Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Advancement of Transition Metal-mediated Reactions of Diazomethane and (Trimethylsilyl)diazomethane

Author(s): Sanjukta Muhuri*

Volume 26, Issue 5, 2022

Published on: 25 May, 2022

Page: [526 - 541] Pages: 16

DOI: 10.2174/1385272826666220429124208

Price: $65

Abstract

Diazomethane and trimethylsilyl diazomethane are common and versatile reagents in organic synthesis and they are unique as reactants in synthetic methodology. These reagents may be used in esterification, dipolar cycloaddition, epoxidation, aziridination, cyclopropanation, and carbonyl homologation. The lack of practical, scalable methods for the construction of cyclopropanes is a long-standing problem in industrial chemistry and diazomethane/ trimethylsilyl diazomethane has the potential to significantly reduce the cost of bringing new cyclopropane-bearing compounds to market. The transition metal-mediated reactions of diazomethane and trimethylsilyl diazomethane with alkenes, terminal alkynes and carbonyl compounds are being discussed in this article. The mechanism of different coupling, insertion and rearrangement reactions are also explored in this review article. The toxicity and explosive nature of diazomethane/ trimethylsilyl diazomethane are known to all, but concurrently, their efficacy and significant role as the reagents in synthetic transformation can’t be ignored. The untoward properties of diazomethane and trimethylsilyl diazomethane combined with its versatility, make the identification of safe protocols for its use. Considering the importance of these reagents, a concise review is needed. This article will highlight recent metalmediated reactions of diazomethane and trimethylsilyl diazomethane compounds that have been reported from 2000 until 2020.

Keywords: Transition metal, diazomethane, (trimethylsilyl)diazomethane, metal carbene complex, coupling reaction, carbon-carbon bond formation

Graphical Abstract

[1]
(a) Black, T.H. The preparation and reactions of diazomethane. Aldrichim Acta, 1983, 16, 3-10.
(b) Pizey, J.S. Synthetic Reagents; John Wiley & Sons: New York, , 1974; p. 2, pp. 65-142.
(c) Ye, T.; McKervey, M.A. Organic synthesis with. alpha.-diazo carbonyl compounds. Chem. Rev., 1994, 94, 1091-1160.
[http://dx.doi.org/10.1021/cr00028a010]
(d) Fieser, M. Reagents for Organic Synthesis; Wiley: New York, 1994, 17.
(e) Moffat, J.B. Chemistry of the Diazonium and Diazo Groups; Patai, S., Ed.; Wiley: London, 1977.
[2]
Maas, G. In synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products; Padwa, A; Pearson, W.H., Ed.; John Wiley & Sons: New York, 2002, pp. 539-622.
[3]
(a) Shao, Z.; Zhang, H. N-tosylhydrazones: Versatile reagents for metal-catalyzed and metal-free cross-coupling reactions. Chem. Soc. Rev., 2012, 41(2), 560-572.
[http://dx.doi.org/10.1039/C1CS15127D] [PMID: 21785803]
(b) Barluenga, J.; Valdés, C. Tosylhydrazones: New uses for classic reagents in palladium-catalyzed cross-coupling and metal-free reactions. Angew. Chem. Int. Ed. Engl., 2011, 50(33), 7486-7500.
[http://dx.doi.org/10.1002/anie.201007961] [PMID: 21748827]
(c) Xiao, Q.; Zhang, Y.; Wang, J. Diazo compounds and N-tosylhydrazones: Novel cross-coupling partners in transition-metal-catalyzed reactions. Acc. Chem. Res., 2013, 46(2), 236-247.
[http://dx.doi.org/10.1021/ar300101k] [PMID: 23013153]
(d) Barroso, R.; Cabal, M.P.; Valdés, C. Pd-Catalyzed auto-tandem cascades based on N-Sulfonylhydrazones: Hetero- and carbocyclization processes. Synthesis, 2017, 49, 4434-4447.
(e) Xia, Y.; Qiu, D.; Wang, J. Transition-metal- catalyzed cross-couplings through carbene migratory insertion. Chem. Rev., 2017, 117(23), 13810-13889.
[http://dx.doi.org/10.1021/acs.chemrev.7b00382] [PMID: 29091413]
(f) Klärner, F-G.; Jones, M., Jr; Magid, R.M. William von Eggers Doering’s many research achievements during the first 65 years of his career in chemistry. Acc. Chem. Res., 2009, 42(1), 169-181.
[http://dx.doi.org/10.1021/ar800100h] [PMID: 18729479]
(g) Arduengo, A.J. Looking for stable carbenes: The difficulty in starting anew. Acc. Chem. Res., 1999, 32, 913-921.
[http://dx.doi.org/10.1021/ar980126p]
(h) Bourissou, D.; Guerret, O.; Gabbaï, F.P.; Bertrand, G. Stable Carbenes. Chem. Rev., 2000, 100(1), 39-92.
[http://dx.doi.org/10.1021/cr940472u] [PMID: 11749234]
[4]
(a) Padwa, A.; Austin, D.J. Ligand effects on the chemoselectivity of transition metal catalyzed reactions of α-diazo carbonyl compounds. Angew. Chem., 1994, 106, 1881.
[http://dx.doi.org/10.1002/anie.199417971]
(b) Padwa, A.; Weingarten, M.D. Cascade processes of metallo carbenoids. Chem. Rev., 1996, 96(1), 223-270.
[http://dx.doi.org/10.1021/cr950022h] [PMID: 11848752]
(c) Doyle, M.P.; McKervey, M.A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley: New York, 1998.
(d) Doyle, M.P.; Forbes, D.C. Recent advances in asymmetric aatalytic metal carbene transformations. Chem. Rev., 1998, 98(2), 911-936.
[http://dx.doi.org/10.1021/cr940066a] [PMID: 11848918]
(e) Zhang, Z.; Wang, J. Recent studies on the reactions of α-diazocarbonyl compounds. Tetrahedron, 2008, 64, 6577-6605.
[http://dx.doi.org/10.1016/j.tet.2008.04.074]
(f) Maas, G. New syntheses of diazo compounds. Angew. Chem., 2009, 121, 8332.
[http://dx.doi.org/10.1002/anie.200902785]
[5]
Gambarotta, S.; Bert, M.B.; Floriani, C.; Guastrini, A. Nitrogen–carbon and nitrogen–hydrogen bond formation by insertion of a diazoalkane into metal–carbon and metal–hydrogen bonds. J. Chem. Soc. Chem. Commun., 1982, 374.
[http://dx.doi.org/10.1039/C39820000374]
[6]
(a) Anciaux, A.J.; Jubert, A.J.; Noels, A.F.; Petinot, N.; Teyssie´, P. Transition-metal-catalyzed reactions of diazo compounds. 1. cyclopropanation of double bonds. J. Org. Chem., 1980, 45, 695.
[http://dx.doi.org/10.1021/jo01292a029]
(b) Tomilov, Y.V.; Dokichev, V.A.; Dzhemilev, U.M.; Nefedov, O.M. Catalytic decomposition of diazomethane as a general method for the methylenation of chemical compounds. Russ. Chem. Rev., 1993, 62, 799-838.
[http://dx.doi.org/10.1070/RC1993v062n09ABEH000048]
[7]
(a) Shapley, J.R.; Sievert, A.C.; Churchill, M.R.; Wasserman, H.J. Coordination and coupling of alkylidene groups on a triosmium cluster framework. Crystal structure of Os3(CO)10(.mu.-CO)(.mu.-CHSiMe3). J. Am. Chem. Soc., 1981, 103, 6975-6977.
[http://dx.doi.org/10.1021/ja00413a041]
(b) Johnson, B.F.G.; Lewis, J.; Raithby, P.R.; Sankey, S.W. Preparation of the clusters [Os3(CO)11CR2] (R = H, CH2); the molecular structure of. J. Organomet. Chem., 1982, 231, C65-C67.
[http://dx.doi.org/10.1016/S0022-328X(00)92901-2]
(c) Calvert, R.B.; Shapley, J.R. Activation of hydrocarbons by unsaturated metal cluster complexes. 6. Synthesis and characterization of methyldecacarbonylhydridotri-osmium, methylenedecacarbonyldihydridotriosmium, and methylidynenonacarbonyltrihydridotriosmium. Interconversion of cluster-bound methyl and methylene lig-ands. J. Am. Chem. Soc., 1977, 99, 5225-5526.
[http://dx.doi.org/10.1021/ja00457a077]
(d) Calvert, R.B.; Shapley, J.R. Decacarbonyl(methyl)hydrotriosmium: NMR evidence for a carbon.cntdot.cntdot.hydrogen.cntdot.cntdot.osmium interaction. J. Am. Chem. Soc., 1978, 100, 7726-7727.
[http://dx.doi.org/10.1021/ja00492a047]
(e) Calvert, R.B.; Shapley, J.R.; Schultz, A.J.; Williams, J.M.; Suib, S.L.; Stucky, G.D. Equilibrium isotope effect on hydrogen distribution between carbon- and metal-bound sites. A neutron diffraction study of partially deuterated decacarbonyldihydridomethylenetriosmium. J. Am. Chem. Soc., 1978, 100, 6240-6241.
[http://dx.doi.org/10.1021/ja00487a051]
(f) Shultz, A.J.; Williams, J.M.; Calvert, R.B.; Shapley, J.R.; Stucky, G.D. Interaction of hydrogen and hydrocarbons with transition metals. Neutron diffraction study of the crystal and molecular structure of di-.mu.-hydrido-decacarbonyl-.mu.-methylene-triosmium. Inorg. Chem., 1979, 18, 319-323.
[http://dx.doi.org/10.1021/ic50192a022]
(g) Holmgren, J.S.; Shapley, J.R. Synthesis, characterization, and fluxionality of Ru3(CO)10(.mu.-CO)(.mu.-CH2). Organometallics, 1985, 4, 793.
[http://dx.doi.org/10.1021/om00123a030]
[8]
(a) Bonaccorsi, C.; Mezzetti, A. Optimization or Breakthrough? The first highly cis- and enantioselective asymmetric cyclopropanation of 1-octene by “electronic and counterion” tuning of [RuCl(PNNP)]+ catalysts. Organometallics, 2005, 24, 4953-4960.
[http://dx.doi.org/10.1021/om050396t]
(b) Wang, M-Z.; Xu, H-W.; Liu, Y.; Wong, M-K.; Che, C-M. Stereoselective synthesis of multifunctionalized 1,2,4-triazolidines by a ruthenium porphyrin-catalyzed three-component coupling reaction. Adv. Synth. Catal., 2006, 348, 2391-2396.
[http://dx.doi.org/10.1002/adsc.200600320]
(c) Bonaccorsi, C.; Santoro, F.; Gischig, S.; Mezzetti, A. Chiral Dicationic Bis(aqua) Complexes [Ru(OH2)2(PNNP)]2+:- The effect of double chloride abstraction on asymmetric cyclopropanation. Organometallics, 2006, 25, 2002-2010.
[http://dx.doi.org/10.1021/om0510627]
(d) Xiao, Q.; Wang, J. Acta Chimi. Sin., 2007, 65, 1733-1735.
(e) Chen, Y.; Zhang, X.P. Vitamin B12 derivatives as natural asymmetric catalysts: Enantioselective cyclopropanation of alkenes. J. Org. Chem., 2004, 69(7), 2431-2435.
[http://dx.doi.org/10.1021/jo049870f] [PMID: 15049642]
(f) Chen, Y.; Fields, K.B.; Zhang, X.P. Bromoporphyrins as versatile synthons for modular construction of chiral porphyrins: Cobalt-catalyzed highly enantioselective and diastereoselective cyclopropanation. J. Am. Chem. Soc., 2004, 126(45), 14718-14719.
[http://dx.doi.org/10.1021/ja044889l] [PMID: 15535686]
(g) Hahn, N.D.; Nieger, M.; Dötz, K.H. Highly regio-and diastereoselective chromium(0)-catalysed cyclopropanation of 1‐alkoxy‐1, 3‐dienes with diazo com-pounds. Eur. J. Org. Chem., 2004, 1049-1056.
[http://dx.doi.org/10.1002/ejoc.200300687]
(h) Li, Y.; Huang, J-S.; Zhou, Z-Y.; Che, C.M.; You, X.Z. Remarkably stable iron porphyrins bearing nonheteroatom-stabilized carbene or (alkoxycarbonyl)carbenes: Isolation, X-ray crystal structures, and carbon atom transfer reactions with hydrocarbons. J. Am. Chem. Soc., 2002, 124(44), 13185-13193.
[http://dx.doi.org/10.1021/ja020391c] [PMID: 12405847]
(i) Du, G.; Andrioletti, B.; Rose, E.; Woo, L.K. Asymmetric cyclopropanation of styrene catalyzed by chiral macrocyclic iron(II) complexes. Organometallics, 2002, 21, 4490-4495.
[http://dx.doi.org/10.1021/om0204641]
(j) Edulji, S.K.; Nguyen, S.T. Catalytic olefin cyclopropanation using μ-oxo−bis[(salen)iron(III)] complexes. Organometallics, 2003, 22, 3374-3381.
[http://dx.doi.org/10.1021/om020959q]
(k) Aviv, I.; Gross, Z. Iron porphyrins catalyze the synthesis of non-protected amino acid esters from ammonia and diazoacetates. Chem. Commun. (Camb.), 2006, (43), 4477-4479.
[http://dx.doi.org/10.1039/b609265a] [PMID: 17283790]
(l) Zhu, S-F.; Cai, Y.; Mao, H-X.; Xie, J-H.; Zhou, Q-L. Enantioselective iron-catalysed O-H bond insertions. Nat. Chem., 2010, 2(7), 546-551.
[http://dx.doi.org/10.1038/nchem.651] [PMID: 20571572]
(m) Dias, H.V.R.; Browning, R.G.; Polach, S.A.; Diyabalanage, H.V.K.; Lovely, C.J. Activation of alkyl halides via a silver-catalyzed carbene insertion process. J. Am. Chem. Soc., 2003, 125(31), 9270-9271.
[http://dx.doi.org/10.1021/ja034801o] [PMID: 12889937]
(n) Thompson, J.L.; Davies, H.M.L. Enhancement of cyclopropanation chemistry in the silver-catalyzed reactions of aryldiazoacetates. J. Am. Chem. Soc., 2007, 129(19), 6090-6091.
[http://dx.doi.org/10.1021/ja069314y] [PMID: 17441720]
(o) Fructos, M.R.; Belderrain, T.R.; Frémont, P.; Scott, N.M.; Nolan, S.P.; Díaz-Requejo, M.M.; Pérez, P.J. A gold catalyst for carbene-transfer reactions from ethyl diazo-acetate. Angew. Chem.,2005, 117, 5418. Angew. Chem. Int. Ed., 2005, 44, 5284-5288.
[http://dx.doi.org/10.1002/anie.200501056] [PMID: 16038003]
[9]
(a) Reiser, O. Handbook of Organopalladium Chemistry forOrganic Synthesis; Negishi, E., Ed.; John Wiley & Sons: New York, , 2002; p. 1, pp. 1561-1577.
[http://dx.doi.org/10.1002/0471212466.ch64]
(b) Xiao, Q.; Xia, Y.; Li, H.; Zhang, Y.; Wang, J. Coupling of N-tosylhydrazones with terminal alkynes catalyzed by copper(I): Synthesis of trisubstituted allenes. Angew. Chem. Int. Ed. Engl., 2011, 50(5), 1114-1117.
[http://dx.doi.org/10.1002/anie.201005741] [PMID: 21268207]
(c) Neff, R.K.; Frantz, D.E. Recent advances in the catalytic syntheses of allenes: A critical assessment. ACS Catal., 2014, 4, 519-528.
[http://dx.doi.org/10.1021/cs401007m]
(d) Torres, Ò.; Pla-Quintana, A. The rich reactivity of transition metal carbenes with alkynes. Tetrahedron Lett., 2016, 57, 3881-3891.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.029]
(e) Chu, W-D.; Zhang, Y.; Wang, J. Recent advances in catalytic asymmetric synthesis of allenes. Catal. Sci. Technol., 2017, 7, 4570-4579.
[http://dx.doi.org/10.1039/C7CY01319A]
[10]
(a) Mertens, L.; Koenigs, R.M. Review on fluoroalkyl-substituted diazoalkanes. Org. Biomol. Chem., 2016, 14, 10547-10556.
(b) Le Maux, P.; Juillard, S.; Simonneaux, G. Asymmetric synthesis of trifluoromethylphenyl cyclopropanes catalyzed by chiral metalloporphyrins. Synthesis, 2006, 1701-1704.
(c) Mykhailiuk, P.K.; Afonin, S.; Palamarchuk, G.V.; Shishkin, O.V.; Ulrich, A.S.; Komarov, I.V. Synthesis of trifluoromethyl-substituted proline analogues as 19F NMR labels for peptides in the polyproline II conformation. Angew. Chem. Int. Ed. Engl., 2008, 47(31), 5765-5767.
[http://dx.doi.org/10.1002/anie.200801022] [PMID: 18576439]
(d) Morandi, B.; Carreira, E.M. Iron-catalyzed cyclopropanation with trifluoroethylamine hydrochloride and olefins in aqueous media: In situ generation of trifluorome-thyl diazomethane. Angew. Chem. Int. Ed. Engl., 2010, 49(5), 938-941.
[http://dx.doi.org/10.1002/anie.200905573] [PMID: 20039242]
(e) Morandi, B.; Mariampillai, B.; Carreira, E.M. Enantioselective cobalt-catalyzed preparation of trifluoromethyl-substituted cyclopropanes. Angew. Chem. Int. Ed. Engl., 2011, 50(5), 1101-1104.
[http://dx.doi.org/10.1002/anie.201004269] [PMID: 21268204]
(f) Li, T-R.; Duan, S-W.; Ding, W.; Liu, Y-Y.; Chen, J.R.; Lu, L-Q.; Xiao, W-J. Synthesis of CF3-containing 3,3′-cyclopropyl spirooxindoles by sequential [3 + 2] cycloaddition/ring contraction of ylideneoxindoles with 2,2,2-trifluorodiazoethane. J. Org. Chem., 2014, 79(5), 2296-2302.
[http://dx.doi.org/10.1021/jo500019a] [PMID: 24506322]
(g) Morandi, B.; Cheang, J.; Carreira, E.M. Iron-catalyzed preparation of trifluoromethyl substituted vinyl- and alkynylcyclopropanes. Org. Lett., 2011, 13(12), 3080-3081.
[http://dx.doi.org/10.1021/ol200983s] [PMID: 21591649]
[11]
(a) Mykhailiuk, P.K. In situ generation of difluoromethyl diazomethane for [3+2] cycloadditions with alkynes. Angew. Chem. Int. Ed. Engl., 2015, 54(22), 6558-6561.
[http://dx.doi.org/10.1002/anie.201501529] [PMID: 25801346]
(b) Mertens, L.; Hock, K.J.; Koenigs, R.M. Fluoroalkyl-substituted diazomethanes and their application in a general synthesis of pyrazoles and pyrazolines. Chemistry, 2016, 22(28), 9542-9545.
[http://dx.doi.org/10.1002/chem.201601707] [PMID: 27168358]
[12]
Hock, K.J.; Mertens, L.; Koenigs, R.M. Rhodium catalyzed synthesis of difluoromethyl cyclopropanes. Chem. Commun., 2016, 52, 13783-13786.
[13]
Ishigaki, Y.; Mahendar, V.; Oguri, H.; Oikawa, H. An anti-tetraamination of a 1,3-diene unit via cascade annulations of the azulenone scaffold with dicarbonyl azo-compounds. Chem. Commun. (Camb.), 2010, 46(19), 3304-3305.
[http://dx.doi.org/10.1039/b926676c] [PMID: 20442894]
[14]
Guseva, E.V.; Volchkov, N.V.; Tomilov, Y.V.; Nefedov, O.M. Catalytic cyclopropanation of fluorine-containing alkenes and dienes with diazomethane and methyl diazoacetate. Eur. J. Org. Chem., 2004, 3136-3144.
[http://dx.doi.org/10.1002/ejoc.200400109]
[15]
Levashova, E.; Bakulina, O.; Darin, D.; Bubyrev, A.; Krasavin, M. From rare reagents to rare products: Regiospecific silver-catalyzed [3+2] cycloaddition of aryl-, alkyl- and aminosulfonyl diazomethanes with arenediazonium tosylates. Eur. J. Org. Chem., 2020, 4239-4242.
[http://dx.doi.org/10.1002/ejoc.202000619]
[16]
(a) Albéniz, A.C.; Espinet, P.; Manrique, R.; Pérez-Mateo, A. Observation of the direct products of migratory insertion in aryl palladium carbene complexes and their subsequent hydrolysis. Angew. Chem.,2002, 114, 2469. Angew. Chem. Int. Ed., 2002, 41, 2363-2366.
[http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2363:AID-ANIE2363>3.0.CO;2-9] [PMID: 12203593]
(b) Bröring, M.; Brandt, C.D.; Stellwag, S. The first Pd(II) complex of a non-heteroatom stabilised carbene ligand. Chem. Commun. (Camb.), 2003, (18), 2344-2345.
[http://dx.doi.org/10.1039/B307160J] [PMID: 14518906]
(c) Danopoulos, A.A.; Tsoureas, N.; Green, J.C.; Hursthouse, M.B. Migratory insertion in N-heterocyclic carbene complexes of palladium; an experimental and DFT study. Chem. Commun. (Camb.), 2003, (6), 756-757.
[http://dx.doi.org/10.1039/b212453j] [PMID: 12703808]
(d) Solé, D.; Vallverdú, L.; Solans, X.; Font-Bardia, M.; Bonjoch, J. Synthesis and reactivity of four-membered azapalladacycles derived from N,N-dialkyl-2-iodoanilines:-insertion reactions of carbenes into the carbon-palladium bond. Organometallics, 2004, 23, 1438-1447.
[http://dx.doi.org/10.1021/om034270c]
(e) Albéniz, A.C.; Espinet, P.; Manrique, R.; Pérez-Mateo, A. Aryl palladium carbene complexes and carbene–aryl coupling reactions. Chem. Eur. J,, 2005, 11, 1565-1573.
(f) Zhang, Y.; Wang, J. Recent developments in Pd-catalyzed reactions of diazo compounds. Eur. J. Org. Chem., 2011, 1015-1026.
[17]
Greenman, K.L.; Carter, D.S.; Van Vranken, D.L. Palladium-catalyzed insertion reactions of trimethylsilyldiazomethan. Tetrahedron, 2001, 57, 5219-5225.
[http://dx.doi.org/10.1016/S0040-4020(01)00363-5]
[18]
Kudirka, R.; Van Vranken, D.L. Cyclization reactions involving palladium-catalyzed carbene insertion into aryl halides. J. Org. Chem., 2008, 73(9), 3585-3588.
[http://dx.doi.org/10.1021/jo800109d] [PMID: 18370420]
[19]
Moebius, D.C.; Kingsbury, J.S. Catalytic homologation of cycloalkanones with substituted diazomethanes. Mild and efficient single-step access to α-tertiary and α-quaternary carbonyl compounds. J. Am. Chem. Soc., 2009, 131(3), 878-879.
[http://dx.doi.org/10.1021/ja809220j] [PMID: 19125571]
[20]
Xu, S.; Chen, R.; Fu, Z.; Gao, Y.; Wang, J. Cu (I)-Catalyzed coupling of bis (trimethylsilyl) diazomethane with terminal alkynes: A synthesis of 1, 1-disilyl allenes. J. Org. Chem., 2018, 83(11), 6186-6192.
[http://dx.doi.org/10.1021/acs.joc.8b00651] [PMID: 29719960]
[21]
Wang, S.; Xu, S.; Yang, C.; Sun, H.; Wang, J. Formal carbene C–H bond insertion in the Cu(I)-catalyzed reaction of bis(trimethylsilyl)diazomethane with benzoxazoles and oxazoles. Org. Lett., 2019, 21(6), 1809-1812.
[http://dx.doi.org/10.1021/acs.orglett.9b00391] [PMID: 30843700]
[22]
Illa, O. Garcia, C.; Silva, C.V.; Favier, I.; Picurelli, D.; Oliva, A.; Go’mez, M.; Branchadell, V.; Ortuno, R.M. Cyclopropanation of cyclohexenone by diazomethane cata-lyzed by palladium diacetate:-Evidence for the formation of palladium(0) nanoparticles. Organometallics, 2007, 26, 3306-3314.
[http://dx.doi.org/10.1021/om070141a]
[23]
(a) Lebel, H.; Paquet, V.; Proulx, C. Methylenation of aldehydes: Transition metal catalyzed formation of salt-free phosphorus ylides. Angew. Chem. Int. Ed., 2001, 40, 2887-2890.
[http://dx.doi.org/10.1002/1521-3773(20010803)40:15<2887:AID-ANIE2887>3.0.CO;2-Q]
(b) Grasa, G.A.; Moore, Z.; Martin, K.L.; Stevens, E.D.; Nolan, S.P.; Paquet, V.; Lebel, H. Structural characterization and catalytic activity of the rhodium–carbene com-plex Rh (PPh3) 2 (IMes) Cl (IMes= bis (1, 3-(2, 4, 6-trimethylphenyl) imidazol-2-ylidene). J. Organomet. Chem., 2002, 658, 126-131.
[http://dx.doi.org/10.1016/S0022-328X(02)01638-8]
(c) Lebel, H.; Paquet, V. Highly chemoselective rhodium-catalyzed methylenation of fluorine-containing ketones. Org. Lett., 2002, 4(10), 1671-1674.
[http://dx.doi.org/10.1021/ol025730l] [PMID: 12000270]
(d) Lebel, H.; Paquet, V. Rhodium-catalyzed methylenation of aldehydes. J. Am. Chem. Soc., 2004, 126(1), 320-328.
[http://dx.doi.org/10.1021/ja038112o] [PMID: 14709098]
[24]
Lebel, H.; Paquet, V. Catalytic activity of a new ruthenium-(trimethylsilyl) diazomethane complex. Organometallics, 2004, 23, 1187-1190.
[http://dx.doi.org/10.1021/om034358q]
[25]
Morandi, B.; Carreira, E.M. Iron-catalyzed cyclopropanation in 6 M KOH with in situ generation of diazomethane. Science, 2012, 335(6075), 1471-1474.
[http://dx.doi.org/10.1126/science.1218781] [PMID: 22442479]
[26]
Denmark, S.E.; Stavenger, R.A.; Faucher, A.M.; Edwards, J.P. Cyclopropanation with diazomethane and bis(oxazoline)palladium(II) complexes. J. Org. Chem., 1997, 62(10), 3375-3389.
[http://dx.doi.org/10.1021/jo970044z] [PMID: 11671727]
[27]
Garcia, C-R.; Ibarzo, J.; Larena, A.A.; Olivaa, V-B.A.; Ortuno, R.M. Stereoselective synthesis of chiral polyfunctionalized cyclohexane derivatives. Palladium(II)-mediated reaction between cyclohexenones and diazomethane. Tetrahedron, 2001, 57, 1025-1034.
[http://dx.doi.org/10.1016/S0040-4020(00)01061-9]
[28]
Charette, A.B.; Janes, M.K.; Lebel, H. Bis(oxazoline)•copper(I)-catalyzed enantioselective cyclopropanation of cinnamate esters with diazomethane. Tetrahedron Asymmetry, 2003, 14, 867-872.
[http://dx.doi.org/10.1016/S0957-4166(03)00076-4]
[29]
(a) Kulinkovich, O.G. Cyclopropanes in Organic Synthesis; Wiley: Hoboken, New Jersey, 2015.
[http://dx.doi.org/10.1002/9781118978429]
(b) Burke, A.J.; Marques, C.S.; Turner, N.; Hermann, G. Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development; Wiley: Weinheim, 2018.
[http://dx.doi.org/10.1002/9783527807253]
[30]
Shulishov, E.V.; Pantyukh, O.A.; Menchikov, L.G.; Tomilov, Y.V. Catalytic cyclopropanation of spiro[2.4]hepta-4,6-diene with diazomethane. Tetrahedron Lett., 2019, 60, 2043-2045.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.044]
[31]
Zhu, S.; Xing, C.; Pang, W.; Zhu, S. Rh2(OAc)4-catalyzed formation of trans-alkenes from the reaction of aldehydes with perfluorophenyl diazomethane through tellurium ylide. Tetrahedron Lett., 2006, 47, 5897-5900.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.065]
[32]
Maas, G.; Seitz, J. Ruthenium(I)-catalyzed cyclopropanation reactions with (trimethylsilyl)diazomethane and aryldiazomethanes. Tetrahedron Lett., 2001, 47, 6137-6140.
[http://dx.doi.org/10.1016/S0040-4039(01)01221-7]
[33]
(a) Doyle, M.P. Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH: New York, 2000, pp. 191-228.
(b) Lebel, H.; Marcoux, J-F.; Molinaro, C.; Charette, A.B. Stereoselective cyclopropanation reactions. Chem. Rev., 2003, 103(4), 977-1050.
[http://dx.doi.org/10.1021/cr010007e] [PMID: 12683775]
(c) Rovis, T.; Evans, D. Progress in Inorganic Chemistry; Karlin, K.D., Ed.; Wiley: New York, 2001, Vol. 50, pp. 1-150.
(d) Davies, H.M.L.; Antoulinakis, E.G. Organic Reactions; Overman, L.E., Ed.; Wiley: New York, 2001, 57, pp. 1-326.
(e) Noels, A.F.; Demonceau, A. Applied Homogeneous Catalysis with Organometallic Compounds; Cornils, B; Herrman, W.A., Ed.; Wiley-VCH: Weinheim, 2002, Vol. 2, pp. 793-808.
[34]
France, M.B.; Milojevich, A.K.; Stitt, T.A.; Kim, A.J. High trans selectivity in the copper bis(oxazoline)-catalyzed asymmetric cyclopropanation of olefins by (trime-thylsilyl)diazomethane. Tetrahedron Lett., 2003, 44, 9287-9290.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.068]
[35]
Wommack, A.J.; Moebius, D.C.; Travis, A.L.; Kingsbury, J.S. Diverse alkanones by catalytic carbon insertion into the formyl C-H bond. Concise access to the natural precursor of achyrofuran. Org. Lett., 2009, 11(15), 3202-3205.
[http://dx.doi.org/10.1021/ol9010932] [PMID: 19588908]
[36]
Wommack, A.J.; Kingsbury, J.S. Synthesis of acyclic ketones by catalytic, bidirectional homologation of formaldehyde with nonstabilized diazoalkanes. Application of a chiral diazomethyl(pyrrolidine) in total syntheses of erythroxylon alkaloids. J. Org. Chem., 2013, 78(21), 10573-10587.
[http://dx.doi.org/10.1021/jo401377a] [PMID: 23879715]
[37]
Sun, C.; Li, J.; Demerzhan, S.; Lee, D. Mild and efficient catalytic method for α-trimethylsilyl ketones. ARKIVOC, 2011, (IV), 13-25.
[http://dx.doi.org/10.3998/ark.5550190.0012.403]
[38]
Li, J.; Sun, C.; Lee, D. Cyclopropenation of alkylidene carbenes derived from α-silyl ketones. J. Am. Chem. Soc., 2010, 132(19), 6640-6641.
[http://dx.doi.org/10.1021/ja101998w] [PMID: 20411932]
[39]
(a) Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. C-H bond functionalization based on metal carbene migratory insertion. Chem. Commun. (Camb.), 2015, 51(38), 7986-7995.
[http://dx.doi.org/10.1039/C5CC00497G] [PMID: 25739369]
(b) Zhao, X.; Wu, G.; Zhang, Y.; Wang, J. Copper-catalyzed direct benzylation or allylation of 1,3-azoles with N-tosylhydrazones. J. Am. Chem. Soc., 2011, 133(10), 3296-3299.
[http://dx.doi.org/10.1021/ja111249p] [PMID: 21341655]
(c) Xiao, Q.; Ling, L.; Ye, F.; Tan, R.; Tian, L.; Zhang, Y.; Li, Y.; Wang, J. Copper-catalyzed direct ortho-alkylation of N-iminopyridinium ylides with N-tosylhydrazones. J. Org. Chem., 2013, 78(8), 3879-3885.
[http://dx.doi.org/10.1021/jo4002883] [PMID: 23506266]
(d) Xu, S.; Wu, G.; Ye, F.; Wang, X.; Li, H.; Zhao, X.; Zhang, Y.; Wang, J. Copper(I)-catalyzed alkylation of polyfluoroarenes through Direct C-H bond functionalization. Angew. Chem. Int. Ed. Engl., 2015, 54(15), 4669-4672.
[http://dx.doi.org/10.1002/anie.201412450] [PMID: 25690761]
[40]
Xu, S.; Chen, R.; Fu, Z.; Zhou, Q.; Zhang, Y.; Wang, J. Palladium-catalyzed formal [4+1] annulation via metal carbene migratory insertion and C(sp2)-H bond functionali-zation. ACS Catal., 2017, 7(3), 1993-1997.
[http://dx.doi.org/10.1021/acscatal.6b03562]
[41]
Ni, Y.; Montgomery, J. An efficient [4 + 2 + 1] entry to seven-membered rings. J. Am. Chem. Soc., 2004, 126(36), 11162-11163.
[http://dx.doi.org/10.1021/ja046147y] [PMID: 15355092]
[42]
Ni, Y.; Montgomery, J. Synthetic studies and mechanistic insight in nickel-catalyzed [4+2+1] cycloadditions. J. Am. Chem. Soc., 2006, 128(8), 2609-2614.
[http://dx.doi.org/10.1021/ja057741q] [PMID: 16492045]
[43]
(a) Brownbridge, P. Silyl enol ethers in synthesis - Part I. Synthesis, 1983, 1-28.
[http://dx.doi.org/10.1055/s-1983-30204]
(b) Nakamura, E.; Hashimoto, K.; Kuwajima, I. Highly stereoselective formation of enol silyl ethers. Tetrahedron Lett., 1978, 19, 2079-2082.
[http://dx.doi.org/10.1016/S0040-4039(01)94755-0]
(c) Reich, H.J.; Rusek, J.J.; Olson, R.E. Silyl ketone chemistry. A new regiospecific route to silyl enol ethers. J. Am. Chem. Soc., 1979, 101, 2225-2227.
[http://dx.doi.org/10.1021/ja00502a061]
(d) Corey, E.J.; Gross, A.W. Highly selective, kinetically controlled enolate formation using lithium dialkylamides in the presence of trimethylchlorosilane. Tetrahedron Lett., 1984, 25, 495-498.
[http://dx.doi.org/10.1016/S0040-4039(00)99920-9]
(e) Cahiez, G.; Figade’re, B.; Cle’ry, P. Highly regio and stereoselective preparation of Z silyl enol ethers and Z enol esters from ketones via manganese enolates. Tetrahedron Lett., 1994, 35, 6295-6298.
[http://dx.doi.org/10.1016/S0040-4039(00)73415-0]
[44]
Aggarwal, V.K.; Sheldon, C.G.; Macdonald, G.J.; Martin, W.P. A new method for the preparation of silyl enol ethers from carbonyl compounds and (trimethylsi-lyl)diazomethane in a regiospecific and highly stereoselective manner. J. Am. Chem. Soc., 2002, 124(35), 10300-10301.
[http://dx.doi.org/10.1021/ja027061c] [PMID: 12197731]
[45]
(a) Kirmse, W.; Kapps, M. Reaktionen des diazomethans mit diallylsulfid und allyläthern unter kupfersalz-katalyse. Chem. Ber., 1968, 101, 994-1003.
[http://dx.doi.org/10.1002/cber.19681010333]
(b) Doyle, M.P.; Griffin, J.H.; Chinn, M.S.; van Leusen, D. Rearrangements of ylides generated from reactions of diazo compounds with allyl acetals and thioketals by catalytic methods. Heteroatom acceleration of the [2,3]-sigmatropic rearrangement. J. Org. Chem., 1984, 49, 1917-1925.
[http://dx.doi.org/10.1021/jo00185a014]
(c) Doyle, M.P.; McKervey, M.A.; Ye, T. Modern Catalytic Methodsfor Organic Synthesis with Diazo Compounds: From Cyclopropanes toYlides; John Wiley&Sons: New York, 1998.
(d) Aggarwal, V.K.; Ferrara, M.; Hainz, R.; Spey, S.E. [2,3]-Sigmatropic rearrangement of allylic sulfur ylides derived from trimethylsilyldiazomethane (TMSD). Tetrahedron Lett., 1999, 40, 8923-8927.
[http://dx.doi.org/10.1016/S0040-4039(99)01896-1]
(e) Meyer, O.; Cagle, P.C.; Weickhardt, K.; Vichard, D.; Gladysz, J.A. Enantioselective syntheses of organosulfur compounds via [2,3] sigmatropic rearrangements of ylides derived from di(allyl), di(propargyl), and di(benzy1) sulfide complexes; control of carbon configuration by an easily resolved and recycled rhenium auxiliary. Pure Appl. Chem., 1996, 68, 79-88.
[http://dx.doi.org/10.1351/pac199668010079]
[46]
Carter, D.S.; Van Vranken, D.L. Iron-catalyzed Doyle-Kirmse reaction of allyl sulfides with (trimethylsilyl)diazomethane. Org. Lett., 2000, 2(9), 1303-1305.
[http://dx.doi.org/10.1021/ol005740r] [PMID: 10810733]
[47]
Gonza’lez, J.; Lo’pez, L.A.; Vicente, R. Zinc-catalyzed synthesis of 2-alkenylfurans via cross-coupling of enynones and diazo compounds. Chem. Commun., 2014, 50, 8536-8538.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy