Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Cryptolepine Targets TOP2A and Inhibits Tumor Cell Proliferation in Breast Cancer Cells - An In vitro and In silico Study

Author(s): Umar Mehraj, Hina Qayoom, Shazia Shafi, Pzd Farhana, Syed Mohammed Basheeruddin Asdaq and Manzoor Ahmad Mir*

Volume 22, Issue 17, 2022

Published on: 30 June, 2022

Page: [3025 - 3037] Pages: 13

DOI: 10.2174/1871520622666220419135547

Price: $65

Abstract

Background: DNA Topoisomerase II Alpha (TOP2A), a protein-coding gene, is central to the replication process and has been found deregulated in several malignancies, including breast cancer. Several therapeutic regimens have been developed and approved for targeting TOP2A and have prolonged the survival of cancer patients. However, due to the inherent nature of the tumor cell to evolve, the earlier positive response turns into a refractory chemoresistance in breast cancer patients.

Objective: The study’s main objective was to analyze the expression pattern and prognostic significance of TOP2A in breast cancer patients and screen new therapeutic molecules targeting TOP2A.

Methods: We utilized an integrated bioinformatic approach to analyze the expression pattern, genetic alteration, immune association, and prognostic significance of TOP2A in breast cancer (BC) and screened natural compounds targeting TOP2A, and performed an in silico and an in vitro analysis.

Results: Our study showed that TOP2A is highly overexpressed in breast cancer tissues and overexpression of TOP2A correlates with worse overall survival (OS) and relapse-free survival (RFS). Moreover, TOP2A showed a high association with tumor stroma, particularly with myeloid-derived suppressor cells. Also, in silico and in vitro analysis revealed cryptolepine as a promising natural compound targeting TOP2A.

Conclusion: Cumulatively, this study signifies that TOP2A promotes breast cancer progression, and targeting TOP2A in combination with other therapeutic agents will significantly enhance the response of BC patients to therapy and reduce the development of chemoresistance.

Keywords: Breast cancer, prognosis, TOP2A, bioinformatics, gene ontology, cryptolepine.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[4]
Mehraj, U.; Dar, A.H.; Wani, N.A.; Mir, M.A. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother. Pharmacol., 2021, 87(2), 147-158.
[http://dx.doi.org/10.1007/s00280-020-04222-w] [PMID: 33420940]
[5]
Mehraj, U.; Qayoom, H.; Mir, M.A. Prognostic significance and targeting tumor-associated macrophages in cancer: New insights and fu-ture perspectives. Breast Cancer, 2021, 28(3), 539-555.
[http://dx.doi.org/10.1007/s12282-021-01231-2] [PMID: 33661479]
[6]
Turashvili, G.; Brogi, E. Tumor heterogeneity in breast cancer. Front. Med. (Lausanne), 2017, 4, 227.
[http://dx.doi.org/10.3389/fmed.2017.00227] [PMID: 29276709]
[7]
Arriola, E.; Marchio, C.; Tan, D.S.P.; Drury, S.C.; Lambros, M.B.; Natrajan, R.; Rodriguez-Pinilla, S.M.; Mackay, A.; Tamber, N.; Fen-wick, K.; Jones, C.; Dowsett, M.; Ashworth, A.; Reis-Filho, J.S. Genomic analysis of the HER2/TOP2A amplicon in breast cancer and breast cancer cell lines. Lab. Invest., 2008, 88(5), 491-503.
[http://dx.doi.org/10.1038/labinvest.2008.19] [PMID: 18332872]
[8]
Mueller, R.E.; Parkes, R.K.; Andrulis, I.; O’Malley, F.P. Amplification of the TOP2A gene does not predict high levels of topoisomerase II alpha protein in human breast tumor samples. Genes Chromosomes Cancer, 2004, 39(4), 288-297.
[http://dx.doi.org/10.1002/gcc.20008] [PMID: 14978790]
[9]
Ali, Y.; Abd Hamid, S. Human topoisomerase II alpha as a prognostic biomarker in cancer chemotherapy. Tumour Biol., 2016, 37(1), 47-55.
[http://dx.doi.org/10.1007/s13277-015-4270-9] [PMID: 26482620]
[10]
Pal, H.C.; Prasad, R.; Katiyar, S.K. Cryptolepine inhibits melanoma cell growth through coordinated changes in mitochondrial biogenesis, dynamics and metabolic tumor suppressor AMPKα1/2-LKB1. Sci. Rep., 2017, 7(1), 1-15.
[http://dx.doi.org/10.1038/s41598-017-01659-7] [PMID: 28127051]
[11]
Shnyder, S.D.; Wright, C.W. Recent advances in the chemistry and pharmacology of cryptolepine. Prog. Chem. Org. Nat. Prod., 2021, 115, 177-203.
[http://dx.doi.org/10.1007/978-3-030-64853-4_4] [PMID: 33797643]
[12]
Mir, M.A.; Hamdani, S.S.; Sheikh, B.A.; Mehraj, U. Recent advances in metabolites from medicinal plants in cancer prevention and treat-ment. Curr. Immunol. Rev., 2019, 15(2), 185-201.
[http://dx.doi.org/10.2174/1573395515666191102094330]
[13]
Mir, M.A.; Mehraj, U.; Sheikh, B.A. Recent advances in chemotherapeutic implications of deguelin: A plant-derived retinoid. Nat. Prod. J., 2021, 11(2), 169-181.
[http://dx.doi.org/10.2174/2210315510666200128125950]
[14]
Domfeh, S.A.; Narkwa, P.W.; Quaye, O.; Kusi, K.A.; Awandare, G.A.; Ansah, C.; Salam, A.; Mutocheluh, M. Cryptolepine inhibits hepa-tocellular carcinoma growth through inhibiting interleukin-6/STAT3 signalling. BMC Complementary Med. Ther., 2021, 21(1), 1-9.
[15]
Mehraj, U.; Ganai, R.A.; Macha, M.A.; Hamid, A.; Zargar, M.A.; Bhat, A.A.; Nasser, M.W.; Haris, M.; Batra, S.K.; Alshehri, B.; Al-Baradie, R.S.; Mir, M.A.; Wani, N.A. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities. Cell Oncol. (Dordr.), 2021, 44(6), 1209-1229.
[http://dx.doi.org/10.1007/s13402-021-00634-9] [PMID: 34528143]
[16]
Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia, 2004, 6(1), 1-6.
[http://dx.doi.org/10.1016/S1476-5586(04)80047-2] [PMID: 15068665]
[17]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[18]
Györffy, B.; Lanczky, A.; Eklund, A.C.; Denkert, C.; Budczies, J.; Li, Q.; Szallasi, Z. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treat., 2010, 123(3), 725-731.
[http://dx.doi.org/10.1007/s10549-009-0674-9] [PMID: 20020197]
[19]
Jézéquel, P.; Campone, M.; Gouraud, W.; Guérin-Charbonnel, C.; Leux, C.; Ricolleau, G.; Campion, L. bc-GenExMiner: An easy-to-use online platform for gene prognostic analyses in breast cancer. Breast Cancer Res. Treat., 2012, 131(3), 765-775.
[http://dx.doi.org/10.1007/s10549-011-1457-7] [PMID: 21452023]
[20]
Jézéquel, P.; Frénel, J.-S.; Campion, L.; Guérin-Charbonnel, C.; Gouraud, W.; Ricolleau, G.; Campone, M. bc-GenExMiner 3.0: New mining module computes breast cancer gene expression correlation analyses. Database, 2013, 2013
[21]
Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; McDermott, M.G.; Monteiro, C.D.; Gundersen, G.W.; Ma’ayan, A. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res., 2016, 44(W1), W90-7.
[http://dx.doi.org/10.1093/nar/gkw377] [PMID: 27141961]
[22]
Reimand, J.; Kull, M.; Peterson, H.; Hansen, J.; Vilo, J. g:Profiler-- a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res., 2007, 35(Web Server issue)(Suppl. 2), W193-200.
[http://dx.doi.org/10.1093/nar/gkm226] [PMID: 17478515]
[23]
Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[24]
Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E. AACR, 2012, 2, 401-404.
[25]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sand-er, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[26]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization sys-tem for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[27]
Liu, Y.; Grimm, M.; Dai, W.T.; Hou, M.C.; Xiao, Z-X.; Cao, Y. CB-Dock: A web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacol. Sin., 2020, 41(1), 138-144.
[http://dx.doi.org/10.1038/s41401-019-0228-6] [PMID: 31263275]
[28]
Cao, Y.; Li, L. Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinformatics, 2014, 30(12), 1674-1680.
[http://dx.doi.org/10.1093/bioinformatics/btu104] [PMID: 24563257]
[29]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[30]
Anastasiadi, Z.; Lianos, G.D.; Ignatiadou, E.; Harissis, H.V.; Mitsis, M. Breast cancer in young women: An overview. Updates Surg., 2017, 69(3), 313-317.
[http://dx.doi.org/10.1007/s13304-017-0424-1] [PMID: 28260181]
[31]
Benson, J.R.; Jatoi, I. The global breast cancer burden. Future Oncol., 2012, 8(6), 697-702.
[http://dx.doi.org/10.2217/fon.12.61] [PMID: 22764767]
[32]
Mir, M.A.; Mehraj, U. Double-crosser of the immune system: Macrophages in tumor progression and metastasis. Curr. Immunol. Rev., 2019, 15(2), 172-184.
[http://dx.doi.org/10.2174/1573395515666190611122818]
[33]
Mir, M.A.; Qayoom, H.; Mehraj, U.; Nisar, S.; Bhat, B.; Wani, N.A. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr. Cancer Drug Targets, 2020, 20(8), 586-602.
[http://dx.doi.org/10.2174/1570163817666200518081955] [PMID: 32418525]
[34]
Ito, F.; Furukawa, N.; Nakai, T. Evaluation of TOP2A as a predictive marker for endometrial cancer with taxane-containing adjuvant chemotherapy. Int. J. Gynecol. Cancer, 2016, 26(2), 325-330.
[http://dx.doi.org/10.1097/IGC.0000000000000607] [PMID: 26588239]
[35]
Erriquez, J.; Becco, P.; Olivero, M.; Ponzone, R.; Maggiorotto, F.; Ferrero, A.; Scalzo, M.S.; Canuto, E.M.; Sapino, A. Verdun di Can-togno, L.; Bruna, P.; Aglietta, M.; Di Renzo, M.F.; Valabrega, G. TOP2A gene copy gain predicts response of epithelial ovarian cancers to pegylated liposomal doxorubicin: TOP2A as marker of response to PLD in ovarian cancer. Gynecol. Oncol., 2015, 138(3), 627-633.
[http://dx.doi.org/10.1016/j.ygyno.2015.06.025] [PMID: 26100858]
[36]
Wang, J.; Xu, B.; Yuan, P.; Zhang, P.; Li, Q.; Ma, F.; Fan, Y. TOP2A amplification in breast cancer is a predictive marker of anthracycline-based neoadjuvant chemotherapy efficacy. Breast Cancer Res. Treat., 2012, 135(2), 531-537.
[http://dx.doi.org/10.1007/s10549-012-2167-5] [PMID: 22864769]
[37]
Zheng, H.; Li, X.; Chen, C.; Chen, J.; Sun, J.; Sun, S.; Jin, L.; Li, J.; Sun, S.; Wu, X. Quantum dot-based immunofluorescent imaging and quantitative detection of TOP2A and prognostic value in triple-negative breast cancer. Int. J. Nanomedicine, 2016, 11, 5519-5529.
[http://dx.doi.org/10.2147/IJN.S111594] [PMID: 27799773]
[38]
Di Leo, A.; Desmedt, C.; Bartlett, J.M.S.; Piette, F.; Ejlertsen, B.; Pritchard, K.I.; Larsimont, D.; Poole, C.; Isola, J.; Earl, H.; Mouridsen, H.; O’Malley, F.P.; Cardoso, F.; Tanner, M.; Munro, A.; Twelves, C.J.; Sotiriou, C.; Shepherd, L.; Cameron, D.; Piccart, M.J.; Buyse, M. HER2 and TOP2A as predictive markers for anthracycline-containing chemotherapy regimens as adjuvant treatment of breast cancer: A meta-analysis of individual patient data. Lancet Oncol., 2011, 12(12), 1134-1142.
[http://dx.doi.org/10.1016/S1470-2045(11)70231-5] [PMID: 21917518]
[39]
Rody, A.; Karn, T.; Ruckhäberle, E.; Müller, V.; Gehrmann, M.; Solbach, C.; Ahr, A.; Gätje, R.; Holtrich, U.; Kaufmann, M. Gene expres-sion of topoisomerase II alpha (TOP2A) by microarray analysis is highly prognostic in estrogen receptor (ER) positive breast cancer. Breast Cancer Res. Treat., 2009, 113(3), 457-466.
[http://dx.doi.org/10.1007/s10549-008-9964-x] [PMID: 18340528]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy