Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Role of Collagen Regulators in Cancer Treatment: A Comprehensive Review

Author(s): Tanuja Angre, Adarsh Kumar, Ankit Kumar Singh, Suresh Thareja and Pradeep Kumar*

Volume 22, Issue 17, 2022

Published on: 07 July, 2022

Page: [2956 - 2984] Pages: 29

DOI: 10.2174/1871520622666220501162351

Price: $65

Abstract

Collagen is the most important structural protein and also the main component of the extra-cellular matrix (ECM). It plays a role in tumor progression. Collagen can be regulated by altering its biosynthesis pathway through various signaling pathways, receptors, and genes. The activity of cancer cells can also be regulated by other ECM components like metalloproteinases, hyaluronic acid, fibronectin, and so on. Hypoxia is also one of the conditions that lead to cancer progression by stimulating the expression of procollagen lysine as a collagen crosslinker, which increases the size of collagen fibres promoting cancer spread. The collagen content in cancerous cells leads to resistance to chemotherapy. So, to reduce this resistance, some collagen-regulating therapies are introduced, including inhibiting its biosynthesis, disturbing cancer cell signaling pathway, mediating ECM components, and directly utilizing collagenase. This study is an effort to compile the strategies reported to control the collagen level and different collagen inhibitors reported so far. More research is needed in this area. Growing understanding of collagen’s structural features and its role in cancer progression will aid in the advancement of newer chemotherapies.

Keywords: Collagen, ECM, tumour microenvironment, signalling pathways, therapy resistance, collagen remodeling.

Graphical Abstract

[1]
Nagai, H.; Kim, Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis., 2017, 9(3), 448-451.
[http://dx.doi.org/10.21037/jtd.2017.02.75] [PMID: 28449441]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Gu, L.; Shan, T.; Ma, Y.X.; Tay, F.R.; Niu, L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol., 2019, 37(5), 464-491.
[http://dx.doi.org/10.1016/j.tibtech.2018.10.007] [PMID: 30447877]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Chow, A.Y. Cell cycle control by oncogenes and tumor suppressors: Driving the transformation of normal cells into cancerous cells. New Educator, 2010, 3(9), 7.
[6]
Gelse, K.; Pöschl, E.; Aigner, T. Collagens-structure, function, and biosynthesis. Adv. Drug Deliv. Rev., 2003, 55(12), 1531-1546.
[http://dx.doi.org/10.1016/j.addr.2003.08.002] [PMID: 14623400]
[7]
Xu, S.; Xu, H.; Wang, W.; Li, S.; Li, H.; Li, T.; Zhang, W.; Yu, X.; Liu, L. The role of collagen in cancer: From bench to bedside. J. Transl. Med., 2019, 17(1), 309.
[http://dx.doi.org/10.1186/s12967-019-2058-1] [PMID: 31521169]
[8]
Karsdal, M.A.; Nielsen, S.H.; Leeming, D.J.; Langholm, L.L.; Nielsen, M.J.; Manon-Jensen, T.; Siebuhr, A.; Gudmann, N.S.; Rønnow, S.; Sand, J.M.; Daniels, S.J.; Mortensen, J.H.; Schuppan, D. The good and the bad collagens of fibrosis - Their role in signaling and organ function. Adv. Drug Deliv. Rev., 2017, 121, 43-56.
[http://dx.doi.org/10.1016/j.addr.2017.07.014] [PMID: 28736303]
[9]
Khawar, I.A.; Kim, J.H.; Kuh, H-J. Improving drug delivery to solid tumors: Priming the tumor microenvironment. J. Control. Release, 2015, 201, 78-89.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.018] [PMID: 25526702]
[10]
Whatcott, C.J.; Han, H.; Posner, R.G.; Hostetter, G.; Von Hoff, D.D. Targeting the tumor microenvironment in cancer: Why hyaluronidase deserves a second look. Cancer Discov., 2011, 1(4), 291-296.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0136] [PMID: 22053288]
[11]
Chen, Y-Q.; Kuo, J-C.; Wei, M-T.; Chen, Y-C.; Yang, M-H.; Chiou, A. Early stage mechanical remodeling of collagen surrounding head and neck squamous cell carcinoma spheroids correlates strongly with their invasion capability. Acta Biomater., 2019, 84, 280-292.
[http://dx.doi.org/10.1016/j.actbio.2018.11.046] [PMID: 30500449]
[12]
Dolor, A.; Szoka, F.C., Jr Digesting a path forward: The utility of collagenase tumor treatment for improved drug delivery. Mol. Pharm., 2018, 15(6), 2069-2083.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00319] [PMID: 29767984]
[13]
Borza, C.M.; Pozzi, A. Discoidin domain receptors in disease. Matrix Biol., 2014, 34, 185-192.
[http://dx.doi.org/10.1016/j.matbio.2013.12.002] [PMID: 24361528]
[14]
Huang, J.; Zhang, L.; Wan, D.; Zhou, L.; Zheng, S.; Lin, S.; Qiao, Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct. Target. Ther., 2021, 6(1), 153.
[http://dx.doi.org/10.1038/s41392-021-00544-0] [PMID: 33888679]
[15]
Gattazzo, F.; Urciuolo, A.; Bonaldo, P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta, 2014, 1840(8), 2506-2519.
[http://dx.doi.org/10.1016/j.bbagen.2014.01.010] [PMID: 24418517]
[16]
Zhang, H.; Xu, R. A novel function of membrane-associated collagen in cancer metastasis. Oncotarget, 2019, 10(27), 2577-2578.
[http://dx.doi.org/10.18632/oncotarget.26821] [PMID: 31080548]
[17]
Nimni, M.E. Collagen: Structure, function, and metabolism in normal and fibrotic tissues. In: Seminars in Arthritis and Rheumatism; Elsevier, 1983; pp. 1-86.
[18]
Qi, Y.; Xu, R. Roles of PLODs in collagen synthesis and cancer progression. Front. Cell Dev. Biol., 2018, 6, 66.
[http://dx.doi.org/10.3389/fcell.2018.00066] [PMID: 30003082]
[19]
Myllyharju, J. Intracellular post-translational modifications of collagens; Collagen, 2005, pp. 115-147.
[20]
Martins Cavaco, A.C.; Dâmaso, S.; Casimiro, S.; Costa, L. Collagen biology making inroads into prognosis and treatment of cancer pro-gression and metastasis. Cancer Metastasis Rev., 2020, 39(3), 603-623.
[http://dx.doi.org/10.1007/s10555-020-09888-5] [PMID: 32447477]
[21]
Martinek, N.; Shahab, J.; Sodek, J.; Ringuette, M. Is SPARC an evolutionarily conserved collagen chaperone? J. Dent. Res., 2007, 86(4), 296-305.
[http://dx.doi.org/10.1177/154405910708600402] [PMID: 17384023]
[22]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne), 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[23]
Wang, Q.; Yu, J. MiR-129-5p suppresses gastric cancer cell invasion and proliferation by inhibiting COL1A1. Biochem. Cell Biol., 2018, 96(1), 19-25.
[http://dx.doi.org/10.1139/bcb-2016-0254] [PMID: 28482162]
[24]
Yan, B.; Guo, Q.; Fu, F.J.; Wang, Z.; Yin, Z.; Wei, Y.B.; Yang, J.R. The role of miR-29b in cancer: Regulation, function, and signaling. OncoTargets Ther., 2015, 8, 539-548.
[PMID: 25767398]
[25]
Wang, Y-X.; Zhu, H-F.; Zhang, Z-Y.; Ren, F.; Hu, Y-H. MiR-384 inhibits the proliferation of colorectal cancer by targeting AKT3. Cancer Cell Int., 2018, 18(1), 124.
[http://dx.doi.org/10.1186/s12935-018-0628-6] [PMID: 30186040]
[26]
Pihlajaniemi, T.; Myllylä, R.; Kivirikko, K.I. Prolyl 4-hydroxylase and its role in collagen synthesis. J. Hepatol., 1991, 13(Suppl. 3), S2-S7.
[http://dx.doi.org/10.1016/0168-8278(91)90002-S] [PMID: 1667665]
[27]
D’Aniello, C.; Patriarca, E.J.; Phang, J.M.; Minchiotti, G. Proline metabolism in tumor growth and metastatic progression. Front. Oncol., 2020, 10, 776.
[http://dx.doi.org/10.3389/fonc.2020.00776] [PMID: 32500033]
[28]
D’Aniello, C.; Cermola, F.; Palamidessi, A.; Wanderlingh, L.G.; Gagliardi, M.; Migliaccio, A.; Varrone, F.; Casalino, L.; Matarazzo, M.R.; De Cesare, D.; Scita, G.; Patriarca, E.J.; Minchiotti, G. Collagen Prolyl Hydroxylation-Dependent metabolic perturbation governs epigenetic remodeling and mesenchymal transition in pluripotent and cancer cells. Cancer Res., 2019, 79(13), 3235-3250.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2070] [PMID: 31061065]
[29]
Chen, N.; Cui, D.; Wang, Q.; Wen, Z.; Finkelman, R.D.; Welty, D. In vitro drug-drug interactions of budesonide: Inhibition and induction of transporters and cytochrome P450 enzymes. Xenobiotica, 2018, 48(6), 637-646.
[http://dx.doi.org/10.1080/00498254.2017.1344911] [PMID: 28730856]
[30]
Murray, J.C.; Lindberg, K.A.; Pinnell, S.R. In vitro inhibition of collagen cross links by catechol analogs. J. Invest. Dermatol., 1977, 68(3), 146-150.
[http://dx.doi.org/10.1111/1523-1747.ep12492467] [PMID: 14215]
[31]
Lim, Y.; Shin, S.H.; Lee, M.H.; Malakhova, M.; Kurinov, I.; Wu, Q.; Xu, J.; Jiang, Y.; Dong, Z.; Liu, K.; Lee, K.Y.; Bae, K.B.; Choi, B.Y.; Deng, Y.; Bode, A.; Dong, Z. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer. Oncotarget, 2016, 7(23), 35001-35014.
[http://dx.doi.org/10.18632/oncotarget.9223] [PMID: 27167001]
[32]
Moon, J.Y.; Ediriweera, M.K.; Ryu, J.Y.; Kim, H.Y.; Cho, S.K. Catechol enhances chemo and radio sensitivity by targeting AMPK/Hippo signaling in pancreatic cancer cells. Oncol. Rep., 2021, 45(3), 1133-1141.
[http://dx.doi.org/10.3892/or.2021.7924] [PMID: 33650657]
[33]
Tian, X.; Fang, J. Current perspectives on histone demethylases. Acta Biochim. Biophys. Sin. (Shanghai), 2007, 39(2), 81-88.
[http://dx.doi.org/10.1111/j.1745-7270.2007.00272.x] [PMID: 17277881]
[34]
Krishnan, S.; Horowitz, S.; Trievel, R.C. Structure and function of histone H3 lysine 9 methyltransferases and demethylases. ChemBioChem, 2011, 12(2), 254-263.
[http://dx.doi.org/10.1002/cbic.201000545] [PMID: 21243713]
[35]
Hamada, S.; Kim, T-D.; Suzuki, T.; Itoh, Y.; Tsumoto, H.; Nakagawa, H.; Janknecht, R.; Miyata, N. Synthesis and activity of N-oxalylglycine and its derivatives as Jumonji C-domain-containing histone lysine demethylase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(10), 2852-2855.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.098] [PMID: 19359167]
[36]
Hamada, S.; Suzuki, T.; Mino, K.; Koseki, K.; Oehme, F.; Flamme, I.; Ozasa, H.; Itoh, Y.; Ogasawara, D.; Komaarashi, H.; Kato, A.; Tsu-moto, H.; Nakagawa, H.; Hasegawa, M.; Sasaki, R.; Mizukami, T.; Miyata, N. Design, synthesis, enzyme-inhibitory activity, and effect on human cancer cells of a novel series of jumonji domain-containing protein 2 histone demethylase inhibitors. J. Med. Chem., 2010, 53(15), 5629-5638.
[http://dx.doi.org/10.1021/jm1003655] [PMID: 20684604]
[37]
Colunga Biancatelli, R.M.L.; Solopov, P.; Gregory, B.; Catravas, J.D. HSP90 inhibition and modulation of the proteome: Therapeutical implications for Idiopathic Pulmonary Fibrosis (IPF). Int. J. Mol. Sci., 2020, 21(15), 5286.
[http://dx.doi.org/10.3390/ijms21155286] [PMID: 32722485]
[38]
Neckers, L. Heat shock protein 90: The cancer chaperone. J. Biosci., 2007, 32(3), 517-530.
[http://dx.doi.org/10.1007/s12038-007-0051-y] [PMID: 17536171]
[39]
Das, J.K.; Xiong, X.; Ren, X.; Yang, J-M.; Song, J. Heat shock proteins in cancer immunotherapy. J. Oncol., 2019, 2019, 3267207.
[http://dx.doi.org/10.1155/2019/3267207] [PMID: 31885572]
[40]
Shimamura, T.; Perera, S.A.; Foley, K.P.; Sang, J.; Rodig, S.J.; Inoue, T.; Chen, L.; Li, D.; Carretero, J.; Li, Y-C.; Sinha, P.; Carey, C.D.; Borgman, C.L.; Jimenez, J.P.; Meyerson, M.; Ying, W.; Barsoum, J.; Wong, K.K.; Shapiro, G.I. Ganetespib (STA-9090), a nongeldanamy-cin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin. Cancer Res., 2012, 18(18), 4973-4985.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2967] [PMID: 22806877]
[41]
Dong, H.; Luo, L.; Zou, M.; Huang, C.; Wan, X.; Hu, Y.; Le, Y.; Zhao, H.; Li, W.; Zou, F.; Cai, S. Blockade of extracellular heat shock protein 90α by 1G6-D7 attenuates pulmonary fibrosis through inhibiting ERK signaling. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 313(6), L1006-L1015.
[http://dx.doi.org/10.1152/ajplung.00489.2016] [PMID: 28860147]
[42]
Zhang, X.; Zhang, X.; Huang, W.; Ge, X. The role of heat shock proteins in the regulation of fibrotic diseases. Biomed. Pharmacother., 2021, 135, 111067.
[http://dx.doi.org/10.1016/j.biopha.2020.111067] [PMID: 33383375]
[43]
Ge, J.; Normant, E.; Porter, J.R.; Ali, J.A.; Dembski, M.S.; Gao, Y.; Georges, A.T.; Grenier, L.; Pak, R.H.; Patterson, J.; Sydor, J.R.; Tib-bitts, T.T.; Tong, J.K.; Adams, J.; Palombella, V.J. Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-amino-17-demethoxygeldanamycin as potent, water-soluble inhibitors of Hsp90. J. Med. Chem., 2006, 49(15), 4606-4615.
[http://dx.doi.org/10.1021/jm0603116] [PMID: 16854066]
[44]
Lang, S.A.; Klein, D.; Moser, C.; Gaumann, A.; Glockzin, G.; Dahlke, M.H.; Dietmaier, W.; Bolder, U.; Schlitt, H.J.; Geissler, E.K.; Stoeltzing, O. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol. Cancer Ther., 2007, 6(3), 1123-1132.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0628] [PMID: 17363505]
[45]
Ogawa, Y.; Razzaque, M.S.; Kameyama, K.; Hasegawa, G.; Shimmura, S.; Kawai, M.; Okamoto, S.; Ikeda, Y.; Tsubota, K.; Kawakami, Y.; Kuwana, M. Role of heat shock protein 47, a collagen-binding chaperone, in lacrimal gland pathology in patients with cGVHD. Invest. Ophthalmol. Vis. Sci., 2007, 48(3), 1079-1086.
[http://dx.doi.org/10.1167/iovs.06-0601] [PMID: 17325149]
[46]
Chen, J.J.; Zhao, S.; Cen, Y.; Liu, X.X.; Yu, R.; Wu, D.M. Effect of heat shock protein 47 on collagen accumulation in keloid fibroblast cells. Br. J. Dermatol., 2007, 156(6), 1188-1195.
[http://dx.doi.org/10.1111/j.1365-2133.2007.07898.x] [PMID: 17535221]
[47]
Yang, Y.; Ye, Y.; Lin, X.; Wu, K.; Yu, M. Inhibition of pirfenidone on TGF-beta2 induced proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cells line SRA01/04. PLoS One, 2013, 8(2), e56837.
[http://dx.doi.org/10.1371/journal.pone.0056837] [PMID: 23437252]
[48]
Li, C.; Rezov, V.; Joensuu, E.; Vartiainen, V.; Rönty, M.; Yin, M.; Myllärniemi, M.; Koli, K. Pirfenidone decreases mesothelioma cell proliferation and migration via inhibition of ERK and AKT and regulates mesothelioma tumor microenvironment in vivo. Sci. Rep., 2018, 8(1), 10070.
[http://dx.doi.org/10.1038/s41598-018-28297-x] [PMID: 29968778]
[49]
Ma, Z.; Pan, Y.; Huang, W.; Yang, Y.; Wang, Z.; Li, Q.; Zhao, Y.; Zhang, X.; Shen, Z. Synthesis and biological evaluation of the pirfenidone derivatives as antifibrotic agents. Bioorg. Med. Chem. Lett., 2014, 24(1), 220-223.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.038] [PMID: 24332090]
[50]
Duarte, B.D.P.; Bonatto, D. The heat shock protein 47 as a potential biomarker and a therapeutic agent in cancer research. J. Cancer Res. Clin. Oncol., 2018, 144(12), 2319-2328.
[http://dx.doi.org/10.1007/s00432-018-2739-9] [PMID: 30128672]
[51]
Gelosa, P.; Sevin, G.; Pignieri, A.; Budelli, S.; Castiglioni, L.; Blanc-Guillemaud, V.; Lerond, L.; Tremoli, E.; Sironi, L. Terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, prevents hypertensive vascular hypertrophy and fibrosis. Am. J. Physiol. Heart Circ. Physiol., 2011, 300(3), H762-H768.
[http://dx.doi.org/10.1152/ajpheart.00880.2010] [PMID: 21148758]
[52]
Ito, S.; Ogawa, K.; Takeuchi, K.; Takagi, M.; Yoshida, M.; Hirokawa, T.; Hirayama, S.; Shin-Ya, K.; Shimada, I.; Doi, T.; Goshima, N.; Natsume, T.; Nagata, K. A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis. J. Biol. Chem., 2017, 292(49), 20076-20085.
[http://dx.doi.org/10.1074/jbc.M117.815936] [PMID: 29025875]
[53]
Maurer, B.; Stanczyk, J.; Jüngel, A.; Akhmetshina, A.; Trenkmann, M.; Brock, M.; Kowal-Bielecka, O.; Gay, R.E.; Michel, B.A.; Distler, J.H.; Gay, S.; Distler, O. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum., 2010, 62(6), 1733-1743.
[http://dx.doi.org/10.1002/art.27443] [PMID: 20201077]
[54]
Cui, J.; Placzek, W.J. Post-transcriptional regulation of anti-apoptotic BCL2 family members. Int. J. Mol. Sci., 2018, 19(1), 308.
[http://dx.doi.org/10.3390/ijms19010308] [PMID: 29361709]
[55]
Xiao, Q.; Ge, G. Lysyl oxidase, extracellular matrix remodeling and cancer metastasis. Cancer Microenviron., 2012, 5(3), 261-273.
[http://dx.doi.org/10.1007/s12307-012-0105-z] [PMID: 22528876]
[56]
Kumari, S.; Panda, T.K.; Pradhan, T. Lysyl oxidase: Its diversity in health and diseases. Indian J. Clin. Biochem., 2017, 32(2), 134-141.
[http://dx.doi.org/10.1007/s12291-016-0576-7] [PMID: 28428687]
[57]
Bondareva, A.; Downey, C.M.; Ayres, F.; Liu, W.; Boyd, S.K.; Hallgrimsson, B.; Jirik, F.R. The lysyl oxidase inhibitor, β-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One, 2009, 4(5), e5620.
[http://dx.doi.org/10.1371/journal.pone.0005620] [PMID: 19440335]
[58]
Tang, H.; Leung, L.; Saturno, G.; Viros, A.; Smith, D.; Di Leva, G.; Morrison, E.; Niculescu-Duvaz, D.; Lopes, F.; Johnson, L.; Dhomen, N.; Springer, C.; Marais, R. Lysyl oxidase drives tumour progression by trapping EGF receptors at the cell surface. Nat. Commun., 2017, 8(1), 14909.
[http://dx.doi.org/10.1038/ncomms14909] [PMID: 28416796]
[59]
Itoh, Y.; Nagase, H.; Nagase, H. Matrix metalloproteinases in cancer. Essays Biochem., 2002, 38, 21-36.
[http://dx.doi.org/10.1042/bse0380021] [PMID: 12463159]
[60]
Lee, J-Y.; Kim, H.S.; Song, Y-S. Genistein as a potential anticancer agent against ovarian cancer. J. Tradit. Complement. Med., 2012, 2(2), 96-104.
[http://dx.doi.org/10.1016/S2225-4110(16)30082-7] [PMID: 24716121]
[61]
Huang, X.; Chen, S.; Xu, L.; Liu, Y.; Deb, D.K.; Platanias, L.C.; Bergan, R.C. Genistein inhibits p38 map kinase activation, matrix metallo-proteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res., 2005, 65(8), 3470-3478.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2807] [PMID: 15833883]
[62]
Peterson, T.G.; Ji, G-P.; Kirk, M.; Coward, L.; Falany, C.N.; Barnes, S. Metabolism of the isoflavones genistein and biochanin A in human breast cancer cell lines. American J. Clin. Nutr., 1998, 68(6)(Suppl.), 1505S-1511S.
[http://dx.doi.org/10.1093/ajcn/68.6.1505S] [PMID: 9848525]
[63]
Coxon, F.P.; Thompson, K.; Rogers, M.J. Recent advances in understanding the mechanism of action of bisphosphonates. Curr. Opin. Pharmacol., 2006, 6(3), 307-312.
[http://dx.doi.org/10.1016/j.coph.2006.03.005] [PMID: 16650801]
[64]
Senaratne, S.G.; Pirianov, G.; Mansi, J.L.; Arnett, T.R.; Colston, K.W. Bisphosphonates induce apoptosis in human breast cancer cell lines. Br. J. Cancer, 2000, 82(8), 1459-1468.
[http://dx.doi.org/10.1054/bjoc.1999.1131] [PMID: 10780527]
[65]
KaluĦ, R; Gómez-Ruiz, S Anticancer activity of organogallium (III) complexes in colon cancer cells. Anticancer Agents Med. Chem. (Formerly Current Medicinal Chemistry-Anticancer Agents), 2016, 16(3), 359-364.
[66]
Mohsen, A.; Collery, P.; Garnotel, R.; Brassart, B.; Etique, N.; Mohamed Sabry, G.; Elsherif Hassan, R.; Jeannesson, P.; Desmaële, D.; Morjani, H. A new gallium complex inhibits tumor cell invasion and matrix metalloproteinase MMP-14 expression and activity. Metallomics, 2017, 9(8), 1176-1184.
[http://dx.doi.org/10.1039/C7MT00049A] [PMID: 28765844]
[67]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098.
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[68]
Liu, S.; Chen, S.; Zeng, J. TGF β signaling: A complex role in tumorigenesis. (Review). Mol. Med. Rep., 2018, 17(1), 699-704.
[PMID: 29115550]
[69]
de Gramont, A.; Faivre, S.; Raymond, E. Novel TGF-β inhibitors ready for prime time in onco-immunology. OncoImmunology, 2016, 6(1), e1257453.
[http://dx.doi.org/10.1080/2162402X.2016.1257453] [PMID: 28197376]
[70]
Herbertz, S.; Sawyer, J.S.; Stauber, A.J.; Gueorguieva, I.; Driscoll, K.E.; Estrem, S.T.; Cleverly, A.L.; Desaiah, D.; Guba, S.C.; Benhadji, K.A.; Slapak, C.A.; Lahn, M.M. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transform-ing growth factor-beta signaling pathway. Drug Des. Devel. Ther., 2015, 9, 4479-4499.
[PMID: 26309397]
[71]
Ciardiello, D.; Elez, E.; Tabernero, J.; Seoane, J. Clinical development of therapies targeting TGFβ: Current knowledge and future perspec-tives. Ann. Oncol., 2020, 31(10), 1336-1349.
[http://dx.doi.org/10.1016/j.annonc.2020.07.009] [PMID: 32710930]
[72]
Schlingensiepen, K.H.; Jaschinski, F.; Lang, S.A.; Moser, C.; Geissler, E.K.; Schlitt, H.J.; Kielmanowicz, M.; Schneider, A. Transforming growth factor-beta 2 gene silencing with trabedersen (AP 12009) in pancreatic cancer. Cancer Sci., 2011, 102(6), 1193-1200.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01917.x] [PMID: 21366804]
[73]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[74]
Hashemzehi, M.; Rahmani, F.; Khoshakhlagh, M.; Avan, A.; Asgharzadeh, F.; Barneh, F.; Moradi-Marjaneh, R.; Soleimani, A.; Fiuji, H.; Ferns, G.A.; Ryzhikov, M.; Jafari, M.; Khazaei, M.; Hassanian, S.M. Angiotensin receptor blocker Losartan inhibits tumor growth of colo-rectal cancer. EXCLI J., 2021, 20, 506-521.
[PMID: 33883980]
[75]
Yoshiji, H.; Kuriyama, S.; Fukui, H. Perindopril: Possible use in cancer therapy. Anticancer Drugs, 2002, 13(3), 221-228.
[http://dx.doi.org/10.1097/00001813-200203000-00003] [PMID: 11984065]
[76]
Yoshiji, H.; Kuriyama, S.; Kawata, M.; Yoshii, J.; Ikenaka, Y.; Noguchi, R.; Nakatani, T.; Tsujinoue, H.; Fukui, H. The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: Possible role of the vascular endothelial growth fac-tor. Clin. Cancer Res., 2001, 7(4), 1073-1078.
[PMID: 11309359]
[77]
Ziello, J.E.; Jovin, I.S.; Huang, Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med., 2007, 80(2), 51-60.
[PMID: 18160990]
[78]
Lewis, D.M.; Pruitt, H.; Jain, N.; Ciccaglione, M.; McCaffery, J.M.; Xia, Z.; Weber, K.; Eisinger-Mathason, T.S.K.; Gerecht, S. A feedback loop between hypoxia and matrix stress relaxation increases oxygen-axis migration and metastasis in sarcoma. Cancer Res., 2019, 79(8), 1981-1995.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1984] [PMID: 30777851]
[79]
Cortes, E.; Lachowski, D.; Robinson, B.; Sarper, M.; Teppo, J.S.; Thorpe, S.D.; Lieberthal, T.J.; Iwamoto, K.; Lee, D.A.; Okada-Hatakeyama, M.; Varjosalo, M.T.; Del Río Hernández, A.E. Tamoxifen mechanically reprograms the tumor microenvironment via HIF-1A and reduces cancer cell survival. EMBO Rep., 2019, 20(1), e46557.
[http://dx.doi.org/10.15252/embr.201846557] [PMID: 30538116]
[80]
Leung, E.Y.; Askarian-Amiri, M.E.; Singleton, D.C.; Ferraro-Peyret, C.; Joseph, W.R.; Finlay, G.J.; Broom, R.J.; Kakadia, P.M.; Bohlander, S.K.; Marshall, E.; Baguley, B.C. Derivation of breast cancer cell lines under physiological (5%) oxygen concentrations. Front. Oncol., 2018, 8, 425.
[http://dx.doi.org/10.3389/fonc.2018.00425] [PMID: 30370249]
[81]
Shin, J.; Lee, H-J.; Jung, D-B.; Jung, J.H.; Lee, H-J.; Lee, E-O.; Lee, S.G.; Shim, B.S.; Choi, S.H.; Ko, S.G.; Ahn, K.S.; Jeong, S.J.; Kim, S.H. Suppression of STAT3 and HIF-1 alpha mediates anti-angiogenic activity of betulinic acid in hypoxic PC-3 prostate cancer cells. PLoS One, 2011, 6(6), e21492.
[http://dx.doi.org/10.1371/journal.pone.0021492] [PMID: 21731766]
[82]
Ali-Seyed, M.; Jantan, I.; Vijayaraghavan, K.; Bukhari, S.N.A. Betulinic acid: Recent advances in chemical modifications, effective deliv-ery, and molecular mechanisms of a promising anticancer therapy. Chem. Biol. Drug Des., 2016, 87(4), 517-536.
[http://dx.doi.org/10.1111/cbdd.12682] [PMID: 26535952]
[83]
Król, S.K. Kiełbus, M.; Rivero-Müller, A.; Stepulak, A. Comprehensive review on betulin as a potent anticancer agent. BioMed Res. Int., 2015, 2015, 584189.
[http://dx.doi.org/10.1155/2015/584189] [PMID: 25866796]
[84]
Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer, 2018, 17(1), 58.
[http://dx.doi.org/10.1186/s12943-018-0782-4] [PMID: 29455648]
[85]
Schlessinger, J.; Ullrich, A. Growth factor signaling by receptor tyrosine kinases. Neuron, 1992, 9(3), 383-391.
[http://dx.doi.org/10.1016/0896-6273(92)90177-F] [PMID: 1326293]
[86]
Pawson, T.; Gish, G.D.; Nash, P. SH2 domains, interaction modules and cellular wiring. Trends Cell Biol., 2001, 11(12), 504-511.
[http://dx.doi.org/10.1016/S0962-8924(01)02154-7] [PMID: 11719057]
[87]
Nissen, N.I.; Kehlet, S.; Boisen, M.K.; Liljefors, M.; Jensen, C.; Johansen, A.Z.; Johansen, J.S.; Erler, J.T.; Karsdal, M.; Mortensen, J.H.; Høye, A.; Willumsen, N. Prognostic value of blood-based fibrosis biomarkers in patients with metastatic colorectal cancer receiving chemotherapy and bevacizumab. Sci. Rep., 2021, 11(1), 865.
[http://dx.doi.org/10.1038/s41598-020-79608-0] [PMID: 33441622]
[88]
Kazazi-Hyseni, F.; Beijnen, J.H.; Schellens, J.H. Bevacizumab. Oncologist, 2010, 15(8), 819-825.
[http://dx.doi.org/10.1634/theoncologist.2009-0317] [PMID: 20688807]
[89]
Yang, J.; Wang, Q.; Qiao, C.; Lin, Z.; Li, X.; Huang, Y.; Zhou, T.; Li, Y.; Shen, B.; Lv, M.; Feng, J. Potent anti-angiogenesis and anti-tumor activity of a novel human anti-VEGF antibody, MIL60. Cell. Mol. Immunol., 2014, 11(3), 285-293.
[http://dx.doi.org/10.1038/cmi.2014.6] [PMID: 24608894]
[90]
Olsson, P.O.; Gustafsson, R. In ’t Zandt, R.; Friman, T.; Maccarana, M.; Tykesson, E.; Oldberg, Å.; Rubin, K.; Kalamajski, S. The tyro-sine kinase inhibitor Imatinib augments extracellular fluid exchange and reduces average collagen fibril diameter in experimental carcino-ma. Mol. Cancer Ther., 2016, 15(10), 2455-2464.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0026] [PMID: 27474147]
[91]
Adrián, F.J.; Ding, Q.; Sim, T.; Velentza, A.; Sloan, C.; Liu, Y.; Zhang, G.; Hur, W.; Ding, S.; Manley, P.; Mestan, J.; Fabbro, D.; Gray, N.S. Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat. Chem. Biol., 2006, 2(2), 95-102.
[http://dx.doi.org/10.1038/nchembio760] [PMID: 16415863]
[92]
Canning, P.; Tan, L.; Chu, K.; Lee, S.W.; Gray, N.S.; Bullock, A.N. Structural mechanisms determining inhibition of the collagen receptor DDR1 by selective and multi-targeted type II kinase inhibitors. J. Mol. Biol., 2014, 426(13), 2457-2470.
[http://dx.doi.org/10.1016/j.jmb.2014.04.014] [PMID: 24768818]
[93]
Gozgit, J.M.; Wong, M.J.; Moran, L.; Wardwell, S.; Mohemmad, Q.K.; Narasimhan, N.I.; Shakespeare, W.C.; Wang, F.; Clackson, T.; Rive-ra, V.M. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol. Cancer Ther., 2012, 11(3), 690-699.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0450] [PMID: 22238366]
[94]
Stein, B.; Smith, B.D. Treatment options for patients with chronic myeloid leukemia who are resistant to or unable to tolerate imatinib. Clin. Ther., 2010, 32(5), 804-820.
[http://dx.doi.org/10.1016/j.clinthera.2010.05.003] [PMID: 20685492]
[95]
Payne, L.S.; Huang, P.H. Discoidin domain receptor 2 signaling networks and therapy in lung cancer. J. Thorac. Oncol., 2014, 9(6), 900-904.
[http://dx.doi.org/10.1097/JTO.0000000000000164] [PMID: 24828669]
[96]
Huang, F.; Reeves, K.; Han, X.; Fairchild, C.; Platero, S.; Wong, T.W.; Lee, F.; Shaw, P.; Clark, E. Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: Rationale for patient selection. Cancer Res., 2007, 67(5), 2226-2238.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3633] [PMID: 17332353]
[97]
Siveen, K.S.; Sikka, S.; Surana, R.; Dai, X.; Zhang, J.; Kumar, A.P.; Tan, B.K.; Sethi, G.; Bishayee, A. Targeting the STAT3 signaling path-way in cancer: Role of synthetic and natural inhibitors. Biochim. Biophys. Acta, 2014, 1845(2), 136-154.
[PMID: 24388873]
[98]
Velichko, S.; Wagner, T.C.; Turkson, J.; Jove, R.; Croze, E. STAT3 activation by type I interferons is dependent on specific tyrosines located in the cytoplasmic domain of interferon receptor chain 2c. Activation of multiple STATS proceeds through the redundant usage of two tyrosine residues. J. Biol. Chem., 2002, 277(38), 35635-35641.
[http://dx.doi.org/10.1074/jbc.M204578200] [PMID: 12105218]
[99]
Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer, 2009, 9(11), 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[100]
Mangnall, D.; Bird, N.C.; Majeed, A.W. The molecular physiology of liver regeneration following partial hepatectomy. Liver Int., 2003, 23(2), 124-138.
[http://dx.doi.org/10.1034/j.1600-0676.2003.00812.x] [PMID: 12654135]
[101]
Zhou, Z.; Gushiken, F.C.; Bolgiano, D.; Salsbery, B.J.; Aghakasiri, N.; Jing, N.; Wu, X.; Vijayan, K.V.; Rumbaut, R.E.; Adachi, R. STAT3 regulates collagen-induced platelet aggregation independent of its transcription factor activity. Circulation, 2013, 127(4), 476.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.132126] [PMID: 23266857]
[102]
Jiang, H.; Liu, X.; Knolhoff, B.L.; Hegde, S.; Lee, K.B.; Jiang, H.; Fields, R.C.; Pachter, J.A.; Lim, K-H.; DeNardo, D.G. Development of resistance to FAK inhibition in pancreatic cancer is linked to stromal depletion. Gut, 2020, 69(1), 122-132.
[http://dx.doi.org/10.1136/gutjnl-2018-317424] [PMID: 31076405]
[103]
Tolosa, E.J.; Fernández-Zapico, M.E. Targeting tumour microenvironment, a FAKtual challenge in pancreatic cancer. Gut, 2020, 69(1), 1-2.
[http://dx.doi.org/10.1136/gutjnl-2019-318962] [PMID: 31582402]
[104]
Tanjoni, I.; Walsh, C.; Uryu, S.; Tomar, A.; Nam, J-O.; Mielgo, A.; Lim, S-T.; Liang, C.; Koenig, M.; Sun, C.; Patel, N.; Kwok, C.; McMahon, G.; Stupack, D.G.; Schlaepfer, D.D. PND-1186 FAK inhibitor selectively promotes tumor cell apoptosis in three-dimensional environments. Cancer Biol. Ther., 2010, 9(10), 764-777.
[http://dx.doi.org/10.4161/cbt.9.10.11434] [PMID: 20234191]
[105]
McMurray, J.S. A new small-molecule Stat3 inhibitor. Chem. Biol., 2006, 13(11), 1123-1124.
[http://dx.doi.org/10.1016/j.chembiol.2006.11.001] [PMID: 17113993]
[106]
Adachi, M.; Cui, C.; Dodge, C.T.; Bhayani, M.K.; Lai, S.Y. Targeting STAT3 inhibits growth and enhances radiosensitivity in head and neck squamous cell carcinoma. Oral Oncol., 2012, 48(12), 1220-1226.
[http://dx.doi.org/10.1016/j.oraloncology.2012.06.006] [PMID: 22770899]
[107]
Quintás-Cardama, A.; Vaddi, K.; Liu, P.; Manshouri, T.; Li, J.; Scherle, P.A.; Caulder, E.; Wen, X.; Li, Y.; Waeltz, P.; Rupar, M.; Burn, T.; Lo, Y.; Kelley, J.; Covington, M.; Shepard, S.; Rodgers, J.D.; Haley, P.; Kantarjian, H.; Fridman, J.S.; Verstovsek, S. Preclinical characteri-zation of the selective JAK1/2 inhibitor INCB018424: Therapeutic implications for the treatment of myeloproliferative neoplasms. Blood, 2010, 115(15), 3109-3117.
[http://dx.doi.org/10.1182/blood-2009-04-214957] [PMID: 20130243]
[108]
Wang, Z.; Li, J.; Xiao, W.; Long, J.; Zhang, H. The STAT3 inhibitor S3I-201 suppresses fibrogenesis and angiogenesis in liver fibrosis. Lab. Invest., 2018, 98(12), 1600-1613.
[http://dx.doi.org/10.1038/s41374-018-0127-3] [PMID: 30206312]
[109]
Siddiquee, K.; Zhang, S.; Guida, W.C.; Blaskovich, M.A.; Greedy, B.; Lawrence, H.R.; Yip, M.L.; Jove, R.; McLaughlin, M.M.; Lawrence, N.J.; Sebti, S.M.; Turkson, J. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces anti-tumor activity. Proc. Natl. Acad. Sci. USA, 2007, 104(18), 7391-7396.
[http://dx.doi.org/10.1073/pnas.0609757104] [PMID: 17463090]
[110]
Xu, F.; Na, L.; Li, Y.; Chen, L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci., 2020, 10(1), 54.
[http://dx.doi.org/10.1186/s13578-020-00416-0] [PMID: 32266056]
[111]
Lee, Y-J.; Chung, J-G.; Tan, Z-L.; Hsu, F-T.; Liu, Y-C.; Lin, S-S. ERK/AKT inactivation and apoptosis induction associate with quetiap-ine-inhibited cell survival and invasion in hepatocellular carcinoma cells. In Vivo, 2020, 34(5), 2407-2417.
[http://dx.doi.org/10.21873/invivo.12054] [PMID: 32871766]
[112]
Nitulescu, G.M.; Van De Venter, M.; Nitulescu, G.; Ungurianu, A.; Juzenas, P.; Peng, Q.; Olaru, O.T. Grădinaru, D.; Tsatsakis, A.; Tsoukalas, D.; Spandidos, D.A.; Margina, D. The Akt pathway in oncology therapy and beyond. (Review). Int. J. Oncol., 2018, 53(6), 2319-2331.
[http://dx.doi.org/10.3892/ijo.2018.4597] [PMID: 30334567]
[113]
Kamarudin, M.N.A.; Parhar, I. Emerging therapeutic potential of anti-psychotic drugs in the management of human glioma: A comprehen-sive review. Oncotarget, 2019, 10(39), 3952-3977.
[http://dx.doi.org/10.18632/oncotarget.26994] [PMID: 31231472]
[114]
Allenspach, E.J.; Maillard, I.; Aster, J.C.; Pear, W.S. Notch signaling in cancer. Cancer Biol. Ther., 2002, 1(5), 466-476.
[http://dx.doi.org/10.4161/cbt.1.5.159] [PMID: 12496471]
[115]
Artavanis-Tsakonas, S.; Rand, M.D.; Lake, R.J. Notch signaling: Cell fate control and signal integration in development. Science, 1999, 284(5415), 770-776.
[http://dx.doi.org/10.1126/science.284.5415.770] [PMID: 10221902]
[116]
Christopoulos, P.F.; Gjølberg, T.T.; Krüger, S.; Haraldsen, G.; Andersen, J.T.; Sundlisæter, E. Targeting the notch signaling pathway in chronic inflammatory diseases. Front. Immunol., 2021, 12, 668207.
[http://dx.doi.org/10.3389/fimmu.2021.668207] [PMID: 33912195]
[117]
Owen, D.H.; Giffin, M.J.; Bailis, J.M.; Smit, M.D.; Carbone, D.P.; He, K. DLL3: An emerging target in small cell lung cancer. J. Hematol. Oncol., 2019, 12(1), 61.
[http://dx.doi.org/10.1186/s13045-019-0745-2] [PMID: 31215500]
[118]
Puca, L.; Sailer, V.; Gayvert, K.; Isse, K.; Sigouros, M.; Nanus, D.M.; Tagawa, S.T.; Mosquera, J.M.; Saunders, L.; Beltran, H. Roval-pituzumab tesirine (Rova-T) as a therapeutic agent for Neuroendocrine Prostate Cancer (NEPC). J. Clin. Oncol., 2017, 35(15_suppl.), 5029.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.5029]
[119]
Doi, T.; Tajimi, M.; Mori, J.; Asou, H.; Inoue, K.; Benhadji, K.A.; Naito, Y. A phase 1 study of crenigacestat (LY3039478), the Notch inhibitor, in Japanese patients with advanced solid tumors. Invest. New Drugs, 2021, 39(2), 469-476.
[http://dx.doi.org/10.1007/s10637-020-01001-5] [PMID: 32939607]
[120]
Mäemets-Allas, K.; Belitškin, D.; Jaks, V. The inhibition of Akt-Pdpk1 interaction efficiently suppresses the growth of murine primary liver tumor cells. Biochem. Biophys. Res. Commun., 2016, 474(1), 118-125.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.082] [PMID: 27103434]
[121]
Li, Y.; Deng, X.; Zeng, X.; Peng, X. The role of Mir-148a in cancer. J. Cancer, 2016, 7(10), 1233-1241.
[http://dx.doi.org/10.7150/jca.14616] [PMID: 27390598]
[122]
Mortoglou, M.; Wallace, D.; Buha Djordjevic, A.; Djordjevic, V.; Arisan, E.D.; Uysal-Onganer, P. MicroRNA-regulated signaling path-ways: Potential biomarkers for pancreatic ductal adenocarcinoma. Stresses, 2021, 1(1), 30-47.
[http://dx.doi.org/10.3390/stresses1010004]
[123]
Yang, L.; Xie, G.; Fan, Q.; Xie, J. Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene, 2010, 29(4), 469-481.
[http://dx.doi.org/10.1038/onc.2009.392] [PMID: 19935712]
[124]
Chen, Q.; Gao, G.; Luo, S. Hedgehog signaling pathway and ovarian cancer. Chin. J. Cancer Res., 2013, 25(3), 346-353.
[PMID: 23825912]
[125]
Zunich, S.M.; Valdovinos, M.; Douglas, T.; Walterhouse, D.; Iannaccone, P.; Lamm, M.L. Osteoblast-secreted collagen upregulates para-crine Sonic hedgehog signaling by prostate cancer cells and enhances osteoblast differentiation. Mol. Cancer, 2012, 11(1), 30.
[http://dx.doi.org/10.1186/1476-4598-11-30] [PMID: 22559324]
[126]
Jain, S.; Song, R.; Xie, J. Sonidegib: Mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas. OncoTargets Ther., 2017, 10, 1645-1653.
[http://dx.doi.org/10.2147/OTT.S130910] [PMID: 28352196]
[127]
Chen, L.; Aria, A.B.; Silapunt, S.; Lee, H-H.; Migden, M.R. Treatment of advanced basal cell carcinoma with sonidegib: Perspective from the 30-month update of the BOLT trial. Future Oncol., 2018, 14(6), 515-525.
[http://dx.doi.org/10.2217/fon-2017-0457] [PMID: 29119833]
[128]
Proctor, A.E.; Thompson, L.A.; O’Bryant, C.L. Vismodegib: An inhibitor of the Hedgehog signaling pathway in the treatment of basal cell carcinoma. Ann. Pharmacother., 2014, 48(1), 99-106.
[http://dx.doi.org/10.1177/1060028013506696] [PMID: 24259609]
[129]
Zhang, Y.; Laterra, J.; Pomper, M.G. Hedgehog pathway inhibitor HhAntag691 is a potent inhibitor of ABCG2/BCRP and ABCB1/Pgp. Neoplasia, 2009, 11(1), 96-101.
[http://dx.doi.org/10.1593/neo.81264] [PMID: 19107236]
[130]
Deng, H.; Huang, L.; Liao, Z.; Liu, M.; Li, Q.; Xu, R. Itraconazole inhibits the Hedgehog signaling pathway thereby inducing autophagy-mediated apoptosis of colon cancer cells. Cell Death Dis., 2020, 11(7), 539.
[http://dx.doi.org/10.1038/s41419-020-02742-0] [PMID: 32681018]
[131]
Lappano, R.; Jacquot, Y.; Maggiolini, M. GPCR modulation in breast cancer. Int. J. Mol. Sci., 2018, 19(12), 3840.
[http://dx.doi.org/10.3390/ijms19123840] [PMID: 30513833]
[132]
Lappano, R.; Maggiolini, M. G protein-coupled receptors: Novel targets for drug discovery in cancer. Nat. Rev. Drug Discov., 2011, 10(1), 47-60.
[http://dx.doi.org/10.1038/nrd3320] [PMID: 21193867]
[133]
Kast, R.; Schirok, H.; Figueroa-Pérez, S.; Mittendorf, J.; Gnoth, M.J.; Apeler, H.; Lenz, J.; Franz, J.K.; Knorr, A.; Hütter, J.; Lobell, M.; Zimmermann, K.; Münter, K.; Augstein, K.H.; Ehmke, H.; Stasch, J.P. Cardiovascular effects of a novel potent and highly selective azain-dole-based inhibitor of Rho-kinase. Br. J. Pharmacol., 2007, 152(7), 1070-1080.
[http://dx.doi.org/10.1038/sj.bjp.0707484] [PMID: 17934515]
[134]
Herbert, J.M.; Augereau, J.M.; Gleye, J.; Maffrand, J.P. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun., 1990, 172(3), 993-999.
[http://dx.doi.org/10.1016/0006-291X(90)91544-3] [PMID: 2244923]
[135]
Garg, R.; Benedetti, L.G.; Abera, M.B.; Wang, H.; Abba, M.; Kazanietz, M.G. Protein kinase C and cancer: What we know and what we do not. Oncogene, 2014, 33(45), 5225-5237.
[http://dx.doi.org/10.1038/onc.2013.524] [PMID: 24336328]
[136]
McLeod, R.; Kumar, R.; Papadatos-Pastos, D.; Mateo, J.; Brown, J.S.; Garces, A.H.I.; Ruddle, R.; Decordova, S.; Jueliger, S.; Ferraldeschi, R.; Maiques, O.; Sanz-Moreno, V.; Jones, P.; Traub, S.; Halbert, G.; Mellor, S.; Swales, K.E.; Raynaud, F.I.; Garrett, M.D.; Banerji, U. First-in-human study of AT13148, a dual ROCK-AKT inhibitor in patients with solid tumors. Clin. Cancer Res., 2020, 26(18), 4777-4784.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0700] [PMID: 32616501]
[137]
Tran, N.N.Q.; Chun, K-H. ROCK2-specific inhibitor KD025 suppresses adipocyte differentiation by inhibiting casein kinase 2. Molecules, 2021, 26(16), 4747.
[http://dx.doi.org/10.3390/molecules26164747] [PMID: 34443331]
[138]
Boerma, M.; Fu, Q.; Wang, J.; Loose, D.S.; Bartolozzi, A.; Ellis, J.L.; McGonigle, S.; Paradise, E.; Sweetnam, P.; Fink, L.M.; Vozenin-Brotons, M.C.; Hauer-Jensen, M. Comparative gene expression profiling in three primary human cell lines after treatment with a novel in-hibitor of Rho kinase or atorvastatin. Blood Coagul. Fibrinolysis, 2008, 19(7), 709-718.
[http://dx.doi.org/10.1097/MBC.0b013e32830b2891] [PMID: 18832915]
[139]
Taniguchi, K. Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[140]
Chen, J.; Stark, L.A. Aspirin prevention of colorectal cancer: Focus on NF-κB signalling and the nucleolus. Biomedicines, 2017, 5(3), 43.
[http://dx.doi.org/10.3390/biomedicines5030043] [PMID: 28718829]
[141]
Wang, T.; Fu, X.; Jin, T.; Zhang, L.; Liu, B.; Wu, Y.; Xu, F.; Wang, X.; Ye, K.; Zhang, W.; Ye, L. Aspirin targets P4HA2 through inhibiting NF-κB and LMCD1-AS1/let-7g to inhibit tumour growth and collagen deposition in hepatocellular carcinoma. EBioMedicine, 2019, 45, 168-180.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.048] [PMID: 31278071]
[142]
Wong, B.C.Y.; Jiang, X.; Fan, X.M.; Lin, M.C.; Jiang, S.H.; Lam, S.K.; Kung, H.F. Suppression of RelA/p65 nuclear translocation inde-pendent of IkappaB-alpha degradation by cyclooxygenase-2 inhibitor in gastric cancer. Oncogene, 2003, 22(8), 1189-1197.
[http://dx.doi.org/10.1038/sj.onc.1206234] [PMID: 12606945]
[143]
Averett, C.; Bhardwaj, A.; Arora, S.; Srivastava, S.K.; Khan, M.A.; Ahmad, A.; Singh, S.; Carter, J.E.; Khushman, M.; Singh, A.P. Honokiol suppresses pancreatic tumor growth, metastasis and desmoplasia by interfering with tumor-stromal cross-talk. Carcinogenesis, 2016, 37(11), 1052-1061.
[http://dx.doi.org/10.1093/carcin/bgw096] [PMID: 27609457]
[144]
Ong, C.P.; Lee, W.L.; Tang, Y.Q.; Yap, W.H. Honokiol: A review of its anticancer potential and mechanisms. Cancers (Basel), 2019, 12(1), 48.
[http://dx.doi.org/10.3390/cancers12010048] [PMID: 31877856]
[145]
Khan, S.; Ebeling, M.C.; Chauhan, N.; Thompson, P.A.; Gara, R.K.; Ganju, A.; Yallapu, M.M.; Behrman, S.W.; Zhao, H.; Zafar, N.; Singh, M.M.; Jaggi, M.; Chauhan, S.C. Ormeloxifene suppresses desmoplasia and enhances sensitivity of gemcitabine in pancreatic cancer. Cancer Res., 2015, 75(11), 2292-2304.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2397] [PMID: 25840985]
[146]
Hafeez, B.B.; Ganju, A.; Sikander, M.; Kashyap, V.K.; Hafeez, Z.B.; Chauhan, N.; Malik, S.; Massey, A.E.; Tripathi, M.K.; Halaweish, F.T.; Zafar, N.; Singh, M.M.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. Ormeloxifene suppresses prostate tumor growth and metastatic phenotypes via inhibition of oncogenic β-catenin signaling and EMT progression. Mol. Cancer Ther., 2017, 16(10), 2267-2280.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0157] [PMID: 28615299]
[147]
Ribatti, D.; Tamma, R.; Annese, T. Epithelial-mesenchymal transition in cancer: A historical overview. Transl. Oncol., 2020, 13(6), 100773.
[http://dx.doi.org/10.1016/j.tranon.2020.100773] [PMID: 32334405]
[148]
Wang, Y.; Shi, J.; Chai, K.; Ying, X.; Zhou, B.P. The role of snail in EMT and tumorigenesis. Curr. Cancer Drug Targets, 2013, 13(9), 963-972.
[http://dx.doi.org/10.2174/15680096113136660102] [PMID: 24168186]
[149]
Alam, M.A. Anti-hypertensive effect of cereal antioxidant ferulic acid and its mechanism of action. Front. Nutr., 2019, 6, 121.
[http://dx.doi.org/10.3389/fnut.2019.00121] [PMID: 31448280]
[150]
Wei, M.; Sun, W.; He, W.; Ni, L.; Yang, Y-y. Ferulic acid attenuates TGF-β1-induced renal cellular fibrosis in NRK-52E cells by inhibiting Smad/ILK/Snail pathway. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/878164]
[151]
Wang, T.; Gong, X.; Jiang, R.; Li, H.; Du, W.; Kuang, G. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell. Am. J. Transl. Res., 2016, 8(2), 968-980.
[PMID: 27158383]
[152]
Luo, W.; Liu, X.; Sun, W.; Lu, J.J.; Wang, Y.; Chen, X. Toosendanin, a natural product, inhibited TGF-β1-induced epithelial-mesenchymal transition through ERK/Snail pathway. Phytother. Res., 2018, 32(10), 2009-2020.
[http://dx.doi.org/10.1002/ptr.6132] [PMID: 29952428]
[153]
Gao, T.; Xie, A.; Liu, X.; Zhan, H.; Zeng, J.; Dai, M.; Zhang, B. Toosendanin induces the apoptosis of human Ewing’s sarcoma cells via the mitochondrial apoptotic pathway. Mol. Med. Rep., 2019, 20(1), 135-140.
[http://dx.doi.org/10.3892/mmr.2019.10224] [PMID: 31115517]
[154]
Islam, M.T.; Biswas, S.; Bagchi, R.; Khan, M.R.; Khalipha, A.B.R.; Rouf, R.; Uddin, S.J.; Shilpi, J.A.; Bardaweel, S.K.; Sabbah, D.A.; Mu-barak, M.S. Ponicidin as a promising anticancer agent: Its biological and biopharmaceutical profile along with a molecular docking study. Biotechnol. Appl. Biochem., 2019, 66(3), 434-444.
[http://dx.doi.org/10.1002/bab.1740] [PMID: 30801842]
[155]
Ongusaha, P.P.; Kim, J.I.; Fang, L.; Wong, T.W.; Yancopoulos, G.D.; Aaronson, S.A.; Lee, S.W. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J., 2003, 22(6), 1289-1301.
[http://dx.doi.org/10.1093/emboj/cdg129] [PMID: 12628922]
[156]
Grither, W.R.; Longmore, G.D. Inhibition of tumor-microenvironment interaction and tumor invasion by small-molecule allosteric inhibi-tor of DDR2 extracellular domain. Proc. Natl. Acad. Sci. USA, 2018, 115(33), E7786-E7794.
[http://dx.doi.org/10.1073/pnas.1805020115] [PMID: 30061414]
[157]
Elkamhawy, A.; Lu, Q.; Nada, H.; Woo, J.; Quan, G.; Lee, K. The journey of DDR1 and DDR2 kinase inhibitors as rising stars in the fight against cancer. Int. J. Mol. Sci., 2021, 22(12), 6535.
[http://dx.doi.org/10.3390/ijms22126535] [PMID: 34207360]
[158]
Lu, Q.P.; Chen, W.D.; Peng, J.R.; Xu, Y.D.; Cai, Q.; Feng, G.K.; Ding, K.; Zhu, X.F.; Guan, Z. Antitumor activity of 7RH, a discoidin do-main receptor 1 inhibitor, alone or in combination with dasatinib exhibits antitumor effects in nasopharyngeal carcinoma cells. Oncol. Lett., 2016, 12(5), 3598-3608.
[http://dx.doi.org/10.3892/ol.2016.5088] [PMID: 27900042]
[159]
Riches, L.C.; Trinidad, A.G.; Hughes, G.; Jones, G.N.; Hughes, A.M.; Thomason, A.G.; Gavine, P.; Cui, A.; Ling, S.; Stott, J.; Clark, R.; Peel, S.; Gill, P.; Goodwin, L.M.; Smith, A.; Pike, K.G.; Barlaam, B.; Pass, M.; O’Connor, M.J.; Smith, G.; Cadogan, E.B. Pharmacology of the ATM inhibitor AZD0156: Potentiation of irradiation and olaparib responses preclinically. Mol. Cancer Ther., 2020, 19(1), 13-25.
[PMID: 31534013]
[160]
Mizejewski, G.J. Role of integrins in cancer: Survey of expression patterns. Proc. Soc. Exp. Biol. Med., 1999, 222(2), 124-138.
[http://dx.doi.org/10.1046/j.1525-1373.1999.d01-122.x] [PMID: 10564536]
[161]
Hariharan, S.; Gustafson, D.; Holden, S.; McConkey, D.; Davis, D.; Morrow, M.; Basche, M.; Gore, L.; Zang, C.; O’Bryant, C.L.; Baron, A.; Gallemann, D.; Colevas, D.; Eckhardt, S.G. Assessment of the biological and pharmacological effects of the α ν β3 and α ν β5 integrin receptor antagonist, cilengitide (EMD 121974), in patients with advanced solid tumors. Ann. Oncol., 2007, 18(8), 1400-1407.
[http://dx.doi.org/10.1093/annonc/mdm140] [PMID: 17693653]
[162]
Ricart, A.D.; Tolcher, A.W.; Liu, G.; Holen, K.; Schwartz, G.; Albertini, M.; Weiss, G.; Yazji, S.; Ng, C.; Wilding, G. Volociximab, a chi-meric monoclonal antibody that specifically binds α5β1 integrin: A phase I, pharmacokinetic, and biological correlative study. Clin. Cancer Res., 2008, 14(23), 7924-7929.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0378] [PMID: 19047123]
[163]
Ramakrishnan, V.; Bhaskar, V.; Law, D.A.; Wong, M.H.; DuBridge, R.B.; Breinberg, D.; O’Hara, C.; Powers, D.B.; Liu, G.; Grove, J.; He-vezi, P.; Cass, K.M.; Watson, S.; Evangelista, F.; Powers, R.A.; Finck, B.; Wills, M.; Caras, I.; Fang, Y.; McDonald, D.; Johnson, D.; Mur-ray, R.; Jeffry, U. Preclinical evaluation of an anti-α5β1 integrin antibody as a novel anti-angiogenic agent. J. Exp. Ther. Oncol., 2006, 5(4), 273-286.
[PMID: 17024968]
[164]
Goodman, S.L.; Picard, M. Integrins as therapeutic targets. Trends Pharmacol. Sci., 2012, 33(7), 405-412.
[http://dx.doi.org/10.1016/j.tips.2012.04.002] [PMID: 22633092]
[165]
Borst, A.J.; James, Z.M.; Zagotta, W.N.; Ginsberg, M.; Rey, F.A.; DiMaio, F.; Backovic, M.; Veesler, D. The therapeutic antibody LM609 selectively inhibits ligand binding to human αvβ3 integrin via steric hindrance. Structure, 2017, 25(11), 1732-1739.
[166]
Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tu-mour progression and metastasis. Nat. Commun., 2020, 11(1), 1-19.
[http://dx.doi.org/10.1038/s41467-020-18794-x] [PMID: 31911652]
[167]
Barrett, J.P.; Costello, D.A.; O’Sullivan, J.; Cowley, T.R.; Lynch, M.A. Bone marrow-derived macrophages from aged rats are more re-sponsive to inflammatory stimuli. J. Neuroinflammation, 2015, 12(1), 67.
[http://dx.doi.org/10.1186/s12974-015-0287-7] [PMID: 25890218]
[168]
de Souza, V.C.A.; Pereira, T.A.; Teixeira, V.W.; Carvalho, H.; de Castro, M.C.A.B.; D’assunção, C.G.; de Barros, A.F.; Carvalho, C.L.; de Lorena, V.M.B.; Costa, V.M.A.; Teixeira, Á.A.C.; Figueiredo, R.C.B.Q.; de Oliveira, S.A. Bone marrow-derived monocyte infusion im-proves hepatic fibrosis by decreasing osteopontin, TGF-β1, IL-13 and oxidative stress. World J. Gastroenterol., 2017, 23(28), 5146-5157.
[http://dx.doi.org/10.3748/wjg.v23.i28.5146] [PMID: 28811709]
[169]
Kuczek, D.E.; Larsen, A.M.H.; Thorseth, M-L.; Carretta, M.; Kalvisa, A.; Siersbæk, M.S.; Simões, A.M.C.; Roslind, A.; Engelholm, L.H.; Noessner, E.; Donia, M.; Svane, I.M.; Straten, P.T.; Grøntved, L.; Madsen, D.H. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer, 2019, 7(1), 68.
[http://dx.doi.org/10.1186/s40425-019-0556-6] [PMID: 30867051]
[170]
Compte, M.; Harwood, S.L.; Muñoz, I.G.; Navarro, R.; Zonca, M.; Perez-Chacon, G.; Erce-Llamazares, A.; Merino, N.; Tapia-Galisteo, A.; Cuesta, A.M.; Mikkelsen, K.; Caleiras, E.; Nuñez-Prado, N.; Aznar, M.A.; Lykkemark, S.; Martínez-Torrecuadrada, J.; Melero, I.; Blanco, F.J.; Bernardino de la Serna, J.; Zapata, J.M.; Sanz, L.; Alvarez-Vallina, L. A tumor-targeted trimeric 4-1BB-agonistic antibody induces po-tent antitumor immunity without systemic toxicity. Nat. Commun., 2018, 9(1), 1-13.
[http://dx.doi.org/10.1038/s41467-018-07195-w] [PMID: 29317637]
[171]
Liu, T.; Han, C.; Wang, S.; Fang, P.; Ma, Z.; Xu, L.; Yin, R. Cancer-associated fibroblasts: An emerging target of anticancer immunothera-py. J. Hematol. Oncol., 2019, 12(1), 1-15.
[http://dx.doi.org/10.1186/s13045-019-0770-1] [PMID: 30606227]
[172]
Sena, P.; Mancini, S.; Benincasa, M.; Mariani, F.; Palumbo, C.; Roncucci, L. Metformin induces apoptosis and alters cellular responses to oxidative stress in Ht29 colon cancer cells: Preliminary findings. Int. J. Mol. Sci., 2018, 19(5), 1478.
[http://dx.doi.org/10.3390/ijms19051478] [PMID: 29772687]
[173]
Xu, S.; Yang, Z.; Jin, P.; Yang, X.; Li, X.; Wei, X.; Wang, Y.; Long, S.; Zhang, T.; Chen, G.; Sun, C.; Ma, D.; Gao, Q. Metformin suppress-es tumor progression by inactivating stromal fibroblasts in ovarian cancer. Mol. Cancer Ther., 2018, 17(6), 1291-1302.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0927] [PMID: 29545331]
[174]
Zhang, Y.; Feng, X.; Li, T.; Yi, E.; Li, Y. Metformin synergistic pemetrexed suppresses non-small-cell lung cancer cell proliferation and invasion in vitro. Cancer Med., 2017, 6(8), 1965-1975.
[http://dx.doi.org/10.1002/cam4.1133] [PMID: 28719077]
[175]
Feng, R.; Morine, Y.; Ikemoto, T.; Imura, S.; Iwahashi, S.; Saito, Y.; Shimada, M. Nab-paclitaxel interrupts cancer-stromal interaction through C-X-C motif chemokine 10-mediated interleukin-6 downregulation in vitro. Cancer Sci., 2018, 109(8), 2509-2519.
[http://dx.doi.org/10.1111/cas.13694] [PMID: 29902349]
[176]
Chang, P.M.H.; Cheng, C.T.; Wu, R.C.; Chung, Y.H.; Chiang, K.C.; Yeh, T.S.; Liu, C.Y.; Chen, M.H.; Chen, M.H.; Yeh, C.N. Nab-paclitaxel is effective against intrahepatic cholangiocarcinoma via disruption of desmoplastic stroma. Oncol. Lett., 2018, 16(1), 566-572.
[http://dx.doi.org/10.3892/ol.2018.8690] [PMID: 29963132]
[177]
Louault, K.; Bonneaud, T.L.; Séveno, C.; Gomez-Bougie, P.; Nguyen, F.; Gautier, F.; Bourgeois, N.; Loussouarn, D.; Kerdraon, O.; Barillé-Nion, S.; Jézéquel, P.; Campone, M.; Amiot, M.; Juin, P.P.; Souazé, F. Interactions between cancer-associated fibroblasts and tumor cells promote MCL-1 dependency in estrogen receptor-positive breast cancers. Oncogene, 2019, 38(17), 3261-3273.
[http://dx.doi.org/10.1038/s41388-018-0635-z] [PMID: 30631150]
[178]
Nishi, R.; Shigemi, H.; Negoro, E.; Okura, M.; Hosono, N.; Yamauchi, T. Venetoclax and alvocidib are both cytotoxic to acute myeloid leukemia cells resistant to cytarabine and clofarabine. BMC Cancer, 2020, 20(1), 984.
[http://dx.doi.org/10.1186/s12885-020-07469-x] [PMID: 33046037]
[179]
Li, L.H.; Olin, E.J.; Buskirk, H.H.; Reineke, L.M. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res., 1970, 30(11), 2760-2769.
[PMID: 5487063]
[180]
Jin, B.; Li, Y.; Robertson, K.D. DNA methylation: Superior or subordinate in the epigenetic hierarchy? Genes Cancer, 2011, 2(6), 607-617.
[http://dx.doi.org/10.1177/1947601910393957] [PMID: 21941617]
[181]
Hsi, L.C.; Xi, X.; Wu, Y.; Lippman, S.M. The methyltransferase inhibitor 5-aza-2-deoxycytidine induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Mol. Cancer Ther., 2005, 4(11), 1740-1746.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0218] [PMID: 16275995]
[182]
Wu, W.; Chen, L.; Wang, Y.; Jin, J.; Xie, X.; Zhang, J. Hyaluronic acid predicts poor prognosis in breast cancer patients: A protocol for systematic review and meta analysis. Medicine (Baltimore), 2020, 99(22), e20438.
[http://dx.doi.org/10.1097/MD.0000000000020438] [PMID: 32481447]
[183]
Karatas, A.; Paksoy, M.; Erzin, Y.; Carkman, S.; Gonenc, M.; Ayan, F.; Aydogan, F.; Uzun, H.; Durak, H. The effect of halofuginone, a specific inhibitor of collagen type 1 synthesis, in the prevention of pancreatic fibrosis in an experimental model of severe hyperstimula-tion and obstruction pancreatitis. J. Surg. Res., 2008, 148(1), 7-12.
[http://dx.doi.org/10.1016/j.jss.2008.03.015] [PMID: 18570924]
[184]
Demiroglu-Zergeroglu, A.; Turhal, G.; Topal, H.; Ceylan, H.; Donbaloglu, F.; Karadeniz Cerit, K.; Odongo, R.R. Anticarcinogenic effects of halofuginone on lung-derived cancer cells. Cell Biol. Int., 2020, 44(9), 1934-1944.
[http://dx.doi.org/10.1002/cbin.11399] [PMID: 32437065]
[185]
Liang, H.; Li, X.; Wang, B.; Chen, B.; Zhao, Y.; Sun, J.; Zhuang, Y.; Shi, J.; Shen, H.; Zhang, Z.; Dai, J. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix. Sci. Rep., 2016, 6(1), 18205.
[http://dx.doi.org/10.1038/srep18205] [PMID: 26883295]
[186]
Liang, H.; Li, X.; Chen, B.; Wang, B.; Zhao, Y.; Zhuang, Y.; Shen, H.; Zhang, Z.; Dai, J. A collagen-binding EGFR single-chain Fv anti-body fragment for the targeted cancer therapy. J. Control. Release, 2015, 209, 101-109.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.029] [PMID: 25916496]
[187]
Durfee, P.N.; Lin, Y-S.; Dunphy, D.R.; Muñiz, A.J.; Butler, K.S.; Humphrey, K.R.; Lokke, A.J.; Agola, J.O.; Chou, S.S.; Chen, I-M.; Whar-ton, W.; Townson, J.L.; Willman, C.L.; Brinker, C.J. Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active target-ing and delivery to individual leukemia cells. ACS Nano, 2016, 10(9), 8325-8345.
[http://dx.doi.org/10.1021/acsnano.6b02819] [PMID: 27419663]
[188]
Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; Güvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol., 2018, 9, 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[189]
Kim, K-T.; Lee, J-Y.; Kim, D-D.; Yoon, I-S.; Cho, H-J. Recent progress in the development of poly (lactic-co-glycolic acid)-based nanostructures for cancer imaging and therapy. Pharmaceutics, 2019, 11(6), 280.
[http://dx.doi.org/10.3390/pharmaceutics11060280] [PMID: 31197096]
[190]
Alemany, R. Oncolytic adenoviruses in cancer treatment. Biomedicines, 2014, 2(1), 36-49.
[http://dx.doi.org/10.3390/biomedicines2010036] [PMID: 28548059]
[191]
Sato-Dahlman, M.; Roach, B.L.; Yamamoto, M. The role of adenovirus in cancer therapy. Cancers (Basel), 2020, 12(11), 3121.
[http://dx.doi.org/10.3390/cancers12113121] [PMID: 33114467]
[192]
Li, Y.; Hong, J.; Oh, J.E.; Yoon, A.R.; Yun, C.O. Potent antitumor effect of tumor microenvironment-targeted oncolytic adenovirus against desmoplastic pancreatic cancer. Int. J. Cancer, 2018, 142(2), 392-413.
[http://dx.doi.org/10.1002/ijc.31060] [PMID: 28929492]
[193]
Eriksson, E.; Milenova, I.; Wenthe, J.; Ståhle, M.; Leja-Jarblad, J.; Ullenhag, G.; Dimberg, A.; Moreno, R.; Alemany, R.; Loskog, A. Shap-ing the tumor stroma and sparking immune activation by CD40 and 4-1BB signaling induced by an armed oncolytic virus. Clin. Cancer Res., 2017, 23(19), 5846-5857.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0285] [PMID: 28536305]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy