-releasing peptide receptor expression in lung cancer. Arch. Pathol. Lab. Med., 2014, 138(1), 98-104.
[http://dx.doi.org/10.5858/arpa.2012-0679-OA] [PMID: 24377816]
[8]
Cuttitta, F.; Carney, D.N.; Mulshine, J.; Moody, T.W.; Fedorko, J.; Fischler, A.; Minna, J.D. Bombesin-like peptides can function as auto-crine growth factors in human small-cell lung cancer. Nature, 1985, 316(6031), 823-826.
[http://dx.doi.org/10.1038/316823a0] [PMID: 2993906]
[9]
Watson, S.A.; Grabowska, A.M.; El-Zaatari, M.; Takhar, A. Gastrin - active participant or bystander in gastric carcinogenesis? Nat. Rev. Cancer, 2006, 6(12), 936-946.
[http://dx.doi.org/10.1038/nrc2014] [PMID: 17128210]
[10]
Rivera, C.A.; Ahlberg, N.C.; Taglia, L.; Kumar, M.; Blunier, A.; Benya, R.V. Expression of GRP and its receptor is associated with im-proved survival in patients with colon cancer. Clin. Exp. Metastasis, 2009, 26(7), 663-671.
[http://dx.doi.org/10.1007/s10585-009-9265-8] [PMID: 19430935]
[11]
Baratto, L.; Jadvar, H.; Iagaru, A. Prostate cancer theranostics targeting gastrin-releasing peptide receptors. Mol. Imaging Biol., 2018, 20(4), 501-509.
[http://dx.doi.org/10.1007/s11307-017-1151-1] [PMID: 29256046]
[12]
de Farias, C.B.; Stertz, L.; Lima, R.C.; Kapczinski, F.; Schwartsmann, G.; Roesler, R. Reduced NGF secretion by HT-29 human colon can-cer cells treated with a GRPR antagonist. Protein Pept. Lett., 2009, 16(6), 650-652.
[http://dx.doi.org/10.2174/092986609788490177] [PMID: 19519524]
[13]
Kang, J.; Ishola, T.A.; Baregamian, N.; Mourot, J.M.; Rychahou, P.G.; Evers, B.M.; Chung, D.H. Bombesin induces angiogenesis and neu-roblastoma growth. Cancer Lett., 2007, 253(2), 273-281.
[http://dx.doi.org/10.1016/j.canlet.2007.02.007] [PMID: 17383815]
[14]
Ashwood, V.; Brownhill, V.; Higginbottom, M.; Horwell, D.C.; Hughes, J.; Lewthwaite, R.A.; McKnight, A.T.; Pinnock, R.D.; Pritchard, M.C.; Suman-Chauhan, N.; Webb, C.; Williams, S.C. PD 176252--the first high affinity non-peptide gastrin-releasing peptide (BB2) recep-tor antagonist. Bioorg. Med. Chem. Lett., 1998, 8(18), 2589-2594.
[http://dx.doi.org/10.1016/S0960-894X(98)00462-4] [PMID: 9873586]
[15]
Moody, T.W.; Leyton, J.; Garcia-Marin, L.; Jensen, R.T. Nonpeptide gastrin releasing peptide receptor antagonists inhibit the proliferation of lung cancer cells. Eur. J. Pharmacol., 2003, 474(1), 21-29.
[http://dx.doi.org/10.1016/S0014-2999(03)01996-4] [PMID: 12909192]
[16]
Moody, T.W.; Jensen, R.T.; Garcia, L.; Leyton, J. Nonpeptide neuromedin B receptor antagonists inhibit the proliferation of C6 cells. Eur. J. Pharmacol., 2000, 409(2), 133-142.
[http://dx.doi.org/10.1016/S0014-2999(00)00828-1] [PMID: 11104826]
[17]
Carrieri, A.; Lacivita, E.; Belviso, B.D.; Caliandro, R.; Mastrorilli, P.; Gallo, V.; Niso, M.; Leopoldo, M. Structural determinants in the binding of BB2 receptor ligands: In silico, X-Ray and NMR studies in PD176252 analogues. Curr. Top. Med. Chem., 2017, 17(14), 1599-1610.
[http://dx.doi.org/10.2174/1568026617666161104102459] [PMID: 27823569]
[18]
Lacivita, E.; Lucente, E.; Kwizera, C.; Antunes, I.F.; Niso, M.; De Giorgio, P.; Perrone, R.; Colabufo, N.A.; Elsinga, P.H.; Leopoldo, M. Structure-activity relationship study towards non-peptidic positron emission tomography (PET) radiotracer for gastrin releasing peptide receptors: Development of [18F] (S)-3-(1H-indol-3-yl)-N-[1-[5-(2-fluoroethoxy)pyridin-2-yl]cyclohexylmethyl]-2-methyl-2-[3-(4-nitrophenyl)ureido]propionamide. Bioorg. Med. Chem., 2017, 25(1), 277-292.
[http://dx.doi.org/10.1016/j.bmc.2016.10.031] [PMID: 27863916]
[19]
Yao, S.; Wei, B.; Yu, M.; Meng, X.; He, M.; Yao, R. Design, synthesis and evaluation of PD176252 analogues for ameliorating cisplatin-induced nephrotoxicity. MedChemComm, 2019, 10(5), 757-763.
[http://dx.doi.org/10.1039/C8MD00632F] [PMID: 31191866]
[20]
de Oliveira, C.S.; Lira, B.F.; Barbosa-Filho, J.M.; Lorenzo, J.G.F.; de Athayde-Filho, P.F. Synthetic approaches and pharmacological activi-ty of 1,3,4-oxadiazoles: A review of the literature from 2000-2012. Molecules, 2012, 17(9), 10192-10231.
[http://dx.doi.org/10.3390/molecules170910192] [PMID: 22926303]
[21]
Kumar, H.; Javed, S.A.; Khan, S.A.; Amir, M. 1,3,4-Oxadiazole/thiadiazole and 1,2,4-triazole derivatives of biphenyl-4-yloxy acetic acid: Synthesis and preliminary evaluation of biological properties. Eur. J. Med. Chem., 2008, 43(12), 2688-2698.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.039] [PMID: 18395299]
[22]
Glomb, T. Szymankiewicz, K.; Świątek, P. Anti-cancer activity of derivatives of 1,3,4-oxadiazole. Molecules, 2018, 23(12), 1-16.
[http://dx.doi.org/10.3390/molecules23123361] [PMID: 30567416]
[23]
Jain, P.P.; Degani, M.S.; Raju, A.; Anantram, A.; Seervi, M.; Sathaye, S.; Ray, M.; Rajan, M.G.R. Identification of a novel class of quino-line-oxadiazole hybrids as anti-tuberculosis agents. Bioorg. Med. Chem. Lett., 2016, 26(2), 645-649.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.057] [PMID: 26675440]
[24]
Rane, R.A.; Bangalore, P.; Borhade, S.D.; Khandare, P.K. Synthesis and evaluation of novel 4-nitropyrrole-based 1,3,4-oxadiazole deriva-tives as antimicrobial and anti-tubercular agents. Eur. J. Med. Chem., 2013, 70, 49-58.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.039] [PMID: 24140916]
[25]
Du, Q.R.; Li, D.D.; Pi, Y.Z.; Li, J.R.; Sun, J.; Fang, F.; Zhong, W.Q.; Gong, H.B.; Zhu, H.L. Novel 1,3,4-oxadiazole thioether derivatives targeting thymidylate synthase as dual anticancer/antimicrobial agents. Bioorg. Med. Chem., 2013, 21(8), 2286-2297.
[http://dx.doi.org/10.1016/j.bmc.2013.02.008] [PMID: 23490159]
[26]
Stabile, P.; Lamonica, A.; Ribecai, A.; Castoldi, D.; Guercio, G.; Curcuruto, O. Mild and convenient one-pot synthesis of 1,3,4-oxadiazoles. Tetrahedron Lett., 2010, 51(37), 4801-4805.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.139]
[27]
Pitasse-Santos, P.; Sueth-Santiago, V.; Lima, M.E.F. 1,2,4- and 1,3,4-Oxadiazoles as scaffolds in the development of antiparasitic agents. J. Braz. Chem. Soc., 2018, 435-456.
[http://dx.doi.org/10.21577/0103-5053.20170208]
[28]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[29]
Tu, Y.; Tao, J.; Wang, F.; Liu, P.; Han, Z.; Li, Z.; Ma, Y.; Gu, Y. A novel peptide targeting gastrin releasing peptide receptor for pancreatic neoplasm detection. Biomater. Sci., 2020, 8(9), 2682-2693.
[http://dx.doi.org/10.1039/D0BM00162G] [PMID: 32266897]
[30]
Muhammed, M.T.; Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des., 2019, 93(1), 12-20.
[http://dx.doi.org/10.1111/cbdd.13388] [PMID: 30187647]
[31]
Uehara, H.; Hocart, S.J.; González, N.; Mantey, S.A.; Nakagawa, T.; Katsuno, T.; Coy, D.H.; Jensen, R.T. The molecular basis for high affinity of a universal ligand for human bombesin receptor (BnR) family members. Biochem. Pharmacol., 2012, 84(7), 936-948.
[http://dx.doi.org/10.1016/j.bcp.2012.07.010] [PMID: 22828605]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy