Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Systematic Review Article

Combination of Curcumin and Photodynamic Therapy Based on the Use of Red Light or Near-Infrared Radiation in Cancer: A Systematic Review

Author(s): Marcelo Augusto Germani Marinho*, Magno da Silva Marques, Marcos Freitas Cordeiro, Daza de Moraes Vaz Batista Filgueira and Ana Paula Horn

Volume 22, Issue 17, 2022

Published on: 30 June, 2022

Page: [2985 - 2997] Pages: 13

DOI: 10.2174/1871520622666220425093657

Price: $65

conference banner
Abstract

Background: Photodynamic therapy (PDT) is a therapeutic intervention that can be applied to cancer treatment. The interaction between a photosensitizer (PS), ideal wavelength radiation, and tissue molecular oxygen triggers a series of photochemical reactions responsible for producing reactive oxygen species. These highly reactive species can decrease proliferation and induce tumor cell death. The search for PS of natural origin extracted from plants becomes relevant, as they have photoactivation capacity, preferentially targeting tumor cells and because they do not present any or little toxicity to healthy cells.

Objective: Our work aimed to carry out a qualitative systematic review to investigate the effects of curcumin (CUR), a molecule considered as PS of natural origin, on PDT, using red light or near-infrared radiation in tumor models.

Methods: A systematic search was performed in three databases (PubMed, Scopus, and Web of Science) using the PICOT method, retrieving a total of 1,373 occurrences. At the end of the peer screening, 25 eligible articles were included in this systematic review using inclusion, exclusion, and eligibility criteria.

Results: CUR, whether in its free state, associated with metal complexes or other PS and in a nanocarrier system, was considered a relevant PS for PDT using red light or near-infrared against tumoral models in vitro and in vivo, acting by increasing cytotoxicity, inhibiting proliferation, inducing cell death mainly by apoptosis, and changing oxidative parameters.

Conclusion: The results found in this systematic review suggest the potential use of CUR as a PS of natural origin to be applied in PDT against many neoplasms, encouraging further search in PDT against cancer and serving as an investigative basis for upcoming pre-clinical and clinical applications.

Keywords: Curcuma longa, natural photosensitizer, neoplasm, phototoxicity, qualitative synthesis, turmeric.

Graphical Abstract

[1]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[2]
Oniszczuk, A.; Wojtunik-Kulesza, K.A.; Oniszczuk, T.; Kasprzak, K. The potential of photodynamic therapy (PDT)-Experimental investi-gations and clinical use. Biomed. Pharmacother., 2016, 83, 912-929.
[http://dx.doi.org/10.1016/j.biopha.2016.07.058] [PMID: 27522005]
[3]
Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther., 2004, 1(4), 279-293.
[http://dx.doi.org/10.1016/S1572-1000(05)00007-4] [PMID: 25048432]
[4]
Mansoori, B.; Mohammadi, A.; Amin Doustvandi, M.; Mohammadnejad, F.; Kamari, F.; Gjerstorff, M.F.; Baradaran, B.; Hamblin, M.R. Photodynamic therapy for cancer: Role of natural products. Photodiagn. Photodyn. Ther., 2019, 26, 395-404.
[http://dx.doi.org/10.1016/j.pdpdt.2019.04.033] [PMID: 31063860]
[5]
Nowis, D.; Makowski, M. Stokłosa T.; Legat, M.; Issat, T.; Gołab J. Direct tumor damage mechanisms of photodynamic therapy. Acta Biochim. Pol., 2005, 52(2), 339-352.
[http://dx.doi.org/10.18388/abp.2005_3447] [PMID: 15990919]
[6]
Yanovsky, R.L.; Bartenstein, D.W.; Rogers, G.S.; Isakoff, S.J.; Chen, S.T. Photodynamic therapy for solid tumors: A review of the litera-ture. Photodermatol. Photoimmunol. Photomed., 2019, 35(5), 295-303.
[http://dx.doi.org/10.1111/phpp.12489] [PMID: 31155747]
[7]
Benov, L. Photodynamic therapy: Current status and future directions. Med. Princ. Pract., 2015, 24(s1)(Suppl. 1), 14-28.
[http://dx.doi.org/10.1159/000362416] [PMID: 24820409]
[8]
Donohoe, C.; Senge, M.O.; Arnaut, L.G.; Gomes-da-Silva, L.C. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim. Biophys. Acta Rev. Cancer, 2019, 1872(2), 188308.
[http://dx.doi.org/10.1016/j.bbcan.2019.07.003] [PMID: 31401103]
[9]
Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J. Kędzierska E.; Knap-Czop, K.; Kotlińska J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107.
[http://dx.doi.org/10.1016/j.biopha.2018.07.049] [PMID: 30119176]
[10]
Juarranz, A.; Jaén, P.; Sanz-Rodríguez, F.; Cuevas, J.; González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol., 2008, 10(3), 148-154.
[http://dx.doi.org/10.1007/s12094-008-0172-2] [PMID: 18321817]
[11]
Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death. Photodiagn. Photodyn. Ther., 2005, 2(1), 1-23.
[http://dx.doi.org/10.1016/S1572-1000(05)00030-X] [PMID: 25048553]
[12]
Horne, T.K.; Cronje, M.J. Cancer tissue classification, associated therapeutic implications and PDT as an alternative. Anticancer Res., 2017, 37(6), 2785-2807.
[PMID: 28551614]
[13]
Spring, B.Q.; Rizvi, I.; Xu, N.; Hasan, T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci., 2015, 14(8), 1476-1491.
[http://dx.doi.org/10.1039/C4PP00495G] [PMID: 25856800]
[14]
Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[15]
Moreira, L.M.; Vieira dos Santos, F.; Lyon, J.P.; Maftoum-Costa, M.; Pacheco-Soares, C.; Soares da Silva, N. Photodynamic therapy: Porphyrins and phthalocyanines as photosensitizers. Aust. J. Chem., 2008, 61(10), 741.
[http://dx.doi.org/10.1071/CH08145]
[16]
Baskaran, R.; Lee, J.; Yang, S-G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res., 2018, 22(1), 25.
[http://dx.doi.org/10.1186/s40824-018-0140-z] [PMID: 30275968]
[17]
Chen, Y.; Deng, Y.; Zhu, C.; Xiang, C. Anti prostate cancer therapy: Aptamer-functionalized, curcumin and cabazitaxel co-delivered, tu-mor targeted lipid-polymer hybrid nanoparticles. Biomed. Pharmacother., 2020, 127, 110181.
[http://dx.doi.org/10.1016/j.biopha.2020.110181] [PMID: 32416561]
[18]
Tanaka, Y.; Murayama, Y.; Matsumoto, T.; Kubo, H.; Harada, K.; Matsuo, H.; Kubota, T.; Okamoto, K.; Otsuji, E. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy in a mouse model of esophageal cancer. Oncol. Lett., 2020, 20(4), 82.
[http://dx.doi.org/10.3892/ol.2020.11943] [PMID: 32863915]
[19]
Celli, J.P.; Spring, B.Q.; Rizvi, I.; Evans, C.L.; Samkoe, K.S.; Verma, S.; Pogue, B.W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev., 2010, 110(5), 2795-2838.
[http://dx.doi.org/10.1021/cr900300p] [PMID: 20353192]
[20]
Muniyandi, K.; George, B.; Parimelazhagan, T.; Abrahamse, H. Role of photoactive phytocompounds in photodynamic therapy of cancer. Molecules, 2020, 25(18), 4102.
[http://dx.doi.org/10.3390/molecules25184102] [PMID: 32911753]
[21]
Hamblin, M.R. Photodynamic therapy for cancer: What’s past is prologue. Photochem. Photobiol., 2020, 96(3), 506-516.
[http://dx.doi.org/10.1111/php.13190] [PMID: 31820824]
[22]
D’Alessandro, S.; Priefer, R. Non-porphyrin dyes used as photosensitizers in photodynamic therapy. J. Drug Deliv. Sci. Technol., 2020, 60, 101979.
[http://dx.doi.org/10.1016/j.jddst.2020.101979]
[23]
Aggarwal, B.B.; Gupta, S.C.; Sung, B. Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br. J. Pharmacol., 2013, 169(8), 1672-1692.
[http://dx.doi.org/10.1111/bph.12131] [PMID: 23425071]
[24]
Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives-A review. J. Tradit. Complement. Med., 2016, 7(2), 205-233.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[25]
Vengoji, R.; Macha, M.A.; Batra, S.K.; Shonka, N.A. Natural products: A hope for glioblastoma patients. Oncotarget, 2018, 9(31), 22194-22219.
[http://dx.doi.org/10.18632/oncotarget.25175] [PMID: 29774132]
[26]
Duvoix, A.; Blasius, R.; Delhalle, S.; Schnekenburger, M.; Morceau, F.; Henry, E.; Dicato, M.; Diederich, M. Chemopreventive and thera-peutic effects of curcumin. Cancer Lett., 2005, 223(2), 181-190.
[http://dx.doi.org/10.1016/j.canlet.2004.09.041] [PMID: 15896452]
[27]
Ravindran, J.; Prasad, S.; Aggarwal, B.B. Curcumin and cancer cells: How many ways can curry kill tumor cells selectively? AAPS J., 2009, 11(3), 495-510.
[http://dx.doi.org/10.1208/s12248-009-9128-x] [PMID: 19590964]
[28]
Ramachandran, C.; Nair, S.M.; Escalon, E.; Melnick, S.J. Potentiation of etoposide and temozolomide cytotoxicity by curcumin and tur-meric force™ in brain tumor cell lines. J. Complement. Integr. Med., 2012, 9(1), 20.
[http://dx.doi.org/10.1515/1553-3840.1614] [PMID: 22944718]
[29]
White, C.M.; Pasupuleti, V.; Roman, Y.M.; Li, Y.; Hernandez, A.V. Oral turmeric/curcumin effects on inflammatory markers in chronic inflammatory diseases: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res., 2019, 146, 104280.
[http://dx.doi.org/10.1016/j.phrs.2019.104280] [PMID: 31121255]
[30]
Ma, Z.; Wang, N.; He, H.; Tang, X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical applica-tion. J. Control. Release, 2019, 316, 359-380.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.053] [PMID: 31682912]
[31]
Priyadarsini, K.I. Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J. Photochem. Photobiol. Photochem. Rev., 2009, 10(2), 81-95.
[http://dx.doi.org/10.1016/j.jphotochemrev.2009.05.001]
[32]
Bernd, A. Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin. Phytochem. Rev., 2014, 13(1), 183-189.
[http://dx.doi.org/10.1007/s11101-013-9296-2] [PMID: 24578676]
[33]
Siewert, B.; Stuppner, H. The photoactivity of natural products-An overlooked potential of phytomedicines? Phytomedicine, 2019, 60, 152985.
[http://dx.doi.org/10.1016/j.phymed.2019.152985] [PMID: 31257117]
[34]
Xiao, Q.; Wu, J.; Pang, X.; Jiang, Y.; Wang, P.; Leung, A.W.; Gao, L.; Jiang, S.; Xu, C. Discovery and development of natural products and their derivatives as photosensitizers for photodynamic therapy. Curr. Med. Chem., 2018, 25(7), 839-860.
[http://dx.doi.org/10.2174/0929867324666170823143137] [PMID: 28831916]
[35]
Lee, W-H; Loo, C-Y; Bebawy, M; Luk, F; Mason, R; Rohanizadeh, R Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century. CN, 2013, 11(4), 338-78.
[36]
Sreedhar, A.; Sarkar, I.; Rajan, P.; Pai, J.; Malagi, S.; Kamath, V.; Barmappa, R. Comparative evaluation of the efficacy of curcumin gel with and without photo activation as an adjunct to scaling and root planing in the treatment of chronic periodontitis: A split mouth clinical and microbiological study. J. Nat. Sci. Biol. Med., 2015, 6(3)(Suppl. 1), S102-S109.
[http://dx.doi.org/10.4103/0976-9668.166100] [PMID: 26604595]
[37]
Wright, J.S. Predicting the antioxidant activity of curcumin and curcuminoids. J. Mol. Struct., 2002, 11 591(1-3), 207-217.
[38]
Anjomshoa, S.; Namazian, M.; Noorbala, M.R. The Effect of solvent on tautomerism, acidity and radical stability of curcumin and its derivatives based on thermodynamic quantities. J. Solution Chem., 2016, 45(7), 1021-1030.
[http://dx.doi.org/10.1007/s10953-016-0481-y]
[39]
Cornago, P.; Claramunt, R.M.; Bouissane, L.; Alkorta, I.; Elguero, J. A study of the tautomerism of β-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron, 2008, 64(35), 8089-8094.
[http://dx.doi.org/10.1016/j.tet.2008.06.065]
[40]
Shen, L.; Ji, H-F. Theoretical study on physicochemical properties of curcumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 67(3-4), 619-623.
[http://dx.doi.org/10.1016/j.saa.2006.08.018] [PMID: 16979936]
[41]
Tønnesen, H.H.; de Vries, H.; Karlsen, J.; Beijersbergen van Henegouwen, G. Studies on curcumin and curcuminoids. IX: Investigation of the photobiological activity of curcumin using bacterial indicator systems. J. Pharm. Sci., 1987, 76(5), 371-373.
[http://dx.doi.org/10.1002/jps.2600760506] [PMID: 3309256]
[42]
Chignell, C.F.; Bilski, P.; Reszka, K.J.; Motten, A.G.; Sik, R.H.; Dahl, T.A. Spectral and photochemical properties of curcumin. Photochem. Photobiol., 1994, 59(3), 295-302.
[http://dx.doi.org/10.1111/j.1751-1097.1994.tb05037.x] [PMID: 8016208]
[43]
Heger, M.; van Golen, R.F.; Broekgaarden, M.; Michel, M.C. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol. Rev., 2014, 66(1), 222-307.
[http://dx.doi.org/10.1124/pr.110.004044]
[44]
Ansari, M.J.; Ahmad, S.; Kohli, K.; Ali, J.; Khar, R.K. Stability-indicating HPTLC determination of curcumin in bulk drug and pharmaceu-tical formulations. J. Pharm. Biomed. Anal., 2005, 39(1-2), 132-138.
[http://dx.doi.org/10.1016/j.jpba.2005.03.021] [PMID: 15941643]
[45]
Jankun, J. Wyganowska-Świątkowska, M.; Dettlaff, K.; Jelińska A.; Surdacka, A.; Wątróbska-Świetlikowska, D.; Skrzypczak-Jankun, E. Determining whether curcumin degradation/condensation is actually bioactivation. (Review). Int. J. Mol. Med., 2016, 37(5), 1151-1158.
[http://dx.doi.org/10.3892/ijmm.2016.2524] [PMID: 26985652]
[46]
Gorman, A.A.; Hamblett, I.; Srinivasan, V.S.; Wood, P.D. Curcumin-derived transients: A pulsed laser and pulse radiolysis study. Photochem. Photobiol., 1994, 59(4), 389-398.
[http://dx.doi.org/10.1111/j.1751-1097.1994.tb05053.x] [PMID: 8022881]
[47]
Khopde, S.M.; Priyadarsini, K.I.; Palit, D.K.; Mukherjee, T. Effect of solvent on the excited-state photophysical properties of curcumin. Photochem. Photobiol., 2000, 72(5), 625-631.
[http://dx.doi.org/10.1562/0031-8655(2000)072<0625:EOSOTE>2.0.CO;2] [PMID: 11107847]
[48]
Jin, S.; Zhou, L.; Gu, Z.; Tian, G.; Yan, L.; Ren, W.; Yin, W.; Liu, X.; Zhang, X.; Hu, Z.; Zhao, Y. A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. Nanoscale, 2013, 5(23), 11910-11918.
[http://dx.doi.org/10.1039/c3nr03515h] [PMID: 24129918]
[49]
Scherer, K.M.; Bisby R, H.; Botchway, S.W.; Parker, A.W. New approaches to photodynamic therapy from types I, II and III to Type IV using one or more photons. ACAMC, 2017, 17(2), 171-189.
[http://dx.doi.org/10.2174/1871520616666160513131723]
[50]
Tsai, S-R.; Hamblin, M.R. Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol. B, 2017, 170, 197-207.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.04.014] [PMID: 28441605]
[51]
Abuelba, H.; Cotrutz, C.E.; Stoica, B.A.; Stoica, L.; Olinici, D. Petreuş T. In vitro evaluation of curcumin effects on breast adenocarcino-ma 2D and 3D cell cultures. Rom. J. Morphol. Embryol., 2015, 56(1), 71-76.
[PMID: 25826489]
[52]
Leenaars, M.; Hooijmans, C.R.; van Veggel, N.; ter Riet, G.; Leeflang, M.; Hooft, L.; van der Wilt, G.J.; Tillema, A.; Ritskes-Hoitinga, M. A step-by-step guide to systematically identify all relevant animal studies. Lab. Anim., 2012, 46(1), 24-31.
[http://dx.doi.org/10.1258/la.2011.011087] [PMID: 22037056]
[53]
Ahn, J-C.; Kang, J-W.; Shin, J-I.; Chung, P-S. Combination treatment with photodynamic therapy and curcumin induces mitochondria-dependent apoptosis in AMC-HN3 cells. Int. J. Oncol., 2012, 41(6), 2184-2190.
[http://dx.doi.org/10.3892/ijo.2012.1661] [PMID: 23064512]
[54]
Balaji, B.; Somyajit, K.; Banik, B.; Nagaraju, G.; Chakravarty, A.R. Photoactivated DNA cleavage and anticancer activity of oxovanadium (IV) complexes of curcumin. Inorg. Chim. Acta, 2013, 400, 142-150.
[http://dx.doi.org/10.1016/j.ica.2013.02.025]
[55]
Balaji, B.; Balakrishnan, B.; Perumalla, S.; Karande, A.A.; Chakravarty, A.R. Photoactivated cytotoxicity of ferrocenyl-terpyridine oxo-vanadium(IV) complexes of curcuminoids. Eur. J. Med. Chem., 2014, 85, 458-467.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.098] [PMID: 25113874]
[56]
Banerjee, S.; Prasad, P.; Khan, I.; Hussain, A.; Kondaiah, P.; Chakravarty, A.R. Mitochondria targeting Photocytotoxic Oxidovanadium (IV) complexes of curcumin and (acridinyl) dipyridophenazine in visible light. Z. Anorg. Allg. Chem., 2014, 640(6), 1195-1204.
[http://dx.doi.org/10.1002/zaac.201300569]
[57]
Banerjee, S.; Dixit, A.; Karande, A.A.; Chakravarty, A.R. Remarkable selectivity and photo-cytotoxicity of an oxidovanadium (IV) com-plex of curcumin in visible light: Photo-cytotoxicity of an oxidovanadium (IV)-curcumin complex. Eur. J. Inorg. Chem., 2015, 2015(3), 447-457.
[http://dx.doi.org/10.1002/ejic.201402884]
[58]
Banerjee, S.; Pant, I.; Khan, I.; Prasad, P.; Hussain, A.; Kondaiah, P.; Chakravarty, A.R. Remarkable enhancement in photocytotoxicity and hydrolytic stability of curcumin on binding to an oxovanadium(IV) moiety. Dalton Trans., 2015, 44(9), 4108-4122.
[http://dx.doi.org/10.1039/C4DT02165G] [PMID: 25623080]
[59]
Banik, B.; Somyajit, K.; Nagaraju, G.; Chakravarty, A.R. Oxovanadium(IV) complexes of curcumin for cellular imaging and mitochondria targeted photocytotoxicity. Dalton Trans., 2014, 43(35), 13358-13369.
[http://dx.doi.org/10.1039/C4DT01487A] [PMID: 25069796]
[60]
Bhattacharyya, A.; Dixit, A.; Mitra, K.; Banerjee, S.; Karande, A.A.; Chakravarty, A.R. BODIPY appended copper (II) complexes of cur-cumin showing mitochondria targeted remarkable photocytotoxicity in visible light. MedChemComm, 2015, 6(5), 846-851.
[http://dx.doi.org/10.1039/C4MD00425F]
[61]
Goswami, T.K.; Gadadhar, S.; Gole, B.; Karande, A.A.; Chakravarty, A.R. Photocytotoxicity of copper(II) complexes of curcumin and N-ferrocenylmethyl-L-amino acids. Eur. J. Med. Chem., 2013, 63, 800-810.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.026] [PMID: 23584543]
[62]
Hosseinzadeh, R.; Khorsandi, K. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell. Photodiagn. Photodyn. Ther., 2017, 18, 284-294.
[http://dx.doi.org/10.1016/j.pdpdt.2017.03.005] [PMID: 28300724]
[63]
Jalde, S.S.; Chauhan, A.K.; Lee, J.H.; Chaturvedi, P.K.; Park, J-S.; Kim, Y-W. Synthesis of novel Chlorin e6-curcumin conjugates as pho-tosensitizers for photodynamic therapy against pancreatic carcinoma. Eur. J. Med. Chem., 2018, 147, 66-76.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.099] [PMID: 29421571]
[64]
Jing, X.; Zhi, Z.; Jin, L.; Wang, F.; Wu, Y.; Wang, D.; Yan, K.; Shao, Y.; Meng, L. pH/redox dual-stimuli-responsive cross-linked poly-phosphazene nanoparticles for multimodal imaging-guided chemo-photodynamic therapy. Nanoscale, 2019, 11(19), 9457-9467.
[http://dx.doi.org/10.1039/C9NR01194C] [PMID: 31042245]
[65]
Juneja, R.; Lyles, Z.; Vadarevu, H.; Afonin, K.A.; Vivero-Escoto, J.L. Multimodal polysilsesquioxane nanoparticles for combinatorial therapy and gene delivery in triple-negative breast cancer. ACS Appl. Mater. Interfaces, 2019, 11(13), 12308-12320.
[http://dx.doi.org/10.1021/acsami.9b00704] [PMID: 30844224]
[66]
Khorsandi, K.; Chamani, E.; Hosseinzadeh, G.; Hosseinzadeh, R. Comparative study of photodynamic activity of methylene blue in the presence of salicylic acid and curcumin phenolic compounds on human breast cancer. Lasers Med. Sci., 2019, 34(2), 239-246.
[http://dx.doi.org/10.1007/s10103-018-2571-0] [PMID: 29959633]
[67]
Liu, C.; Zhang, Y.; Liu, M.; Chen, Z.; Lin, Y.; Li, W.; Cao, F.; Liu, Z.; Ren, J.; Qu, X. A NIR-controlled cage mimicking system for hydro-phobic drug mediated cancer therapy. Biomaterials, 2017, 139, 151-162.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.008] [PMID: 28618345]
[68]
Mitra, K.; Gautam, S.; Kondaiah, P.; Chakravarty, A.R. Platinum (II) complexes of curcumin showing photocytotoxicity in visible light: Platinum (II) complexes of curcumin showing photocytotoxicity in visible light. Eur. J. Inorg. Chem., 2017, 2017(12), 1753-1763.
[http://dx.doi.org/10.1002/ejic.201601078]
[69]
Prasad, P.; Pant, I.; Khan, I.; Kondaiah, P.; Chakravarty, A.R. Mitochondria-targeted photoinduced anticancer activity of oxidovanadium (IV) complexes of curcumin in visible light: Oxidovanadium complexes of curcumin. Eur. J. Inorg. Chem., 2014, 2014(14), 2420-2431.
[http://dx.doi.org/10.1002/ejic.201402001]
[70]
Sarkar, T.; Butcher, R.J.; Banerjee, S.; Mukherjee, S.; Hussain, A. Visible light-induced cytotoxicity of a dinuclear iron (III) complex of curcumin with low-micromolar IC50 value in cancer cells. Inorg. Chim. Acta, 2016, 439, 8-17.
[http://dx.doi.org/10.1016/j.ica.2015.09.026]
[71]
Sarkar, T.; Banerjee, S.; Mukherjee, S.; Hussain, A. Mitochondrial selectivity and remarkable photocytotoxicity of a ferrocenyl neodymi-um(III) complex of terpyridine and curcumin in cancer cells. Dalton Trans., 2016, 45(15), 6424-6438.
[http://dx.doi.org/10.1039/C5DT04775G] [PMID: 26947919]
[72]
Şueki, F.; Ruhi, M.K.; Gülsoy, M. The effect of curcumin in antitumor photodynamic therapy: In vitro experiments with Caco-2 and PC-3 cancer lines. Photodiagn. Photodyn. Ther., 2019, 27, 95-99.
[http://dx.doi.org/10.1016/j.pdpdt.2019.05.012] [PMID: 31100447]
[73]
Upadhyay, A.; Gautam, S.; Ramu, V.; Kondaiah, P.; Chakravarty, A.R. Photocytotoxic cancer cell-targeting platinum(II) complexes of glucose-appended curcumin and biotinylated 1,10-phenanthroline. Dalton Trans., 2019, 48(47), 17556-17565.
[http://dx.doi.org/10.1039/C9DT03490K] [PMID: 31748772]
[74]
Wang, J.; Zheng, M.; Xie, Z. Carrier-free core-shell nanodrugs for synergistic two-photon photodynamic therapy of cervical cancer. J. Colloid Interface Sci., 2019, 535, 84-91.
[http://dx.doi.org/10.1016/j.jcis.2018.09.095] [PMID: 30286310]
[75]
Xiong, X.; Sun, Y.; Gao, P.; Li, H.; Duan, Y. Curcumin-conjugated NaYF4:Yb3+, Er3+ nanoparticles for photodynamic therapy based on near-infrared light. J. Nanosci. Nanotechnol., 2016, 16(7), 6970-6977.
[http://dx.doi.org/10.1166/jnn.2016.11382]
[76]
Zhang, Z.; Wang, R.; Huang, X.; Luo, R.; Xue, J.; Gao, J.; Liu, W.; Liu, F.; Feng, F.; Qu, W. Self-delivered and self-monitored chemo-photodynamic nanoparticles with light-triggered synergistic antitumor therapies by downregulation of HIF-1α and depletion of GSH. ACS Appl. Mater. Interfaces, 2020, 12(5), 5680-5694.
[http://dx.doi.org/10.1021/acsami.9b23325] [PMID: 31944660]
[77]
Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Nanocarriers in photodynamic therapy in vitro and in vivo studies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(3), e1509.
[http://dx.doi.org/10.1002/wnan.1599] [PMID: 31692285]
[78]
Pucek, A.; Tokarek, B.; Waglewska, E. Bazylińska, U. Recent advances in the structural design of photosensitive agent formulations using “soft” colloidal nanocarriers. Pharmaceutics, 2020, 12(6), 587.
[http://dx.doi.org/10.3390/pharmaceutics12060587] [PMID: 32599791]
[79]
Basu, U.; Khan, I.; Hussain, A.; Kondaiah, P.; Chakravarty, A.R. Photodynamic effect in near-IR light by a photocytotoxic iron(III) cellu-lar imaging agent. Angew. Chem. Int. Ed. Engl., 2012, 51(11), 2658-2661.
[http://dx.doi.org/10.1002/anie.201108360] [PMID: 22290597]
[80]
Wachter, E.; Heidary, D.K.; Howerton, B.S.; Parkin, S.; Glazer, E.C. Light-activated ruthenium complexes photobind DNA and are cyto-toxic in the photodynamic therapy window. Chem. Commun. (Camb.), 2012, 48(77), 9649-9651.
[http://dx.doi.org/10.1039/c2cc33359g] [PMID: 22908094]
[81]
Miyata, Y.; Mukae, Y.; Harada, J.; Matsuda, T.; Mitsunari, K.; Matsuo, T.; Ohba, K.; Sakai, H. Pathological and pharmacological roles of mitochondrial reactive oxygen species in malignant neoplasms: Therapies involving chemical compounds, natural products, and photo-sensitizers. Molecules, 2020, 25(22), 5252.
[http://dx.doi.org/10.3390/molecules25225252] [PMID: 33187225]
[82]
Singh, S.P.; Sharma, M.; Gupta, P.K. Enhancement of phototoxicity of curcumin in human oral cancer cells using silica nanoparticles as delivery vehicle. Lasers Med. Sci., 2014, 29(2), 645-652.
[http://dx.doi.org/10.1007/s10103-013-1357-7] [PMID: 23807180]
[83]
Dérijard, B.; Hibi, M.; Wu, I.H.; Barrett, T.; Su, B.; Deng, T.; Karin, M.; Davis, R.J. JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell, 1994, 76(6), 1025-1037.
[http://dx.doi.org/10.1016/0092-8674(94)90380-8] [PMID: 8137421]
[84]
Hibi, M.; Lin, A.; Smeal, T.; Minden, A.; Karin, M. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev., 1993, 7(11), 2135-2148.
[http://dx.doi.org/10.1101/gad.7.11.2135] [PMID: 8224842]
[85]
Yan, D.; An, G.; Kuo, M.T. C-Jun N-terminal kinase signalling pathway in response to cisplatin. J. Cell. Mol. Med., 2016, 20(11), 2013-2019.
[http://dx.doi.org/10.1111/jcmm.12908] [PMID: 27374471]
[86]
Rutz, J.; Maxeiner, S.; Juengel, E.; Bernd, A.; Kippenberger, S.; Zöller, N.; Chun, F.K.; Blaheta, R.A. Growth and proliferation of renal cell carcinoma cells is blocked by low curcumin concentrations combined with visible light irradiation. Int. J. Mol. Sci., 2019, 20(6), 1464.
[http://dx.doi.org/10.3390/ijms20061464] [PMID: 30909499]
[87]
Deng, Q.; Liang, L.; Liu, Q.; Duan, W.; Jiang, Y.; Zhang, L. Autophagy is a major mechanism for the dual effects of curcumin on renal cell carcinoma cells. Eur J Pharm., 2018, 826, 24-30.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.038] [PMID: 29501864]
[88]
Mani, J.; Fleger, J.; Rutz, J.; Maxeiner, S.; Bernd, A.; Kippenberger, S.; Zöller, N.; Chun, F.K.; Relja, B.; Juengel, E.; Blaheta, R.A. Curcu-min combined with exposure to visible light blocks bladder cancer cell adhesion and migration by an integrin dependent mechanism. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(23), 10564-10574.
[PMID: 31841214]
[89]
Roos, F.; Binder, K.; Rutz, J.; Maxeiner, S.; Bernd, A.; Kippenberger, S.; Zöller, N.; Chun, F.K.; Juengel, E.; Blaheta, R.A. The Antitumor effect of curcumin in urothelial cancer cells is enhanced by light exposure in vitro. Evid. Based Complement. Alternat. Med., 2019, 2019, 6374940.
[http://dx.doi.org/10.1155/2019/6374940] [PMID: 30984278]
[90]
Marquardt, J.U.; Gomez-Quiroz, L.; Arreguin Camacho, L.O.; Pinna, F.; Lee, Y-H.; Kitade, M.; Domínguez, M.P.; Castven, D.; Breuhahn, K.; Conner, E.A.; Galle, P.R.; Andersen, J.B.; Factor, V.M.; Thorgeirsson, S.S. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J. Hepatol., 2015, 63(3), 661-669.
[http://dx.doi.org/10.1016/j.jhep.2015.04.018] [PMID: 25937435]
[91]
Dahl, T.A.; Bilski, P.; Reszka, K.J.; Chignell, C.F. Photocytotoxicity of curcumin. Photochem. Photobiol., 1994, 59(3), 290-294.
[http://dx.doi.org/10.1111/j.1751-1097.1994.tb05036.x] [PMID: 8016207]
[92]
Shen, L.; Ji, H-F.; Zhang, H-Y. A TD-DFT study on triplet excited-state properties of curcumin and its implications in elucidating the pho-tosensitizing mechanisms of the pigment. Chem. Phys. Lett., 2005, 409(4-6), 300-303.
[http://dx.doi.org/10.1016/j.cplett.2005.05.023]
[93]
Oleinick, N.L.; Morris, R.L.; Belichenko, I. The role of apoptosis in response to photodynamic therapy: What, where, why, and how. Photochem. Photobiol. Sci., 2002, 1(1), 1-21.
[http://dx.doi.org/10.1039/b108586g] [PMID: 12659143]
[94]
Plaetzer, K.; Kiesslich, T.; Krammer, B.; Hammerl, P. Characterization of the cell death modes and the associated changes in cellular ener-gy supply in response to AlPcS4-PDT. Photochem. Photobiol. Sci., 2002, 1(3), 172-177.
[http://dx.doi.org/10.1039/b108816e] [PMID: 12659513]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy