Abstract
Diazomethane and trimethylsilyl diazomethane are common and versatile reagents in organic synthesis and they are unique as reactants in synthetic methodology. These reagents may be used in esterification, dipolar cycloaddition, epoxidation, aziridination, cyclopropanation, and carbonyl homologation. The lack of practical, scalable methods for the construction of cyclopropanes is a long-standing problem in industrial chemistry and diazomethane/ trimethylsilyl diazomethane has the potential to significantly reduce the cost of bringing new cyclopropane-bearing compounds to market. The transition metal-mediated reactions of diazomethane and trimethylsilyl diazomethane with alkenes, terminal alkynes and carbonyl compounds are being discussed in this article. The mechanism of different coupling, insertion and rearrangement reactions are also explored in this review article. The toxicity and explosive nature of diazomethane/ trimethylsilyl diazomethane are known to all, but concurrently, their efficacy and significant role as the reagents in synthetic transformation can’t be ignored. The untoward properties of diazomethane and trimethylsilyl diazomethane combined with its versatility, make the identification of safe protocols for its use. Considering the importance of these reagents, a concise review is needed. This article will highlight recent metalmediated reactions of diazomethane and trimethylsilyl diazomethane compounds that have been reported from 2000 until 2020.
Keywords: Transition metal, diazomethane, (trimethylsilyl)diazomethane, metal carbene complex, coupling reaction, carbon-carbon bond formation
Graphical Abstract
(b) Pizey, J.S. Synthetic Reagents; John Wiley & Sons: New York, , 1974; p. 2, pp. 65-142.
(c) Ye, T.; McKervey, M.A. Organic synthesis with. alpha.-diazo carbonyl compounds. Chem. Rev., 1994, 94, 1091-1160.
[http://dx.doi.org/10.1021/cr00028a010]
(d) Fieser, M. Reagents for Organic Synthesis; Wiley: New York, 1994, 17.
(e) Moffat, J.B. Chemistry of the Diazonium and Diazo Groups; Patai, S., Ed.; Wiley: London, 1977.
[http://dx.doi.org/10.1039/C1CS15127D] [PMID: 21785803]
(b) Barluenga, J.; Valdés, C. Tosylhydrazones: New uses for classic reagents in palladium-catalyzed cross-coupling and metal-free reactions. Angew. Chem. Int. Ed. Engl., 2011, 50(33), 7486-7500.
[http://dx.doi.org/10.1002/anie.201007961] [PMID: 21748827]
(c) Xiao, Q.; Zhang, Y.; Wang, J. Diazo compounds and N-tosylhydrazones: Novel cross-coupling partners in transition-metal-catalyzed reactions. Acc. Chem. Res., 2013, 46(2), 236-247.
[http://dx.doi.org/10.1021/ar300101k] [PMID: 23013153]
(d) Barroso, R.; Cabal, M.P.; Valdés, C. Pd-Catalyzed auto-tandem cascades based on N-Sulfonylhydrazones: Hetero- and carbocyclization processes. Synthesis, 2017, 49, 4434-4447.
(e) Xia, Y.; Qiu, D.; Wang, J. Transition-metal- catalyzed cross-couplings through carbene migratory insertion. Chem. Rev., 2017, 117(23), 13810-13889.
[http://dx.doi.org/10.1021/acs.chemrev.7b00382] [PMID: 29091413]
(f) Klärner, F-G.; Jones, M., Jr; Magid, R.M. William von Eggers Doering’s many research achievements during the first 65 years of his career in chemistry. Acc. Chem. Res., 2009, 42(1), 169-181.
[http://dx.doi.org/10.1021/ar800100h] [PMID: 18729479]
(g) Arduengo, A.J. Looking for stable carbenes: The difficulty in starting anew. Acc. Chem. Res., 1999, 32, 913-921.
[http://dx.doi.org/10.1021/ar980126p]
(h) Bourissou, D.; Guerret, O.; Gabbaï, F.P.; Bertrand, G. Stable Carbenes. Chem. Rev., 2000, 100(1), 39-92.
[http://dx.doi.org/10.1021/cr940472u] [PMID: 11749234]
[http://dx.doi.org/10.1002/anie.199417971]
(b) Padwa, A.; Weingarten, M.D. Cascade processes of metallo carbenoids. Chem. Rev., 1996, 96(1), 223-270.
[http://dx.doi.org/10.1021/cr950022h] [PMID: 11848752]
(c) Doyle, M.P.; McKervey, M.A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley: New York, 1998.
(d) Doyle, M.P.; Forbes, D.C. Recent advances in asymmetric aatalytic metal carbene transformations. Chem. Rev., 1998, 98(2), 911-936.
[http://dx.doi.org/10.1021/cr940066a] [PMID: 11848918]
(e) Zhang, Z.; Wang, J. Recent studies on the reactions of α-diazocarbonyl compounds. Tetrahedron, 2008, 64, 6577-6605.
[http://dx.doi.org/10.1016/j.tet.2008.04.074]
(f) Maas, G. New syntheses of diazo compounds. Angew. Chem., 2009, 121, 8332.
[http://dx.doi.org/10.1002/anie.200902785]
[http://dx.doi.org/10.1039/C39820000374]
[http://dx.doi.org/10.1021/jo01292a029]
(b) Tomilov, Y.V.; Dokichev, V.A.; Dzhemilev, U.M.; Nefedov, O.M. Catalytic decomposition of diazomethane as a general method for the methylenation of chemical compounds. Russ. Chem. Rev., 1993, 62, 799-838.
[http://dx.doi.org/10.1070/RC1993v062n09ABEH000048]
[http://dx.doi.org/10.1021/ja00413a041]
(b) Johnson, B.F.G.; Lewis, J.; Raithby, P.R.; Sankey, S.W. Preparation of the clusters [Os3(CO)11CR2] (R = H, CH2); the molecular structure of. J. Organomet. Chem., 1982, 231, C65-C67.
[http://dx.doi.org/10.1016/S0022-328X(00)92901-2]
(c) Calvert, R.B.; Shapley, J.R. Activation of hydrocarbons by unsaturated metal cluster complexes. 6. Synthesis and characterization of methyldecacarbonylhydridotri-osmium, methylenedecacarbonyldihydridotriosmium, and methylidynenonacarbonyltrihydridotriosmium. Interconversion of cluster-bound methyl and methylene lig-ands. J. Am. Chem. Soc., 1977, 99, 5225-5526.
[http://dx.doi.org/10.1021/ja00457a077]
(d) Calvert, R.B.; Shapley, J.R. Decacarbonyl(methyl)hydrotriosmium: NMR evidence for a carbon.cntdot.cntdot.hydrogen.cntdot.cntdot.osmium interaction. J. Am. Chem. Soc., 1978, 100, 7726-7727.
[http://dx.doi.org/10.1021/ja00492a047]
(e) Calvert, R.B.; Shapley, J.R.; Schultz, A.J.; Williams, J.M.; Suib, S.L.; Stucky, G.D. Equilibrium isotope effect on hydrogen distribution between carbon- and metal-bound sites. A neutron diffraction study of partially deuterated decacarbonyldihydridomethylenetriosmium. J. Am. Chem. Soc., 1978, 100, 6240-6241.
[http://dx.doi.org/10.1021/ja00487a051]
(f) Shultz, A.J.; Williams, J.M.; Calvert, R.B.; Shapley, J.R.; Stucky, G.D. Interaction of hydrogen and hydrocarbons with transition metals. Neutron diffraction study of the crystal and molecular structure of di-.mu.-hydrido-decacarbonyl-.mu.-methylene-triosmium. Inorg. Chem., 1979, 18, 319-323.
[http://dx.doi.org/10.1021/ic50192a022]
(g) Holmgren, J.S.; Shapley, J.R. Synthesis, characterization, and fluxionality of Ru3(CO)10(.mu.-CO)(.mu.-CH2). Organometallics, 1985, 4, 793.
[http://dx.doi.org/10.1021/om00123a030]
[http://dx.doi.org/10.1021/om050396t]
(b) Wang, M-Z.; Xu, H-W.; Liu, Y.; Wong, M-K.; Che, C-M. Stereoselective synthesis of multifunctionalized 1,2,4-triazolidines by a ruthenium porphyrin-catalyzed three-component coupling reaction. Adv. Synth. Catal., 2006, 348, 2391-2396.
[http://dx.doi.org/10.1002/adsc.200600320]
(c) Bonaccorsi, C.; Santoro, F.; Gischig, S.; Mezzetti, A. Chiral Dicationic Bis(aqua) Complexes [Ru(OH2)2(PNNP)]2+:- The effect of double chloride abstraction on asymmetric cyclopropanation. Organometallics, 2006, 25, 2002-2010.
[http://dx.doi.org/10.1021/om0510627]
(d) Xiao, Q.; Wang, J. Acta Chimi. Sin., 2007, 65, 1733-1735.
(e) Chen, Y.; Zhang, X.P. Vitamin B12 derivatives as natural asymmetric catalysts: Enantioselective cyclopropanation of alkenes. J. Org. Chem., 2004, 69(7), 2431-2435.
[http://dx.doi.org/10.1021/jo049870f] [PMID: 15049642]
(f) Chen, Y.; Fields, K.B.; Zhang, X.P. Bromoporphyrins as versatile synthons for modular construction of chiral porphyrins: Cobalt-catalyzed highly enantioselective and diastereoselective cyclopropanation. J. Am. Chem. Soc., 2004, 126(45), 14718-14719.
[http://dx.doi.org/10.1021/ja044889l] [PMID: 15535686]
(g) Hahn, N.D.; Nieger, M.; Dötz, K.H. Highly regio-and diastereoselective chromium(0)-catalysed cyclopropanation of 1‐alkoxy‐1, 3‐dienes with diazo com-pounds. Eur. J. Org. Chem., 2004, 1049-1056.
[http://dx.doi.org/10.1002/ejoc.200300687]
(h) Li, Y.; Huang, J-S.; Zhou, Z-Y.; Che, C.M.; You, X.Z. Remarkably stable iron porphyrins bearing nonheteroatom-stabilized carbene or (alkoxycarbonyl)carbenes: Isolation, X-ray crystal structures, and carbon atom transfer reactions with hydrocarbons. J. Am. Chem. Soc., 2002, 124(44), 13185-13193.
[http://dx.doi.org/10.1021/ja020391c] [PMID: 12405847]
(i) Du, G.; Andrioletti, B.; Rose, E.; Woo, L.K. Asymmetric cyclopropanation of styrene catalyzed by chiral macrocyclic iron(II) complexes. Organometallics, 2002, 21, 4490-4495.
[http://dx.doi.org/10.1021/om0204641]
(j) Edulji, S.K.; Nguyen, S.T. Catalytic olefin cyclopropanation using μ-oxo−bis[(salen)iron(III)] complexes. Organometallics, 2003, 22, 3374-3381.
[http://dx.doi.org/10.1021/om020959q]
(k) Aviv, I.; Gross, Z. Iron porphyrins catalyze the synthesis of non-protected amino acid esters from ammonia and diazoacetates. Chem. Commun. (Camb.), 2006, (43), 4477-4479.
[http://dx.doi.org/10.1039/b609265a] [PMID: 17283790]
(l) Zhu, S-F.; Cai, Y.; Mao, H-X.; Xie, J-H.; Zhou, Q-L. Enantioselective iron-catalysed O-H bond insertions. Nat. Chem., 2010, 2(7), 546-551.
[http://dx.doi.org/10.1038/nchem.651] [PMID: 20571572]
(m) Dias, H.V.R.; Browning, R.G.; Polach, S.A.; Diyabalanage, H.V.K.; Lovely, C.J. Activation of alkyl halides via a silver-catalyzed carbene insertion process. J. Am. Chem. Soc., 2003, 125(31), 9270-9271.
[http://dx.doi.org/10.1021/ja034801o] [PMID: 12889937]
(n) Thompson, J.L.; Davies, H.M.L. Enhancement of cyclopropanation chemistry in the silver-catalyzed reactions of aryldiazoacetates. J. Am. Chem. Soc., 2007, 129(19), 6090-6091.
[http://dx.doi.org/10.1021/ja069314y] [PMID: 17441720]
(o) Fructos, M.R.; Belderrain, T.R.; Frémont, P.; Scott, N.M.; Nolan, S.P.; Díaz-Requejo, M.M.; Pérez, P.J. A gold catalyst for carbene-transfer reactions from ethyl diazo-acetate. Angew. Chem.,2005, 117, 5418. Angew. Chem. Int. Ed., 2005, 44, 5284-5288.
[http://dx.doi.org/10.1002/anie.200501056] [PMID: 16038003]
[http://dx.doi.org/10.1002/0471212466.ch64]
(b) Xiao, Q.; Xia, Y.; Li, H.; Zhang, Y.; Wang, J. Coupling of N-tosylhydrazones with terminal alkynes catalyzed by copper(I): Synthesis of trisubstituted allenes. Angew. Chem. Int. Ed. Engl., 2011, 50(5), 1114-1117.
[http://dx.doi.org/10.1002/anie.201005741] [PMID: 21268207]
(c) Neff, R.K.; Frantz, D.E. Recent advances in the catalytic syntheses of allenes: A critical assessment. ACS Catal., 2014, 4, 519-528.
[http://dx.doi.org/10.1021/cs401007m]
(d) Torres, Ò.; Pla-Quintana, A. The rich reactivity of transition metal carbenes with alkynes. Tetrahedron Lett., 2016, 57, 3881-3891.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.029]
(e) Chu, W-D.; Zhang, Y.; Wang, J. Recent advances in catalytic asymmetric synthesis of allenes. Catal. Sci. Technol., 2017, 7, 4570-4579.
[http://dx.doi.org/10.1039/C7CY01319A]
(b) Le Maux, P.; Juillard, S.; Simonneaux, G. Asymmetric synthesis of trifluoromethylphenyl cyclopropanes catalyzed by chiral metalloporphyrins. Synthesis, 2006, 1701-1704.
(c) Mykhailiuk, P.K.; Afonin, S.; Palamarchuk, G.V.; Shishkin, O.V.; Ulrich, A.S.; Komarov, I.V. Synthesis of trifluoromethyl-substituted proline analogues as 19F NMR labels for peptides in the polyproline II conformation. Angew. Chem. Int. Ed. Engl., 2008, 47(31), 5765-5767.
[http://dx.doi.org/10.1002/anie.200801022] [PMID: 18576439]
(d) Morandi, B.; Carreira, E.M. Iron-catalyzed cyclopropanation with trifluoroethylamine hydrochloride and olefins in aqueous media: In situ generation of trifluorome-thyl diazomethane. Angew. Chem. Int. Ed. Engl., 2010, 49(5), 938-941.
[http://dx.doi.org/10.1002/anie.200905573] [PMID: 20039242]
(e) Morandi, B.; Mariampillai, B.; Carreira, E.M. Enantioselective cobalt-catalyzed preparation of trifluoromethyl-substituted cyclopropanes. Angew. Chem. Int. Ed. Engl., 2011, 50(5), 1101-1104.
[http://dx.doi.org/10.1002/anie.201004269] [PMID: 21268204]
(f) Li, T-R.; Duan, S-W.; Ding, W.; Liu, Y-Y.; Chen, J.R.; Lu, L-Q.; Xiao, W-J. Synthesis of CF3-containing 3,3′-cyclopropyl spirooxindoles by sequential [3 + 2] cycloaddition/ring contraction of ylideneoxindoles with 2,2,2-trifluorodiazoethane. J. Org. Chem., 2014, 79(5), 2296-2302.
[http://dx.doi.org/10.1021/jo500019a] [PMID: 24506322]
(g) Morandi, B.; Cheang, J.; Carreira, E.M. Iron-catalyzed preparation of trifluoromethyl substituted vinyl- and alkynylcyclopropanes. Org. Lett., 2011, 13(12), 3080-3081.
[http://dx.doi.org/10.1021/ol200983s] [PMID: 21591649]
[http://dx.doi.org/10.1002/anie.201501529] [PMID: 25801346]
(b) Mertens, L.; Hock, K.J.; Koenigs, R.M. Fluoroalkyl-substituted diazomethanes and their application in a general synthesis of pyrazoles and pyrazolines. Chemistry, 2016, 22(28), 9542-9545.
[http://dx.doi.org/10.1002/chem.201601707] [PMID: 27168358]
[http://dx.doi.org/10.1039/b926676c] [PMID: 20442894]
[http://dx.doi.org/10.1002/ejoc.200400109]
[http://dx.doi.org/10.1002/ejoc.202000619]
[http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2363:AID-ANIE2363>3.0.CO;2-9] [PMID: 12203593]
(b) Bröring, M.; Brandt, C.D.; Stellwag, S. The first Pd(II) complex of a non-heteroatom stabilised carbene ligand. Chem. Commun. (Camb.), 2003, (18), 2344-2345.
[http://dx.doi.org/10.1039/B307160J] [PMID: 14518906]
(c) Danopoulos, A.A.; Tsoureas, N.; Green, J.C.; Hursthouse, M.B. Migratory insertion in N-heterocyclic carbene complexes of palladium; an experimental and DFT study. Chem. Commun. (Camb.), 2003, (6), 756-757.
[http://dx.doi.org/10.1039/b212453j] [PMID: 12703808]
(d) Solé, D.; Vallverdú, L.; Solans, X.; Font-Bardia, M.; Bonjoch, J. Synthesis and reactivity of four-membered azapalladacycles derived from N,N-dialkyl-2-iodoanilines:-insertion reactions of carbenes into the carbon-palladium bond. Organometallics, 2004, 23, 1438-1447.
[http://dx.doi.org/10.1021/om034270c]
(e) Albéniz, A.C.; Espinet, P.; Manrique, R.; Pérez-Mateo, A. Aryl palladium carbene complexes and carbene–aryl coupling reactions. Chem. Eur. J,, 2005, 11, 1565-1573.
(f) Zhang, Y.; Wang, J. Recent developments in Pd-catalyzed reactions of diazo compounds. Eur. J. Org. Chem., 2011, 1015-1026.
[http://dx.doi.org/10.1016/S0040-4020(01)00363-5]
[http://dx.doi.org/10.1021/jo800109d] [PMID: 18370420]
[http://dx.doi.org/10.1021/ja809220j] [PMID: 19125571]
[http://dx.doi.org/10.1021/acs.joc.8b00651] [PMID: 29719960]
[http://dx.doi.org/10.1021/acs.orglett.9b00391] [PMID: 30843700]
[http://dx.doi.org/10.1021/om070141a]
[http://dx.doi.org/10.1002/1521-3773(20010803)40:15<2887:AID-ANIE2887>3.0.CO;2-Q]
(b) Grasa, G.A.; Moore, Z.; Martin, K.L.; Stevens, E.D.; Nolan, S.P.; Paquet, V.; Lebel, H. Structural characterization and catalytic activity of the rhodium–carbene com-plex Rh (PPh3) 2 (IMes) Cl (IMes= bis (1, 3-(2, 4, 6-trimethylphenyl) imidazol-2-ylidene). J. Organomet. Chem., 2002, 658, 126-131.
[http://dx.doi.org/10.1016/S0022-328X(02)01638-8]
(c) Lebel, H.; Paquet, V. Highly chemoselective rhodium-catalyzed methylenation of fluorine-containing ketones. Org. Lett., 2002, 4(10), 1671-1674.
[http://dx.doi.org/10.1021/ol025730l] [PMID: 12000270]
(d) Lebel, H.; Paquet, V. Rhodium-catalyzed methylenation of aldehydes. J. Am. Chem. Soc., 2004, 126(1), 320-328.
[http://dx.doi.org/10.1021/ja038112o] [PMID: 14709098]
[http://dx.doi.org/10.1021/om034358q]
[http://dx.doi.org/10.1126/science.1218781] [PMID: 22442479]
[http://dx.doi.org/10.1021/jo970044z] [PMID: 11671727]
[http://dx.doi.org/10.1016/S0040-4020(00)01061-9]
[http://dx.doi.org/10.1016/S0957-4166(03)00076-4]
[http://dx.doi.org/10.1002/9781118978429]
(b) Burke, A.J.; Marques, C.S.; Turner, N.; Hermann, G. Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development; Wiley: Weinheim, 2018.
[http://dx.doi.org/10.1002/9783527807253]
[http://dx.doi.org/10.1016/j.tetlet.2019.06.044]
[http://dx.doi.org/10.1016/j.tetlet.2006.06.065]
[http://dx.doi.org/10.1016/S0040-4039(01)01221-7]
(b) Lebel, H.; Marcoux, J-F.; Molinaro, C.; Charette, A.B. Stereoselective cyclopropanation reactions. Chem. Rev., 2003, 103(4), 977-1050.
[http://dx.doi.org/10.1021/cr010007e] [PMID: 12683775]
(c) Rovis, T.; Evans, D. Progress in Inorganic Chemistry; Karlin, K.D., Ed.; Wiley: New York, 2001, Vol. 50, pp. 1-150.
(d) Davies, H.M.L.; Antoulinakis, E.G. Organic Reactions; Overman, L.E., Ed.; Wiley: New York, 2001, 57, pp. 1-326.
(e) Noels, A.F.; Demonceau, A. Applied Homogeneous Catalysis with Organometallic Compounds; Cornils, B; Herrman, W.A., Ed.; Wiley-VCH: Weinheim, 2002, Vol. 2, pp. 793-808.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.068]
[http://dx.doi.org/10.1021/ol9010932] [PMID: 19588908]
[http://dx.doi.org/10.1021/jo401377a] [PMID: 23879715]
[http://dx.doi.org/10.3998/ark.5550190.0012.403]
[http://dx.doi.org/10.1021/ja101998w] [PMID: 20411932]
[http://dx.doi.org/10.1039/C5CC00497G] [PMID: 25739369]
(b) Zhao, X.; Wu, G.; Zhang, Y.; Wang, J. Copper-catalyzed direct benzylation or allylation of 1,3-azoles with N-tosylhydrazones. J. Am. Chem. Soc., 2011, 133(10), 3296-3299.
[http://dx.doi.org/10.1021/ja111249p] [PMID: 21341655]
(c) Xiao, Q.; Ling, L.; Ye, F.; Tan, R.; Tian, L.; Zhang, Y.; Li, Y.; Wang, J. Copper-catalyzed direct ortho-alkylation of N-iminopyridinium ylides with N-tosylhydrazones. J. Org. Chem., 2013, 78(8), 3879-3885.
[http://dx.doi.org/10.1021/jo4002883] [PMID: 23506266]
(d) Xu, S.; Wu, G.; Ye, F.; Wang, X.; Li, H.; Zhao, X.; Zhang, Y.; Wang, J. Copper(I)-catalyzed alkylation of polyfluoroarenes through Direct C-H bond functionalization. Angew. Chem. Int. Ed. Engl., 2015, 54(15), 4669-4672.
[http://dx.doi.org/10.1002/anie.201412450] [PMID: 25690761]
[http://dx.doi.org/10.1021/acscatal.6b03562]
[http://dx.doi.org/10.1021/ja046147y] [PMID: 15355092]
[http://dx.doi.org/10.1021/ja057741q] [PMID: 16492045]
[http://dx.doi.org/10.1055/s-1983-30204]
(b) Nakamura, E.; Hashimoto, K.; Kuwajima, I. Highly stereoselective formation of enol silyl ethers. Tetrahedron Lett., 1978, 19, 2079-2082.
[http://dx.doi.org/10.1016/S0040-4039(01)94755-0]
(c) Reich, H.J.; Rusek, J.J.; Olson, R.E. Silyl ketone chemistry. A new regiospecific route to silyl enol ethers. J. Am. Chem. Soc., 1979, 101, 2225-2227.
[http://dx.doi.org/10.1021/ja00502a061]
(d) Corey, E.J.; Gross, A.W. Highly selective, kinetically controlled enolate formation using lithium dialkylamides in the presence of trimethylchlorosilane. Tetrahedron Lett., 1984, 25, 495-498.
[http://dx.doi.org/10.1016/S0040-4039(00)99920-9]
(e) Cahiez, G.; Figade’re, B.; Cle’ry, P. Highly regio and stereoselective preparation of Z silyl enol ethers and Z enol esters from ketones via manganese enolates. Tetrahedron Lett., 1994, 35, 6295-6298.
[http://dx.doi.org/10.1016/S0040-4039(00)73415-0]
[http://dx.doi.org/10.1021/ja027061c] [PMID: 12197731]
[http://dx.doi.org/10.1002/cber.19681010333]
(b) Doyle, M.P.; Griffin, J.H.; Chinn, M.S.; van Leusen, D. Rearrangements of ylides generated from reactions of diazo compounds with allyl acetals and thioketals by catalytic methods. Heteroatom acceleration of the [2,3]-sigmatropic rearrangement. J. Org. Chem., 1984, 49, 1917-1925.
[http://dx.doi.org/10.1021/jo00185a014]
(c) Doyle, M.P.; McKervey, M.A.; Ye, T. Modern Catalytic Methodsfor Organic Synthesis with Diazo Compounds: From Cyclopropanes toYlides; John Wiley&Sons: New York, 1998.
(d) Aggarwal, V.K.; Ferrara, M.; Hainz, R.; Spey, S.E. [2,3]-Sigmatropic rearrangement of allylic sulfur ylides derived from trimethylsilyldiazomethane (TMSD). Tetrahedron Lett., 1999, 40, 8923-8927.
[http://dx.doi.org/10.1016/S0040-4039(99)01896-1]
(e) Meyer, O.; Cagle, P.C.; Weickhardt, K.; Vichard, D.; Gladysz, J.A. Enantioselective syntheses of organosulfur compounds via [2,3] sigmatropic rearrangements of ylides derived from di(allyl), di(propargyl), and di(benzy1) sulfide complexes; control of carbon configuration by an easily resolved and recycled rhenium auxiliary. Pure Appl. Chem., 1996, 68, 79-88.
[http://dx.doi.org/10.1351/pac199668010079]
[http://dx.doi.org/10.1021/ol005740r] [PMID: 10810733]